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Supplementary Methods

Data sets DNA methylation data and RNA-seq data were generated within the Biobank-based 
Integrative Omics Studies Consortium. The data comprises four biobanks: Cohort on Diabetes 
and Atherosclerosis Maastricht (CODAM)40, LifeLines (LL)41, Leiden Longevity Study (LLS)42, the 
Rotterdam Study (RS)43. Sample identity of DNA methylation and expression data was confirmed 
using genotype data. Both RNA-seq fastq-files and DNA methylation idat-files are available from 
EGA (EGAC00001000277). Data was generated by the Human Genotyping facility (HugeF) of 
ErasmusMC, the Netherlands (www.glimDNA.org).

RNAseq data preprocessing Detailed description of the RNA-seq data processing can be found 
in Zhernakova et al.20 Subsequently, RNA-seq counts were normalized using TMM44 and 
transformed to log2 counts per million. Genes that yielded zero counts for all samples across 
cohorts were removed which resulted in 45867 genes (ENSEMBLv73). For all analyses genes 
with the lowest overall variance were excluded (5% lowest).

450k DNA methylation data  preprocessing Sample quality control was performed using 
MethylAid45. Ambiguously mapped probes46, probes with a high detection P-value (> 0.01), probes
with a low bead count (< 3 beads) and probes with a low success rate (missing in >95% of the 
samples) were set to missing. Samples containing an excess of missing probes (> 5%) were 
excluded from the analysis. Subsequently, per cohort, imputation47 was performed to impute the 
missing values. Functional normalization48, as implemented in the minfi-package49, was used per 
cohort. All analyses where performed on M-values (detailed description of the 450K DNA 
methylation preprocessing steps are available at: https://git.lumc.nl/molepi/Leiden450K).

White blood cell count prediction White blood cell counts (WBC), i.e., neutrophils, 
lymphocytes, monocytes, eosinophils and basophils, were measures by the standard WBC 
differential as part of the CBC (Complete Blood Count). However, a minority of samples were 
lacking CBC measurements. Since DNA methylation levels are informative of the white blood cell 
composition50 we build a linear predictor to infer the white blood cell composition of those 
samples lacking WBC measurements (Supplemental Text). In the meta-analyses all samples 
where used, also those lacking cell counts, only for this part of the manuscript predicted/imputed
cell counts were used.

Association Analyses All association analyses where performed using limma's lmFit-function51. 
Since, the sample sizes of our data were all above >100 we bypassed the empirical Bayes step. 
Furthermore, test-statistics where transformed to P values using a standard normal distribution.
For the association analyses on RNA-seq data we first applied a voom-transformation35 on the 
TMM-normalized counts while controlling for known covariates including age, gender, smoking 
status measured cell counts, flow-cell. 
For the association analyses on DNA methylation data the functional normalized beta-values were
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transformed to M-values and again lmFit from limma was used to obtain test-statistics for the 
covariate of interest. Here we included, age, gender, smoking status, measured cell counts and 
array position as known covariates.

Estimation of the unobserved covariates To investigate if adding estimated unobserved 
covariates reduces bias and inflation we performed association analyses with only the covariate 
of interest, known covariates (e.g. white blood cell counts) and either one or three principal 
components, estimated from the data, and CATE24 for both the EWAS and TWAS and specifically 
for the TWAS we used additionally RUV23,29 and SVA22 and for the EWAS ISVA30 and RUVm52. 

Simulation studies 
The impact of true association on the genomic inflation factor Hundred sets of 2000 test-statistics
were generate from a normal mixture distribution with different mixture coefficients (0.8, 0.90 
and 0.95). The majority of the null test-statistics were drawn from a standard normal, N(0, 1), 
while the alternative test-statistics were drawn from a normal distribution, , with

. A scenario was used with an equally number of positive and negative associations. 
For each set of test-statistics inflation factors were calculated to investigate the impact of the 
amount of true association. 
Comparing different methods that estimate the empirical null distribution A few methods have 
been proposed to estimate an empirical null distribution for a set of test-statistics. In order to 
compare there performance sets of test-statistics were generated under different scenario's; 
scenario equal containing equal number of positive and negative associations (0.05, 0.05), 
scenario skewed containing only positive associations (0.1), scenario small similar to scnerio 
equal with only 0.01, scenario close where the distribution for the means had expected value of 1
(in stead of 3). For each scenario 2000 test-statistics where generated 100 times. To estimate an 
empirical null distribution we used the locfdr16 R-package both the maximum-likelihood and 
moment-matching method with default parameters and our novel Bayesian approach. 
Simulation with unobserved covariates We used the same simulation setup to generated 
unobserved covariates as implemented in the R package cate using the gen.sim.data-function. 

The Gibbs Sampler A Gibbs sampling algorithm26,53,54 is used to obtain samples from the joint 
distribution of the three component normal mixture with 9-1 parameters (minus one, since the 
mixture proportions are constraint to sum to one). Standard conjugate priors are used for the 
means, , variances, , and mixture proportions, . Hence, we assume for

, , and the mixture proportion prior distribution is a Dirichlet 
distribution . Well chosen hyperpriors ensure that labeling switching, i.e., during 
sampling from the posterior, the null component is switched with one of the alternative 
components, does not occur easily. That is, we take hyperpriors for  for the null component

 and  and  and , for the alternative components. The 
hyperpriors for the variance parameters are equal for all components  and

. Since, we known in advance that the majority (>80%) of the 
test-statistics will follow the null distribution “informative” priors for the mixture proportions are 
used as well, namely , . Such that the prior Dirichlet distribution has expected 
values 0.9 and 0.05 with variances 0.03 and 0.02 for the null and alternative components. 
Furthermore, data-dependent starting values are used to start the algorithm at good initial point 
(actually, these are the mad and median estimates of bias and inflation). We use a burnin-period 
of 3000 iterations and use 2000 subsequent samples to estimate the parameters of the mixture 
distribution using the mean. The Gibbs Sampler algorithm is implemented in C and and uses a 
fast sampling approach for generating samples from the multinomial distribution55. 
Optionally, test-statistics other then normal can be use, e.g., chi-square statistics, by first 
applying Efron's z-transformation, e.g., qnorm(pchisq(t,df))and use the corresponding z-scores as
input. 
The algorithm is as follows: Given test-statistics (z-scores or transformed to z-scores)  for

, prior distributions with hyper-parameters, 



and starting values for the posterior distributions.

Iterate for ,
1) generate the missing (unobserved) data:  from a multinomial distribution, with 
parameter ,  represents the normalized proportion .

2) generate samples from the posteriors:

the latter mimics sampling from an inverse gamma distribution. For clarity, an iteration 
superscript is omitted. We assume 3000 iterations (burn-in period) is long enough for the Markov
properties to hold such that the samples from the conditional distributions can be assumed to be 
samples from the joint parameter distribution. 
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Supplementary Figures

Figure 1 | Genomic inflation factor is affected by the amount of true associations  
Box-plots summarizing the estimated inflation (y-axis) of 100 simulated sets of test-statistics with 
different amounts of true associations (x-axis). Inflation is estimated by five different methods: 
using our novel Bayesian approach (dark green), the central moment matching method of Efron 
(brown), the original genomic inflation factor (square-rooted) (purple),  the median absolute 
deviation (mad) (dark-red) of the test-statistics and the maximum likelihood approach of Efron 
(light green). The original genomic inflation factor and the mad are severely biased by the 
amount of true associations present in the data, while our novel Bayesian inflation factor is only 
mildly affected.



Figure 2 | Bias in epigenome- and transcriptome-wide association studies Histograms of 
test-statistics for TWAS (a) and EWAS (b) performed using the Leiden Longevity Study on age, 
and smoking status. In each panel a standard normal distribution is plotted (green) and an 
empirical null distribution (brown) estimated using bacon.



Figure 3 | Comparing different methods to estimate an empirical null distribution under
different scenario's Under different scenario's (Supplemental Methods) the bacon inflation 
factor is competitive or better then existing methods that estimate an empirical null distribution, 
such as, central moment matching (CM)16, maximum likelihood(MLE)16 or robust calibration as 
proposed by Wang et al.24. 



Figure 4 | bacon graphical output; diagnostic plots for the Gibbs Sampler a) Trace plot of 
a Gibbs Sampler run for the simulation scenario “equal”. Shown are the 2000 posterior samples 
of the three component normal mixture after a burn-in period of 3000 iterations. b) Fit of the 
three component normal mixture to the 2000 samples from simulation scenario “equal”. c) 
Scatter plot with normal confidence ellipses for the two, parameters proportion of null features 
and inflation factor. Ellipses represent from the 70, 95 and 98 percent confidence intervals. d) 
Scatter plot with normal confidence ellipses for the two, parameters proportion of null features 
and bias.



Supplementary Tables

Table 1 | Overview distribution demographic variables four cohorts.

CODAM LL LLS RS

Age 66 (61-71)1 46 (35-55) 59 (55-64) 69 (67-72)

Female sex 0.46 0.58 0.53 0.58

Smoking status 0.26, 0.59, 0.152  0.47, 0.39, 0.15 0.32, 0.55, 0.13 0.35, 0.56, 0.093
1interquartile range
2fraction non-smoker, former smoker and current smoker

Table 2 | Correction for unknown batches reduces the inflation in a EWAS on age 
Genomic and Bayesian inflation factors (biases) calculated from test-statistics obtained by fitting 
linear models with 1) only the covariate of interest 2) plus known covariates 3, 4, and 5) known 
covariates plus one, two and three principal component 6) plus one optimal surrogate variables 
estimated using iSVA30 7) RUVm52  and  7) plus 3 latent variables estimated using CATE24.

Method Genomic inf. fac. Bayesian inf. fac. (bias)

No 1.692 1.536 (-0.011)

Known 1.524 1.320 ( 0.089)

PC(1)1 1.390 1.245 (-0.239)

PC(2) 1.197 1.129 ( 0.049)

PC(3) 1.235 1.161 ( 0.051)

iSVA(3)     1.346 1.074 ( 0.057)

RUVm 1.210 1.144 (-0.082)

CATE(3)  1.327 1.191 ( 0.131)
1Within brackets the number of principal components or optimal number of surrogate variables 
or optimal number of latent factors.
 

Supplementary Tables 3 a, b, c and d as csv-files contain output of the meta-analyses, 
effect-sizes, standard error, P values, test-statistics of all cohorts and the meta-analysis.
These large tables will be made upon publication.


