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1 The BIOS consortium
The mission of the BIOS Consortium is to create a large-scale data infrastructure and to bring together BBMRI
researchers focusing on integrative omics studies in Dutch Biobanks (https://www.bbmri.nl/?p=259).

Management Team: Bastiaan T. Heijmans (chair)1, Peter A.C. ’t Hoen2, Joyce van Meurs3, Rick Jansen5,
Lude Franke6.

Cohort collection: Dorret I. Boomsma7, René Pool7, Jenny van Dongen7, Jouke J. Hottenga7 (Netherlands
Twin Register); Marleen MJ van Greevenbroek8, Coen D.A. Stehouwer8, Carla J.H. van der Kallen8, Casper
G. Schalkwijk8 (Cohort study on Diabetes and Atherosclerosis Maastricht); Cisca Wijmenga6, Lude Franke6,
Sasha Zhernakova6, Ettje F. Tigchelaar6 (LifeLines Deep); P. Eline Slagboom1, Marian Beekman1, Joris Deelen1,
Diana van Heemst9 (Leiden Longevity Study); Jan H. Veldink10, Leonard H. van den Berg10 (Prospective ALS
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Study Netherlands); Cornelia M. van Duijn4, Bert A. Hofman11, Aaron Isaacs4, André G. Uitterlinden3 (Rot-
terdam Study).

Data Generation: Joyce van Meurs (Chair)3, P. Mila Jhamai3, Michael Verbiest3, H. Eka D. Suchiman1, Mar-
ijn Verkerk3, Ruud van der Breggen1, Jeroen van Rooij3, Nico Lakenberg1.

Data management and computational infrastructure: Hailiang Mei (Chair)12, Maarten van Iterson1, Michiel
van Galen2, Jan Bot13, Dasha V. Zhernakova5, Rick Jansen4, Peter van ’t Hof12, Patrick Deelen5, Irene Nooren13,
Peter A.C. ’t Hoen2, Bastiaan T. Heijmans1, Matthijs Moed1.

Data Analysis Group: Lude Franke (Co-Chair)6, Martijn Vermaat2, Dasha V. Zhernakova6, René Luijk1,
Marc Jan Bonder6, Maarten van Iterson1, Patrick Deelen6, Freerk van Dijk14, Michiel van Galen2, Wibowo
Arindrarto12, Szymon M. Kielbasa15, Morris A. Swertz14, Erik. W van Zwet15, Rick Jansen5, Peter-Bram ’t
Hoen (Co-Chair)2, Bastiaan T. Heijmans (Co-Chair)1.
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The Netherlands
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sterdam, The Netherlands
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Netherlands
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2 The genomic inflation factor is affect by true associations
Given a set of test-statistics z2, · · · ,zp the (squared) genomic inflation factor is given by[1]:

λ
2 =

med{z2
2, · · · ,z2

p}
0.457

. (1)

The median of the squared test-statistics will be the ordered test-statistic at position p/2 or (p+2)/2, if p is odd or
even, respectively. Since, the set of test-statistics represents p1 test-statistics following the null distribution and
p− p1 the alternative. The set ordered test-statistics will be given by {z2

2, · · · ,z2
p1
,z2

p1+2 · · · ,z2
p}. Furthermore,

it is known in advance that p1 > p/2 or p1 > p+1/2 it follows that med{z2
2, · · · ,z2

p} > med{z2
2, · · · ,z2

p1
} > 0.457

and thus λ 2 > 1.
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3 Applying genomic control is the same as using an inflated or overdis-
persed empirical null

Consider a two-sided test for normally distributed test-statistics, Ti for i = 1, · · · , p. Genomic control divides
test-statistics by the inflation factor, λ , before the calculation of P values, Ui.

Ui = 2
[

1−Φ

(∣∣∣∣Ti

λ

∣∣∣∣)]
= 2

[
1−Pr

{
Z ≤

∣∣∣∣Ti

λ

∣∣∣∣}]
= 2 [1−Pr{λZ ≤ |Ti|}]
= 2 [1−Pr{X ≤ |Ti|}]

(2)

Here, Z∼N (0,1) with CDF given by Φ. Furthermore, X ∼N (0,λ 2), represents the overdispersed or inflation
normal distribution.

And in general if both inflation and bias are present.

Ui = 2
[

1−Φ

(∣∣∣∣Ti−µ

σ

∣∣∣∣)]
= 2 [1−Pr{σZ +µ ≤ |Ti|}]
= 2 [1−Pr{X ≤ |Ti|}]

(3)

Here, µ , represents the bias and σ the inflation. Furthermore, now X ∼N (µ,σ2).

4 Unobserved covariates introduce inflation and bias
In a note from P. Rao[2] it was shown that the omission of a variable introduces bias and decreases the variance
of all least squares estimates, i.e. introduces both bias and inflation. Here is a sketch of the proof for the
introduction of bias, within the framework of the main text.

Considered the omission of the unobserved technical or biological covariates, W. For the sake of simplicity,
we assume there are no known covariates, Z, without loss of generality.

y j = xβ̃ j + ε̃ . j

y j = xβ j +Wγ j + ε . j
(4)

The latter model is true but we are unaware of this and continue estimating the regression coefficient of
interest, β̃ j of the former, misspecified, model.

b̃ j =
xT y j

xT x

=
xT (xβ j +Wγ j + ε . j)

xT x

= β j +
xT Wγ j + xT ε . j

xT x

(5)

where, we substituted the true model for y j. Now, since E[ε . j] = 0, the expected regression coefficient is
given by:

E[b̃ j] = β j +
xT W
xT x

γ j (6)
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and the bias is given by the last fraction, which can be interpreted as a weighted sum of correlations between
the covariate of interest, x and q omitted variables.

q

∑
k

γ jkcor(x,wk) (7)

If all weights are zero or all correlations than the bias will be zero to. The bias is not equal to zero if an
omitted variable is confounded with the outcome, i.e. both γ jk and xT W are not zero.

5 Partial least squares for imputation of white blood cell composition
White blood cell counts (WBC), i.e., neutrophils, lymphocytes, monocytes, eosinophils and basophils, were
measures by the standard WBC differential as part of the CBC (Complete Blood Count). However, a minority
of samples lack CBC measurements. Since DNA methylation levels are informative of the white blood cell
composition[3] we build a linear predictor to infer the white blood cell composition of those samples lacking
WBC measurements.

Obviously, this model can not be fitted using ordinary least-squares, since p >> n, we need some kind
of regularization. Furthermore, the multivariate responses, white blood counts on five cell types, represents
compositional data, i.e., the data are percentages that sum up to 100%.

We have chosen to use partial least-squares for fitting a model with cell counts as a multivariate response
and the > 400.000 CpGs age and sex as covariates. It is known that the WBCC is dependent on age and gender.
The advantage of partial least-squares is that it both can handle multivariate responses and high-dimensional
(p >> n) covariates. We used the R-package pls[4] to fit the model and optimize the number of pls-components
using five-fold cross-validation. The fitted model was used to predict WBCC using the 450K data, age and sex
of those samples lacking WBCC.

The pls-approach has been validated by splitting the data with WBCC available in a train and test set. Fit
the pls-model on the train set and predict WBCC on the test set. Correlation (Pearson) between predicted and
measured WBCC range from 0.86 – 0.37 for lymphocytes and basophils respectively, the intraclass correction
was 0.84 – 0.25.

This approach has been implemented in a R package https://github.com/mvaniterson/wbccPredictor.

6 Different ways to calculate genomic inflation
Devlin and Roeder [1] propose the genomic inflation factor is as the ratio of the median of χ2

1 -distributed test-
statistics divided by the median of a χ2

1 of 0.456.

λ =
median(t1, t2, · · · , tp)

0.456
, (8)

where ti ∼ χ2
2 at least under the null hypothesis.

Since, in EWAS/TWAS usually test-statistics, z1,z2, · · · ,zp are derived that follow (approximately) a normal
distribution the following formula can be used to estimate the amount of inflation:

λ
2 =

median(z2
1,z

2
2, · · · ,z2

p)

0.456
, (9)

since, z2
i will approximately follow a χ2

1 -distribution. Furthermore, the inflation of the z-scale is the square-root
of the χ2

2 -scale to indicate this we introduced the λ 2.
Another way to estimate the amount of inflation is using the absolute value of z-score and divide them by

0.4562.
Occasionally, P values are used to estimate the amount of inflation by comparing median of the minus

log10-transformed P values with the median of minus log10-transformed random uniformly distributed statistics.
However, a simple calculation shows these follow an exponential distribution with rate parameter loge 10 and
thus the theoretical median is log10 2.
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