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SUPPLEMENTARY NOTE 1

LEMMA 0.1. The read decompression problem is strongly
NP-hard.

Proof Consider the Multiple Subset Sum Problem (MSSP),
defined as follows. Given n items with weights w1,w2,...,wn
and m knapsacks with capacities c1,c2,...,cm, assign items
such that:

1. each item is assigned to up to 1 knapsack

2. the capacity of each knapsack is not exceeded by the
combined weights of the items assigned to it

3. the total weight of the items in all the knapsacks is
maximized.

MSSP is known to be strongly NP-hard (1).
We reduce MSSP to a special case of the read

decompression problem where the coverage vector never
exceeds 1. We first construct a vector C encoding knapsack
capacities in unary. We start with empty C then, for each i,
append ci 1s followed by a single 0. Because the length of C
depends on the numeric knapsack weights, this is a pseudo-
polynomial time reduction. Next, we let the read length tally
equal the item weight tally. Finally, we run our decompression
algorithm on the coverage vector C and read length tally. The
algorithm packs reads into the nonzero stretches of C. This
solution is converted to an MSSP solution by converting reads
to the corresponding items and stretches of the coverage vector
to the corresponding knapsacks.

The reduction satisfies the requirements of a
pseudo-polynomial transformation (2). Hence, the read
decompression problem for unpaired reads is strongly
NP-hard.

SUPPLEMENTARY NOTE 2

Greedy algorithm for obtaining reads from coverage
vector.
The algorithm works from one end of the coverage vector
to the other, removing reads that remain consistent with the
coverage vector. We take advantage of the homogeneous read
length distribution produced by sequencing experiments by
preferentially removing reads of the most common length.

When necessary, we adjust the lengths of previously found
reads by a few bases to match the coverage vector as closely
as possible.

Initially, we extract reads in end-to-end sets of the form
(a,b,n) where a and b are the starting and ending indices in
the coverage vector and n is the number of end-to-end reads.
Each read set must satisfy

n ·lmin≤(b−a)≤n ·lmax

where lmin and lmax are the minimum and maximum lengths
in the read distribution, respectively. Each time we find a
new read (b,c), we search for an existing read set matching
(a,b,n) and update it to (a,c,n+1). If no such read exists, we
add a new read set (b,c,1).

We define two helper functions extend(x0,x1) and
shorten(x0,x1).
extend(x0,x1) searches for a read set of the form (a,x0,n)

satisfying

n ·lmin≤(x1−a)≤n ·lmax

and updates it to (a,x1,n) and decrements the coverage vector
in the range [x0,x1) by 1.

shorten(x0,x1) searches for a read set of the form
(a,x1,n) satisfying

n ·lmin≤(x0−a)≤n ·lmax

and updates it to (a,x0,n) and increments the coverage vector
in the range [x0,x1) by 1.

These functions allow us to adjust previous reads by small
amounts to fit in later reads. The read extraction algorithm
works as follows:

Last start and end be the indices of the first and last
nonzero elements in the coverage vector, respectively. We
find a and b such that cov[i]>0∀i∈ [start,a), cov[a]=0 and
cov[i]=0∀i∈ [a,b), cov[b]>0.

Special end case: if a=end<start+lmin, we first attempt
to run extend(start,a). If unsuccessful, we decrement the
bases in the coverage vector in the range [start,a) but do not
add a new read.

If a≥ lmode, we add a new read (start,start+lmode) and
update the coverage vector.c© 2016 The Author(s)
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Otherwise, we attempt to run extend(start,a). If
unsuccessful, we attempt to run shorten(a,b). If this is also
unsuccessful, we do one of the following:

1. If (a−start)≥ lmin, we add a new read (start,a) and
update the coverage vector.

2. If lmin
2 ≤(a−start)<lmin, we add a new read

(start,start+lmode) and update the coverage vector.

3. If (a−start)< lmin
2 , we decrement the bases in the

coverage vector in the range [start,a) but do not add
a new read.

We then update start and end and repeat until the coverage
vector is empty.

SUPPLEMENTARY NOTE 3

Tool versions and parameter settings.
• TopHat 2 v2.1.0

• HISAT v0.1.6

• Boiler v1.0.1 (on PyPy 2.4)

• CRAMTools v3.0 (on Java v1.7)

• Goby v2.3.5 (on Java v1.7)

• Cufflinks v2.2.1

• StringTie v1.2.2

• SAMtools v0.1.19

• BEDtools v2.25.0

Boiler and CRAMTools were run with default options.
Goby was run with in full ”ACT H+T+D” mode as described
in the ”Goby parameter settings” section of the Goby study (?
).

Boiler and Goby remove read names by default,
but CRAM does not. CRAMtools has an option
--preserve-read-names, but we cannot find a
working mechanism in version 3 to remove read names. Thus,
for a fairer comparison, we stripped the read names before
compressing.

When running Cufflinks, we used the
--no-effective-length-correction option to
avoid variability due to an issue (recently resolved) in how
Cufflinks performs effective transcript length correction.
StringTie was run with default parameters.

A full listing of the parameter settings used for the
evaluations is at the following URL:
http://bit.ly/boiler-201605-expts

SUPPLEMENTARY NOTE 4

Boiler Compression Ratio for HISAT Output

Table 2 compares the compression ratio and compressed
size for alignment files generated by TopHat 2 and HISAT.
The initial file size is the size of the BAM with read names
removed. For most paired-end datasets the HISAT alignment
BAM was larger than the TopHat 2 BAM, but the compressed
files generated by Boiler were roughly the same size. This
leads to a better compression ratio for HISAT alignments.

Goby Compression Ratio
In Table 4 and Figure 3 of our main paper, we

compare Boiler’s compression rate to CRAM and Goby. As
summarized in Table 1 of the main paper, CRAM does not
preserve quality scores and tags by default, and we further
remove read names before compressing for a fair comparison.
Goby discards read names and most tags, but preserves
quality score information and ’MD’ tag for mismatches.
Goby also preserves the identity of orphaned reads, which
Boiler converts to unpaired reads. Table 2 compares the
effect on Goby’s compression rate of (1) converting orphaned
reads to unpaired reads by modifying the SAM flags field,
and (2) replacing all quality scores with ’#’ for efficient
compression. For all datasets, orphaned reads represent only
a small fraction of Goby storage, and removing quality scores
reduces compressed size by less than 5% in unpaired datasets
and less than 3% in all paired-end datasets.

SUPPLEMENTARY NOTE 5

Though Boiler allows the user to pose targeted queries without
decompressing the entire file, we also evaluate how long
Boiler takes to decompress an entire file relative to other tools.
These results are presented in Table 3. Overall, Boiler takes
roughly 2 – 4 times longer than CRAMTools and about 1 – 2
times longer than Goby to decompress entire files.

Supplementary Table 1. Compression ratio and compressed size of Boiler
for alignments generated by TopHat and HISAT.

Dataset TopHat HISAT
Ratio Size (MB) Ratio Size

Drosophila, Simulated Unpaired
0.5M 9.6 2.7 9.7 2.7
1M 13.6 3.6 14.0 3.6
2.5M 21.3 5.6 21.3 5.5
5M 29.1 7.6 29.8 7.5
10M 39.7 11.0 40.1 10.8
20M 55.7 15.0 56.7 14.8

Drosophila, Simulated Paired
0.5M 13.1 4.3 14.8 4.3
1M 15.5 6.7 17.7 6.8
2.5M 19.8 12.9 22.4 12.9
5M 24.3 20.0 27.8 20.3
10M 30.2 31.6 34.8 31.6
20M 38.8 49.0 43.4 49.8

Human
SRP025982 (11M) 21.3 38.0 21.9 65.9
Simulated 20M 29.6 71.6 37.0 61.9
Simulated 40M 32.7 118.0 44.0 99.7
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SUPPLEMENTARY NOTE 6

We investigated the effect of varying the threshold k in the
exon scoring equation (1) in the main paper. As k increases,
the scoring function becomes more relaxed, allowing exons
with more divergent boundaries to contribute to the score.
If k=0, then two exons receive a score of 1 only if they
are identical, 0 otherwise. On the other extreme, as k→
∞ the score approaches 1 for all pairs of exons. Figure 1
shows the precision and recall at varying k thresholds for
the simulated D. melanogaster dataset containing 1 million
paired-end reads. We observe that, across various k cutoffs,

Supplementary Table 2. Size of Goby compressed files for the BAM file
with orphaned read information removed, and for all quality scores replaced
by constant values. All files were compressed with the H+D+T codec.

Dataset Original BAM No Orphans No Quality Scores

Drosophila, Simulated Unpaired
0.5M 1.2 – 1.2
1M 2.4 – 2.3
2.5M 5.6 – 5.4
5M 10.1 – 9.8
10M 19.0 – 18.2
20M 35.7 – 34.2

Drosophila, Simulated Paired
0.5M 4.9 4.9 4.8
1M 9.4 9.3 9.3
2.5M 23.8 23.6 23.4
5M 45.9 45.6 45.1
10M 95.8 95.3 94.3
20M 193.3 192.3 190.2

Human
SRP025982 (11M) 159.8 159.8 154.9
HG00100 (20M) 352.2 352.2 347.4
Simulated 20M 307.8 307.0 304.2
Simulated 40M 587.6 585.5 580.7

Supplementary Table 3. Decompression times in seconds.

Dataset Boiler CRAM Goby

Drosophila, Simulated Unpaired
0.5M 20.3 9.4 14.3
1M 23.3 14.3 20.5
2.5M 40.7 29.5 36.8
5M 49.8 50.0 64.1
10M 82.9 87.8 110.9
20M 186.7 168.2 240.3

Drosophila, Simulated Paired
0.5M 31.7 16.1 23.0
1M 44.5 25.7 35.8
2.5M 97.5 55.4 70.8
5M 161.0 99.0 121.6
10M 344.5 192.6 239.2
20M 1089.4 378.4 519.8

Human
SRP025982 (11M) 828.2 315.1 654.0
HG00100 (20M) 1203.5 462.0 –*
Simulated 20M 1008.8 464.0 986.4
Simulated 40M 3179.7 835.3 1552.0

* Received an error when decompressing.

accuracy decreases slightly after Boiler compression. Both
plots show an inflection point around k=5 to 10, after which
the accuracy measure becomes more stable. Based on these
results, we used a threshold of k=10 in all experiments.

SUPPLEMENTARY NOTE 7

Table 4 shows the read-level precision and recall for the
HISAT-generated alignments, before and after compression
with Boiler.

SUPPLEMENTARY NOTE 8

Tables 5 and 6 show the transcript-level precision and
recall not weighted by coverage, compared to the reference
transcriptome. Tables 7 and 8 show the precision and recall
not weighted by coverage for the direct comparison of
transcriptomes before and after compression.

SUPPLEMENTARY NOTE 9

Weighted k-mer recall.
We assess fidelity by measuring weighted k-mer recall
(WKR), a component of the KC score developed by Li et
al. (3) to assess transcriptome assemblies. WKR measures
the degree to which an assembly recovers k-mers from the
true simulated transcriptome, weighted by abundances of
simulated transcripts containing the k-mer. For a k-mer r, its
frequency profile p(r) is defined as:

p(r)=

∑
t∈T n(r,t)c(t)∑
t∈T n(t)c(t)

where T is the simulated transcriptome and for each
transcript t∈T :

Supplementary Table 4. HISAT precision and recall of SAM reads.

Dataset Ignoring Pairings Including Pairings
Precision Recall Precision Recall

Drosophila, Simulated Unpaired
0.5M 0.992 0.993 – –
1M 0.988 0.990 – –
2.5M 0.980 0.984 – –
5M 0.973 0.978 – –
10M 0.967 0.973 – –
20M 0.969 0.974 – –

Drosophila, Simulated Paired
0.5M 0.990 0.992 0.504 0.505
1M 0.984 0.988 0.404 0.406
2.5M 0.974 0.979 0.298 0.300
5M 0.969 0.974 0.221 0.222
10M 0.967 0.972 0.173 0.174
20M 0.968 0.972 0.140 0.141

Human
SRP025982 (11M) 0.991 0.991 0.321 0.321
Simulated 20M 0.975 0.979 0.250 0.251
Simulated 40M 0.976 0.980 0.235 0.236
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Supplementary Figure 1. Precision (left) and recall (right) of transcripts compared to the reference transcriptome before and after compression with Boiler, as
a function of the threshold used in the exon scoring function.

• n(r,t) is the number of times r occurs in t,

• n(t) is the total number of k-mers in t, and

• c(t) is the coverage of t.

Letting R(T ) be the set of all k-mers in transcriptome T :

WKR=
∑

r∈R(T )

p(r)

WKR is defined with respect to the true transcriptome
T , which we obtain from Flux Simulator’s output. The

Supplementary Table 5. Reference-based Unweighted Precision.

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.245 0.245 (+0.2%) 0.334 0.334 (+0.1%)
1M 0.278 0.278 (-0.1%) 0.392 0.392 (+0.0%)
2.5M 0.289 0.289 (-0.0%) 0.415 0.415 (+0.0%)
5M 0.274 0.274 (-0.0%) 0.379 0.379 (+0.0%)
10M 0.255 0.255 (+0.1%) 0.347 0.347 (+0.0%)
20M 0.246 0.247 (+0.2%) 0.320 0.320 (-0.1%)

Drosophila, Simulated Paired
0.5M 0.402 0.400 (-0.4%) 0.389 0.388 (-0.1%)
1M 0.388 0.388 (-0.2%) 0.404 0.403 (-0.2%)
2.5M 0.361 0.361 (-0.0%) 0.384 0.383 (-0.1%)
5M 0.327 0.326 (-0.4%) 0.352 0.352 (-0.0%)
10M 0.299 0.300 (+0.1%) 0.321 0.321 (-0.0%)
20M 0.285 0.286 (+0.1%) 0.302 0.300 (-0.5%)

Human, Simulated Paired
20M 0.204 0.203 (-0.4%) 0.214 0.213 (-0.3%)
40M 0.190 0.190 (-0.1%) 0.197 0.196 (-0.7%)

GEUVADIS sample is not considered here, since it is not
simulated. Figure 2 shows that WKR is largely unchanged
after Boiler compression for various k-mer length settings.

It also shows that the difference in WKR is more
pronounced for Cufflinks than for StringTie. Table 9 shows the
WKR for k=15 for all datasets. Overall, the differences are
slight, with the biggest difference at k=15 being an increase
of 0.4% for the paired-end 2.5M-read D. melanogaster
sample.

Supplementary Table 6. Reference-based Unweighted Recall

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.367 0.368 (+0.0%) 0.266 0.266 (+0.1%)
1M 0.566 0.565 (-0.2%) 0.496 0.496 (+0.0%)
2.5M 0.717 0.716 (-0.1%) 0.708 0.708 (+0.0%)
5M 0.768 0.768 (+0.0%) 0.778 0.778 (-0.0%)
10M 0.784 0.784 (+0.0%) 0.806 0.806 (-0.0%)
20M 0.783 0.783 (-0.1%) 0.811 0.811 (-0.0)

Drosophila, Simulated Paired
0.5M 0.573 0.571 (-0.3%) 0.480 0.480 (-0.1%)
1M 0.698 0.697 (-0.2%) 0.666 0.666 (-0.1%)
2.5M 0.772 0.774 (+0.2%) 0.785 0.784 (-0.0%)
5M 0.796 0.794 (-0.2%) 0.816 0.815 (-0.1%)
10M 0.783 0.778 (-0.6%) 0.806 0.805 (-0.0%)
20M 0.793 0.793 (+0.0%) 0.812 0.812 (-0.0%)

Human, Simulated Paired
20M 0.748 0.747 (-0.2%) 0.777 0.775 (-0.3%)
40M 0.747 0.744 (-0.3%) 0.779 0.775 (-0.5%)
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SUPPLEMENTARY NOTE 10

Tripartite Score
We developed a different scoring method to compare the
accuracy of alignments before and after compression, called

Supplementary Table 7. Non-reference-based unweighted precision.
Columns labeled Boiler compare precision before and after Boiler
compression. Columns labeled Tech Reps compare pairs of technical
replicates.

Dataset Cufflinks Stringtie
Boiler Tech Reps Boiler Tech Reps

(min–max) (min–max)

Drosophila, Simulated Unpaired
0.5M 0.999 0.246–0.255 1.000 0.295–0.307
1M 0.998 0.322–0.333 1.000 0.385–0.398
2.5M 0.996 0.430–0.437 0.999 0.521–0.534
5M 0.996 0.504–0.512 0.999 0.607–0.613
10M 0.994 0.570–0.577 0.997 0.676–0.686
20M 0.990 0.629–0.634 0.994 0.725–0.733

Drosophila, Simulated Paired
0.5M 0.981 0.425–0.440 1.000 0.389–0.405
1M 0.980 0.522–0.529 0.999 0.490–0.499
2.5M 0.969 0.624–0.632 0.996 0.613–0.619
5M 0.967 0.674–0.684 0.995 0.680–0.690
10M 0.960 0.713–0.722 0.992 0.727–0.733
20M 0.953 0.746–0.754 0.989 0.763–0.773

Human
SRP025982 (11M) 0.971 0.384–0.389 0.999 0.314–0.318
HG00100 (20M) 0.921 (no replicates) 0.993 (no replicates)
Simulated 20M 0.969 0.761–0.786 0.991 0.756–0.787
Simulated 40M 0.964 0.780–0.804 0.986 0.777–0.809

Supplementary Table 8. Non-reference-based unweighted recall. Columns
labeled Boiler compare recall before and after Boiler compression. Columns
labeled Tech Reps compare pairs of technical replicates.

Dataset Cufflinks Stringtie
Boiler Tech Reps Boiler Tech Reps

(min–max) (min–max)

Drosophila, Simulated Unpaired
0.5M 0.997 0.246–0.255 1.000 0.295–0.307
1M 0.995 0.322–0.333 1.000 0.385–0.398
2.5M 0.996 0.430–0.437 0.999 0.521–0.534
5M 0.995 0.504–0.512 0.999 0.607–0.613
10M 0.993 0.570–0.577 0.997 0.676–0.686
20M 0.988 0.629–0.634 0.995 0.725–0.733

Drosophila, Simulated Paired
0.5M 0.981 0.425–0.440 0.999 0.389–0.405
1M 0.981 0.522–0.529 0.999 0.490–0.499
2.5M 0.972 0.624–0.632 0.996 0.613–0.619
5M 0.970 0.674–0.684 0.995 0.680–0.690
10M 0.959 0.713–0.722 0.992 0.727–0.733
20M 0.953 0.746–0.754 0.989 0.763–0.773

Human
SRP025982 (11M) 0.964 0.384–0.389 0.999 0.314–0.318
HG00100 (20M) 0.922 (no replicates) 0.993 (no replicates)
Simulated 20M 0.968 0.761–0.786 0.992 0.756–0.787
Simulated 40M 0.961 0.780–0.804 0.987 0.777–0.809
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Supplementary Figure 2. WKR with varying k-mer length for simulated
Drosophila 10M paired-end reads, assembled with Cufflinks and StringTie.

the tripartite score. There are two versions of this score, strict
and loose.

We first construct a tripartite graph containing a node for
each transcript in the cufflinks output for the alignments
both before and after compression, as well as for each
transcript in the reference transcriptome. We add a connecting
edge from each transcript from the original set to the best-
matching transcript from the reference set, determined using
the transcript scoring method described previously. Similarly,
we add an edge from each transcript in the compressed set to
the best match from the reference set of transcripts.

For the strict tripartite score, we take all the nodes from the
set of reference transcripts that are connected to a single node
Ai from the set of original transcripts and a single node Bi

Supplementary Table 9. WKR.

Dataset Cufflinks StringTie
Original Compressed Original Compressed

Drosophila, Simulated Unpaired
0.5M 0.738 0.737 (-0.1%) 0.621 0.621 (+0.0%)
1M 0.857 0.856 (-0.0%) 0.776 0.776 (+0.0%)
2.5M 0.924 0.922 (-0.2%) 0.897 0.897 (+0.0%)
5M 0.949 0.949 (-0.0%) 0.935 0.935 (+0.0%)
10M 0.957 0.958 (+0.1%) 0.954 0.955 (+0.0%)
20M 0.962 0.961 (-0.0%) 0.960 0.960 (+0.0%)

Drosophila, Simulated Paired
0.5M 0.848 0.848 (+0.0%) 0.779 0.779 (-0.0%)
1M 0.909 0.908 (-0.1%) 0.881 0.881 (-0.0%)
2.5M 0.929 0.932 (+0.4%) 0.940 0.941 (+0.0%)
5M 0.948 0.945 (-0.3%) 0.956 0.956 (+0.0%)
10M 0.938 0.933 (-0.6%) 0.960 0.961 (+0.1%)
20M 0.936 0.936 (-0.0%) 0.964 0.965 (+0.1%)

Human, Simulated
20M 0.881 0.883 (+0.1%) 0.933 0.933 (+0.0%)
40M 0.900 0.908 (+0.8%) 0.934 0.934 (+0.1%)
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from the set of compressed transcripts. The final score is the
average of the transcript scores for every pair Ai, Bi.

For the loose tripartite score, we take all the nodes from the
set of reference transcripts that are connected to at least one
node from the set of original transcripts and at least one node
from the set of compressed transcripts. Let Ai be the original
transcript with the highest score compared to the reference
node, and let Bi be the compressed transcript with the highest
score compared to the reference transcript. The final score is
the average of the transcript scores for every pair Ai, Bi.

Tables 10 and 11 show the tripartite scores alongside the
percentage of transcripts from the original and compressed set
of transcripts that contribute to the score.

Supplementary Table 10. Tripartite score for Cufflinks transcripts.

Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 0.999 27.5 27.6 0.981 43.7 43.8
1M 0.999 23.3 23.4 0.986 39.4 39.6
2.5M 0.998 24.9 24.9 0.992 34.7 34.7
5M 0.996 23.9 24.0 0.994 30.6 30.7
10M 0.992 23.1 23.1 0.990 28.0 28.1
20M 0.988 22.3 22.4 0.986 26.9 26.9

Drosophila, Simulated Paired
0.5M 0.994 45.2 45.2 0.984 59.2 59.2
1M 0.990 35.5 35.5 0.983 47.1 47.1
2.5M 0.979 31.5 31.3 0.977 39.4 39.2
5M 0.979 28.0 27.9 0.976 34.4 34.4
10M 0.969 25.2 25.2 0.963 31.6 31.6
20M 0.965 23.3 23.3 0.959 29.5 29.5

Human, Simulated
20M 0.976 16.8 16.9 0.972 22.6 22.7
40M 0.976 14.4 14.5 0.970 20.2 20.3

Supplementary Table 11. Tripartite score for Stringtie transcripts.

Dataset Strict Loose
Score % True % Comp Score %True % Comp

Drosophila, Simulated Unpaired
0.5M 1.000 43.2 43.2 1.000 59.1 59.1
1M 1.000 44.0 4.0 1.000 58.3 58.3
2.5M 0.999 40.9 40.9 0.997 51.1 51.1
5M 0.998 34.3 34.3 0.998 42.3 42.3
10M 0.993 29.4 29.4 0.994 36.4 36.4
20M 0.988 24.5 24.5 0.990 32.0 32.0

Drosophila, Simulated Paired
0.5M 1.000 44.6 44.7 0.999 58.5 58.6
1M 0.999 41.0 41.0 0.994 51.9 52.0
2.5M 0.996 35.1 35.0 0.996 42.7 42.7
5M 0.995 28.5 28.6 0.994 36.2 36.2
10M 0.989 25.0 25.0 0.988 32.5 32.6
20M 0.986 23.0 23.1 0.986 30.3 30.3

Human, Simulated
20M 0.985 16.7 16.6 0.985 22.4 22.4
40M 0.983 14.0 14.0 0.981 19.9 19.9

SUPPLEMENTARY NOTE 11

Transcript quantification with Cufflinks and StringTie.
We measured Boiler’s effect on quantification accuracy when
transcripts are quantified directly from alignments without
an initial assembly step. We ran Cufflinks and StringTie
in quantification-only mode (-G for Cufflinks and -G -e
for StringTie). As input we use the alignment BAM files
output by TopHat 2 in each of the simulation experiments
described in the main text. We ran each tool on the BAM
file both before and after Boiler compression. For comparison,
we also ran each tool on each of the 5 technical replicates
described in the “Fidelity” section in the main text. The
reference transcriptome provided to each tool was the same
one used to generate the original dataset with Flux Simulator.
Both tools output a file called “isoforms.fpkm tracking” with
FPKM estimates for all transcripts. Table 12 presents the Root
Mean Squared Error (RMSE) between the FPKM vectors
before and after Boiler compression (column: “Boiler”). We
also obtained 10 pairwise RMSEs by comparing all pairs of
technical-replicate FPKM vectors. Minimum and maximum
technical-replicate RMSEs are shown in the “Tech Reps”
column.

Figure 3 plots Boiler-compressed vs. original FPKM for
all transcripts in the StringTie quantitation output for the
D. melanogaster 20M paired-end dataset (blue points). We
also plot the same for a randomly-chosen pair of technical
replicates (red points).

While the Boiler RMSE for Cufflinks quantitation is often
(though not always) higher than the highest observed for
the technical replicates, the Boiler RMSE for StringTie
quantitation is always lower than the lowest observed for the
technical replicates. This is likely because Boiler removes
read names during compression, breaking the relationship
between a multi-mapping read and its several alignments.
This in turn affects Cufflinks quantification, which depends
on read names to group multi-mapping alignments during
quantification. A subject for future work is whether and how
Boiler can preserve enough information about multi-mapping
alignments to control RMSE without substantially decreasing
compression ratio.

Note that these technical replicates are simulated, and so
exhibit less inter-sample variability than real-world replicates.
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Supplementary Figure 3. Accuracy of quantification results computed with
Stringtie.

Supplementary Table 12. RMSE of Quantification Results

Dataset Cufflinks StringTie
Boiler Tech Reps Boiler Tech Reps

Drosophila, Simulated Unpaired
0.5M 19.37 16.28–20.39 0.04 15.24–17.27
1M 28.04 11.72–15.10 0.02 12.97–13.78
2.5M 21.12 7.02–9.58 0.06 7.85–9.34
5M 30.36 4.60–5.99 0.85 6.24–11.37
10M 21.87 3.24–4.25 0.13 5.40–7.60
20M 18.07 2.20–2.52 0.19 4.56–8.74

Drosophila, Simulated Paired
0.5M 8.39 11.96–14.59 0.86 13.25–14.97
1M 4.97 9.14–11.21 0.68 9.28–12.36
2.5M 13.92 5.66–6.88 0.86 7.38–8.96
5M 10.6 3.53–4.22 0.55 5.88–9.27
10M 11.33 2.62–3.37 1.13 5.26–7.89
20M 13.73 1.83–3.02 1.06 5.21–6.76

Human, Simulated
20M 5.86 0.57–0.81 1.39 3.37–4.16
40M 2.76 0.37–0.47 1.09 4.12 – 5.93
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