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1 Importation Risk Analysis

Maximum Entropy Here we provide an overview of the maximum entropy method used to esti-
mate Texas importation risk. Suppose we have set X = {x1, x2, ..., xn} representing the counties of
Texas (i.e. x1 represents the county, Dallas). Let the probability for xi to have an imported DENV,
CHIK, and ZIKA case be πi. We construct an estimate of this unknown probability distribution
using the historical import data. Call the estimated probability for county xi, pi. The vector of pi
sums to one over all counties. The relative probabilities p1, p2, ...pn can be constrained with known
mean, variance, or other moments of some known fj(X). The functions fj(X) can be functions
of socio-economic, environmental, and travel variables in our case (Table 4). Mathematically, we
want to:

max
pi
−

n∑
i=1

pi log pi (1a)

s.t.
n∑
i=1

pifj(xi) = E(fj(X)) ∀j (1b)

n∑
i=1

pi = 1 (1c)

pi ≥ 0 ∀i (1d)
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When we use Shannon’s measure of entropy as the objective (1a), the constraints (1d) are auto-
matically satisfied. The right-hand-side of (1b), E(fj(X)), is estimated by the weighted arithmetic
mean of fj(x1), fj(x2), ..., fj(xn) based on the n counties of Texas [1].

Representative Variable Selection In the first step, we removed duplicate variables—variables
that essentially bring the same information to the model. We call this step representative variable
selection. Selecting representative variables was independent of the DENV, CHIK, and ZIKA
import data, and only deals with the information contained in the variables themselves.

Selecting the representative variables was done with a variation of the facility location problem
[2]. The goal was to select k variables to represent the entire variable set. k selected factors
would represent themselves and the remained 72 − k variables would be represented by exactly
one variable from k selected variables. The `−∞ norm of the difference between two unit-norm
variables, denoted by fi, fj in Table 1, was assigned as the distance between the two variables. This
distance measure was derived from the maximum difference in expectations that the two variables
can produce, under any probability distribution. The facility location model allowed us to select the
k variables that best represent others as represented by (2c). The objective function 2a for selecting
representative variables was to minimize the distance between the k representative variables and
all the variables in the entire variable set. Each variable was represented by exactly one of the k
representatives, as represented by 2b.

min
xij ,yj

n∑
i=1

n∑
j=1

dijxij (2a)

s.t.
n∑
j=1

xij = 1 ∀i (2b)

n∑
j=1

yj = k (2c)

xij ≤ yj ∀i, j (2d)

xij ∈ {0, 1} ∀i, j (2e)

yj ∈ {0, 1} ∀j (2f)

Symbol Definition

fj 72 variables represented by vectors fj , j = 1, 2, ...72

dij distance between two variables, measured as dij = ‖ fi
‖fi‖2 −

fj
‖fj‖2 ‖∞

xij xij = 1 if vector i is represented by vector j; xij = 0, otherwise;
yj yj = 1, if vector j is selected as representative vector; yj = 0, otherwise;

Table 1: Parameters in representative variable selection method used to down select
from 72 variables to 20.
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Predictive Variable Selection After selecting the k most representative variables, we chose
the most predictive variables within k representative variables. One existing method of selecting
predictive variables, once we have created a representative variable set, is to use hypothesis testing
to choose between nested models [3]. We propose a different method, outlined in Table 2. Using
a backward selection approach, in each iteration, the variable that contributed the least to model
performance was dropped. Backward selection continued until all the variables were eliminated.

Model performance Model performance was measured base on out-of-sample data and cross
validation was incorporated to strengthen the robustness of the model performance results. For
each iteration, ten years DENV importation cases were divided in to two subsets: train data and
test data. The model was fit using 7 years of train data and model performance was measured using
3 years of out-of-sample test data. To improve the robustness of the variable selection procedure
and as cross-validation, we ran each set of variables on 6 randomly selected partitions of the 10 years
of available data. From the 6 runs, we calculated the average of the out-of-sample log-likelihood of
the model and eliminated the variable that resulting the largest mean out-of-sample log-likelihood
with its elimination. A summary of the algorithm for Backward Selection is showed in Table 2.

Algorithm Backward Selection

1 function BACKWARD SELECTION (N)
2 Set V = N
3 While |V | > 1 do
4 Set e = argmaxe ∈ V C(S(V − e))
5 Set V = V − {e}
6 Record V and C(S(V − e))

N The complete set of representative variables
C Return the out-of-sample log-likelihood, averaged over of seven

randomly sampled cross validation folds
S Fit a maximum entropy model given a set of variables fj

Table 2: Algorithm for the backward variable selection of the 38 representative variables
to 10 that was included in the final maximum entropy model

.
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Variables ordered by importance

Total Direct Spending(dollars)
Graduate or professional degree in Percentage

Local (dollars)
Male Population

Commuting to Work with Other Means
Max Temperature of Warmest Month

Population below Poverty Level in Percentage
Precipitation of Wettest Quarter

Population without Health Insurance
Graduate or professional degree population

Table 3: Import risk model variables. These 10 variables were selected from 72 variables using
a combination of representative variables selection and backwards selection. The importance of
each variable (from top to bottom) is determined by order of exclusion in backwards selection, with
the most important variables remaining in the model the longest.

Environmental Socio-economic Demographic, Travel and Vector Suitability

Annual Mean Temperature Employed Population Male Population
Annual Precipitation Unemployed Population Female Population

Slope Employed Population in Percentage Male Population in Percentage
Population Count Unemployed Population in Percentage Female Population in Percentage

Isothermality Population below Poverty Level in Percentage Local(dollars)
Precipitation of Driest Month Families below Poverty Level in Percentage State(dollars)

Elevation Population with Health Insurance Total Direct Spending(dollars)
Maximum Green Vegetation Cover Percentage with Health Insurance Visitor Spending

Temperature Seasonality Population without Health Insurance Earnings(dollars)
Precipitation Seasonality Percentage without Health Insurance Travel Employment

Min Temperature of Coldest Month Population Walk to Work in Percentage Average MGV (percentage per km)
Precipitation of Driest Quarter Percentage Commuting to Work with Taxi Total Approximate MGV Cover (km)

Max Temperature of Warmest Month Mean Travel Time to Work(Minutes)
Precipitation of Wettest Quarter Population Walk to Work

Temperature Annual Range Commuting to Work with Taxi
Precipitation of Warmest Quarter Percentage Commuting to Work with Public Transportation

Mean Temperature of Wettest Quarter Commuting to Work with Public Transportation
Precipitation of Coldest Quarter Commuting to Work with Car, Truck or Van (Carpooled)

Mean Temperature of Driest Quarter Commuting to Work with Car, Truck or Van(Alone)
Mean Temperature of Warmest Quarter Percentage Commuting to Work with Car, Truck or Van(Carpooled)
Mean Temperature of Coldest Quarter Percentage Commuting to Work with Car, Truck or Van(Alone)

Mean Diurnal Range Commuting to Work with Other Means
Precipitation of Wettest Month Percentage Commuting to Work with Other Means

Aspect Education Attainment below 9th grade
Artificial Surface Cover(Percentage) Education Attainment below 9th grade in Percentage
Total Artificial Surface Cover (km) Education Attainment between 9th and 12th grade

Percentage Education Attainment between 9th and 12th grade
High School Graduates

High School Graduates in Percentage
College without diploma

College without diploma in Percentage
Associates degree

Associates degree in Percentage
Bachelor’s degree

Bachelor’s degree in Percentage
Graduate or professional degree

Graduate or professional degree in Percentage

Table 4: Complete Set of Variables for Import Risk Map Modeling
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2 Transmission Risk Analysis

Estimating R0 in Texas We estimated reproduction numbers (R0) for Texas counties following
the methodology in [4].

We estimate R0 according to the Ross-Macdonald formulation, given by,

R0 =
mbcα2eµn

µγ
, (3)

where m,b, c, α, n, and µ denote the mosquito to human ratio, the mosquito-to-human trans-
mission probability, the human-to-mosquito transmission probability, the mosquito biting rate, the
extrinsic incubation period, and the average mosquito lifespan respectively (Table 2).

Of these, we assumed that n and µ varied with temperature. To calibrate our model for August
temperatures, we collected average temperature estimates of each Texas county from a period
of 1980 to 2010 [5]. The average temperature of Texas ranged from 24 to 31 ◦C. To estimate
temperature-dependent extrinsic incubation periods, we used the log-normal distribution model
estimated in [6] for DENV viruses in Ae. aegypti. Although µ does vary with temperature, a field
mark-release-recapture experiment of Ae. aegypti in Puerto Rico estimated that adult longevity
stays roughly the same over the range of temperatures that Texas may experience in August (for
50% of the population) and therefore we only used one estimate (14 days).

We used recent data on the susceptibility of Brazil populations of Ae. aegypti to the currently
circulating Asian genotype of ZIKV to get an estimate of the human-to-mosquito transmission
probability [7]. To estimate the mosquito-to-human transmission probability, we used estimates
from published fitted parameters of a ZIKV β, which encompasses the mosquito-to-human trans-
mission probability, from the 2013-2014 French Polynesia outbreak in [8] and our estimate of biting
rate from [9] to derive an estimate of mosquito-to-human transmission probability. Finally, we also
allowed m to vary among Texas counties. We used estimates of occurrence probabilities of Ae.
aegypti for each Texas county obtained from a predicted global distribution of Ae. aegypti in [10]
and estimated mosquito abundance assuming mosquito abundance follows a Poisson distribution
[11]. We then multiplied mosquito abundances by a log linear function of the 2014 gross domes-
tic product economic index for each Texas county extended from the fitted function derived in
[4][12], as described in to incorporate economic effects on mosquito-human contacts. We present a
sensitivity analysis of this function below.

We provide a sensitivity analysis of the function derived to estimate m used to relate GDP to
decreases in mosquito-human contact ratios below.
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Parameter Description Value Reference

α
Mosquito biting rate: the expected

number of bites per day.
0.63 [9]

n
Extrinsic incubation: The expected
days between initial infection and

infectiousness in Ae. aegypti
6-18 [6]

µ
Average lifespan of female Ae.

aegypti mosquito (days)
14 [13]

b
Mosquito-to-human probability of

transmission per bite
0.634 [8]

c
Human-to-mosquito probability of

transmission per bite
0.77 [7]

Table 5: Parameters for estimating ZIKV (R0 in Texas counties
.

Scenario Function

Medium ln(MF ) = −1.79− .14 ∗ ln(GDP )

Weak ln(MF ) = −2.6− .14 ∗ ln(GDP )

Strong ln(MF ) = −0.9− .14 ∗ ln(GDP )

Mixed ln(MF ) = −1.35− 1.8 ∗ ln(GDP )

Table 6: Sensitivity Analysis of R0
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Figure 1: Sensitivity Analysis of Estimated R0’s by the Effect of GDP on Mosquito-
Human Contact. We explore the uncertainty in our R0’s estimates resulting from the relationship
between GDP and mosquito-human contact, which we estimated as an extension of the fitted
function derived in [4]. In Expected we show the R0 estimates used in the main analysis.Stronger
shows estimated R0’s if we consider that the effect of GDP on mosquito-human contact is greater
(reducing contact) than in Expected. This results in fewer counties having R0’s >1, or fewer counties
can sustain ZIKV transmission. In Weaker we show estimated R0’s if the effect of GDP on the
relationship is minimal, meaning mosquito-human contact levels are similar to ratios of mosquito
abundance and population sizes in each county. Across the state, county GDP levels do not
reduce the mosquito-human contact as strongly as in Expected and Stronger, resulting in higher R0

estimates and more counties capable of sustaining ZIKV transmission. In this scenario, R0 estimates
are approximately two-fold higher than in our Expected estimates and the majority of Eastern and
Southern Texas is at risk for sustained ZIKV transmission. The effect of increasing GDP is held
constant in these first three panels. In Heterogeneous we estimate R0’s if increases in GDP have a
greater effect on reducing mosquito-to-human contact than that in the first three scenarios. In this
Heterogeneous case, counties with lower GDP would have higher levels of mosquito-human contact
than in Expected, while counties with higher GDP would have lower mosquito-human contact levels
than in Expected. This results in higher heterogeneity in R0’s overall, with more at risk counties
having higher R′0s than in Expected and less at risk counties having lower R0’s.
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Figure 2: Distributions of Estimated R0’s. We show the distribution of estimated R0’s for each
scenario from Fig.1. The spatial observations in Fig.1 are reflected in the number of counties above
and below the threshold of R0 = 1. In the Expected scenario, which we used as our expected R0

estimates in the manuscript, there are 33 counties at high risk (above the threshold of R0 ≥ 1. As
the effect of GDP on mitigating mosquito-human contact is increased, effectively reducing contact
and risk of exposure, only one county remains at high risk for sustained transmission (upper right).
On the other hand, as the effect of GDP on mosquito-human contact is reduced, R0’s are increased,
with over 50% of the counties being at high risk for sustained transmission (lower left).
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3 Supporting Figures and Tables

Model parameters We estimate some model parameters directly from epidemiological data and
base others on published studies of ZIKV during the current and previous outbreaks (Table S7).

Parameter Description
Range of Values
(or median 95%)

Source

Transmission
Rate (β)

The expected number of secondary
infections per infectious person per day.

0.14-0.21 [10]

Infectious
Period (γ)

The average length of the infectious
period. Achieved with number of

compartments, nInfectious = 3, and daily
recovery probability, 0.304.

9(3-22) days [14]

Meta-Latent
Period (α)

Average latent period before becoming
infectious (see model assumptions).

Achieved with number of compartments,
nIncubation = 6, and daily recovery

probability, 0.584

10(6-17) days [15],[14]

Reproduction
Number (R0)

The expected total number of secondary
infections from one infectious individual

(β ∗ γ)
0.1-1.9 [10]

Serial Interval
(SI)

The average length of time between
consecutive exposures. SI = α+ 1

2γ

15 (9.5-23.5) days [15]

Reporting Rate
(η)

The daily probability of an infectious
individual being reported.

Daily: 1%− 5%
Overall: 5%− 40%

[16]

Importation
Rate (µ)

The expected number of infectious ZIKV
importations per day. (Statewide)

(0.3, 0.8, 4.5) [17]

Table 7: Branching Process Model Parameters
.
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Figure 3: Determination of threshold for surveillance triggers. For each R0 value we plot
the maximum daily total infectious individuals for 1,000 of our 10,000 trials (black dots). Blue
line indicate the prevalence threshold cutoff signifying extensive transmission determined to be 20.
Red line indicates the epidemic threshold cutoff value (50), chosen to differentiate epidemics with
R0 > 1 from outbreaks with R0 < 1. Panels differ by the daily importation rate for the simulations.
Larger importation rates lead to larger maximum prevalences.
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Figure 4: Probability of exceeding prevalence threshold based on reported cases. Lines
indicate the probability that current cases for various R0 values (colors) fall below a prevalence
threshold, under low and high importation rates (panels). Line-type corresponds to either a high
(20%, dashed) or low (10%, solid) reporting rate of ZIKV cases. Intuitively, the probability that
current cases are below a threshold (e.g. 20 cases) for high R0 and low reporting rate decreases
rapidly, as fewer cases are reported while the outbreak is growing. When the importation rate is
low, there is a high certainty that low R0 outbreaks are below threshold concern. However, when
there are high levels of importation, a low reporting rate can cause an outbreak with a low R0

outbreak to be more of a concern than an high R0 outbreak with a higher detection probability.



12

0

10

20

30

40

50

0 50 100 150
Time (days)

C
um

ul
at

iv
e 

R
ep

or
te

d 
C

as
es

R0

Unknown Risk
1.1

5

10

25

50

100

0 10 20 30
Cumulative Reported Cases

P
re

va
le

nc
e 

(lo
g 

sc
al

e)

Reporting Rate
10%
20%

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Cumulative Reported Cases

T
hr

es
ho

ld
 P

ro
ba

bi
lit

y

A B C

Figure 5: Surveillance triggers for detecting and forecasting ZIKV transmission. (A)
Simulated outbreaks, assuming an importation rate of 0.1 case per day, for a known (moderate
risk) R0 (blue) or an unknown risk R0 (red). 2,000 randomly sampled simulations are shown for
each scenario. (B) Current prevalence as a function of the cumulative detected cases, assuming an
importation rate of 0.1 case per day, for a known R0 (blue) or an unknown risk R0 (red), and a
relatively high (dashed) or low (solid) reporting rate. Ribbons indicate 50% quantiles. (C) The
increasing probability of imminent epidemic expansion across a range of reported cases, compared
across the unknown risk (red) and known moderate risk (blue) for a low (solid) and high (dashed)
reporting rate. Suppose cases arise in an unknown risk county and a policymaker wishes to trigger
a response as soon as the chance of sustained transmission reaches 50% (horizontal line). Then, if
the reporting rate is 20%, he or she should trigger the response as soon as the 4th case is reported.
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Figure 6: ZIKV surveillance triggers across Texas. Recommended county-level surveillance
triggers for detecting that the probability of current prevalence has T= 20, with pT=0.70, assuming
a reporting rate of 20%. These reflect (A) the baseline importation scenario for August 2016
(81 cases statewide per 90 days) projected from historical arbovirus data, and (B) the elevated
importation scenario (405 cases statewide per 90 days) that assumes recent ZIKV importations
represent only 20% of all importations. White counties indicate that less than 1% of the 10,000
simulated outbreaks resulted in sustained transmission.
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