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Evaluated driver gene prediction methods 

In addition to 20/20+, we selected several methods that cover alternate methodological 

approaches: mutational clustering, mutation functional impact, and significantly mutated 

genes.  All methods were run in-house, using the latest version of the software provided 

by the authors.  Detailed output from each method is in Dataset S2. 

Oncodrive Suite We evaluated three methods in the Oncodrive suite, namely 

OncodriveFM 1, OncodriveFML, and OncodriveClust 2, that identify driver genes based 

on mutation functional impact bias (OncodriveFM, OncodriveFML) and mutational 

clustering (OncodriveClust). OncodriveFM functional impact scores for missense 

mutations were obtained using PolyPhen2 (HumVar) 3, SIFT 4, and MutationAssessor  5 

from the pre-computed scores in the hg19 UCSC genome browser database 6. Since 

PolyPhen2, SIFT, and MutationAssessor score missense mutations, silent mutations 

were encoded as the least damaging for each method (0, 1, and -2, respectively) and 

inactivating mutations (nonsense, frameshift indel, lost stop, lost start, and splice site) 

were assigned the most damaging score (1, 0, and 3.5, respectively) in accordance with 

recommendation for OncodriveFM 1. Because low scores for SIFT correspond with more 

damage, SIFT scores were adjusted to be more damaging with higher scores by taking 

one minus the original SIFT score. OncodriveFM version 0.6.0 

(https://bitbucket.org/bbglab/oncodrivefm) was executed with default parameters using 

all three scores as a measure of functional impact bias. OncodriveFML used pre-



computed CADD scores 7 for functional impact bias (fetched via OncodriveFML), and a 

CDS regions file from the OncodriveFML website 

(https://bitbucket.org/bbglab/oncodrivefml). OncodriveFML v1.2 was run using default 

parameters. OncodriveClust version 0.4.1, installed as per directions for python2 

environment (https://bitbucket.org/bbglab/oncodriveclust/overview), was also executed 

with default parameters on missense mutations, except for the minimum mutations were 

lowered to 1 (5 default) for cancer type specific analysis due to few genes passing the 

threshold. 

MutsigCV We evaluated MutsigCV, a significantly mutated gene method 8, which adjusts 

for known covariates of mutation rate. The latest publically available MutsigCV version 

(v1.4) was executed according to recommended practices 

(https://www.broadinstitute.org/cancer/cga/mutsig_run). Briefly, expression, replication 

time, and HiC features obtained from the Broad website 

(https://www.broadinstitute.org/cancer/cga/mutsig_run) were used as mutation rate 

covariates. Additionally, the recommended exome coverage file 

(http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_fi

les/exome_full192.coverage.zip) was utilized, as precise coverage information was not 

available from the two studies originating the obtained data 9,10. Further, non-coding 

mutations were removed from the data set and the exome coverage file was adjusted to 

reflect an absence of sequencing non-coding bases. 

TUSON (TUmor Suppressor and ONcogenes) Explorer. TUSON uses mutational 

clustering and relative amount of damaging mutations, as indicators of oncogenes and 

tumor suppressor genes 10. TUSON combines p-values (Stouffer-liptak method 11) for 

each feature with a weight optimized by grid-search, using known oncogenes and tumor 

suppressor genes, to yield a single combined p-value for each of oncogene and tumor 

suppressor gene. An updated version of TUSON was obtained directly from the authors 



(June 6, 2014) and executed according to recommendations from the authors. Required 

PolyPhen2 HumVar scores were obtained from the version 2.2.2 whole exome database 

(ftp://genetics.bwh.harvard.edu/pph2/whess/polyphen-2.2.2-whess-2011_12.sqlite.bz2). 

ActiveDriver ActiveDriver identifies driver genes by significantly high mutation rates in 

particular annotated protein sites, e.g., phosphorylation sites or domains 12. We used 

annotations of protein sequences, phosphorylation sites, and predicted disordered 

protein sequences employed in Reimand et al. 12 to identify driver genes with significant 

phosphorylation site mutations. ActiveDriver version 0.0.10 with corresponding 

annotations (downloaded from http://individual.utoronto.ca/reimand/ActiveDriver/) was 

executed using default settings. We used the negative-binomial model rather than 

Poisson model (default) because the negative-binomial model ranked better overall in 

our evaluations. 

MuSiC MuSiC (v0.4) is a method to identify significantly mutated genes. We used the 

recommended regions of interest file (ROI) file for hg19 (obtained 

https://github.com/ding-lab/calc-roi-covg) with a full coverage wig file. To improve the 

calculation of background mutation rate, we performed a search for the background 

mutation rate groups parameter (1(default) through 5), and chose 5 based on best 

performance. Other MuSiC parameters were left as default. Since MuSiC reports three 

p-values all of which assess significantly mutated genes, we chose the Fischer’s 

combined p-value test (FCPT) as it performed better than other single p-values or a 

combination approach of the three. 

 

 

  



 

 

Figure S1.  Fraction of predicted driver genes for each method by consensus 

among methods.  Fraction of predicted drivers unique to each method, predicted by 2-3 

methods or predicted by >3 methods are shown.  A predicted driver gene is defined by 

Benjamini-Hochberg adjusted p-value (q≤0.1). 

  



 

Figure S2.  Quantile-Quantile plots comparing observed and theoretical p-values 

for the tested methods. A. Full p-value range from 0 to 1. B. Blow-up of p-values from 

0. to 0.1.  Observed p-values for the methods (blue) are compared to those expected 

from a uniform distribution (red).  Genes predicted as drivers by at least 3 methods were 

removed along with genes in the Cancer Gene Census. TUSON oncogene and tumor 

suppressor gene p-values are shown separately.  



 

Figure S3.  TopDrop consistency of pan-cancer driver gene predictions as depth 

threshold is varied.  The consistency of each evaluated method is shown as depth 

threshold varies from 20 to 300. Error bars indicate ±1 SEM (standard error of the mean) 

across 10 repeated splits of the data.   



Figure S4.  Evaluation of the eight methods on four different cancer types 

Methods were evaluated for Mean Log Fold Change (MLFC), TDC 10 (TopDrop 

Consistency at a gene rank depth of 10) and number of drivers predicted (q≤0.1).  

20/20+ and OncodriveFML have the lowest MLFC (least divergence between observed 

and theoretical p-values).  MuSiC, 20/20+ and TUSON have the highest TDC 10 
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(consistency in gene rankings across matched random partitions of each tumor type).  

The four cancer types: pancreatic carcinoma (PDAC), breast adenocarcinoma (BRAC), 

head and neck squamous carcinoma (HNSCC) and lung adenocarcinoma (LUAD), have 

background somatic mutation rates ranging from moderate to high.     



 

Figure S5. Background mutation rate is more variable than the ratiometric non-

silent to silent mutation ratio across the 34 cancer types.  The top boxplot for 

mutation rate is on a log10 scale and shows the mutation rate in coding sequence for the 

samples in our pan-cancer dataset.  The bottom boxplot shows the non-silent to silent 

mutation ratio in coding sequence for the same samples. A pseudo-count for a silent 

mutation was added for each sample to avoid dividing by zero. Notches indicate 

bootstrap 95% confidence interval (1,000 iterations) for the median. Outliers, defined as 

1.5*IQR away from the first and third quartile, are not shown.  
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Figure S6. Decision tree underlying 20/20 rule.  Each gene is input into the tree and 

Oncogene (OG) and Tumor suppressor gene (TSG) score computed (Online methods).  

Thresholds of each score and the numerator of the OG score (Recurrence count) and 

TSG score (Inactivating count) are used to determine whether a gene is an OG, TSG or 

passenger.  
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Figure S7. Random forest feature importance ranking for the 24 predictive 

features.  The mean decrease in Gini index is plotted for each feature.  Error bars 

indicate standard deviation when feature importance calculation was repeated on 10 

different cross-validation partitions.  SNV = single nucleotide variant.  VEST = Variant 

Effect Scoring Tool 13.  HiC = 3D chromatin interaction capture 14. CCLE = Cancer Cell 

Line Encyclopedia 15.  MGAEntropy = Shannon entropy in column of a vertebrate 

genome 46-way alignment corresponding to location of the mutation 16.  

  



Table S1.  Features used in 20/20+.  Features use mutations that are small somatic 

variants, including single base substitutions and small insertions/deletions. CCLE = 

cancer cell line encyclopedia.  SNV = single nucleotide variant.  SNVBox = database of 

features of single nucleotide variants.  Biogrid = database of gene networks. 

Name	
   Source	
   Description	
  

silent	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  silent	
  mutations	
  

nonsense	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  nonsense	
  mutations	
  

splice	
  site	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  2bp	
  splice	
  site	
  mutations	
  

missense	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  missense	
  mutations	
  

recurrent	
  missense	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  recurrent	
  missense	
  

frameshift	
  indel	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  frameshift	
  indel	
  mutations	
  

inframe	
  indel	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  inframe	
  indel	
  mutations	
  

lost	
  start	
  and	
  stop	
  fraction	
   Calculated	
  from	
  mutations	
   Fraction	
  of	
  mutations	
  that	
  are	
  either	
  lost	
  start	
  or	
  lost	
  stop	
  mutations	
  
normalized	
  missense	
  position	
  
entropy	
   Calculated	
  from	
  mutations	
  

See	
  Materials	
  and	
  Methods	
  

missense	
  to	
  silent	
   Calculated	
  from	
  mutations	
   Ratio	
  of	
  missense	
  to	
  silent	
  mutations.	
  A	
  pseudo	
  count	
  is	
  added	
  to	
  silent	
  
mutations	
  to	
  avoid	
  divide	
  by	
  zero.	
  

non-­‐silent	
  to	
  silent	
   Calculated	
  from	
  mutations	
   Ratio	
  of	
  non-­‐silent	
  to	
  silent	
  mutations.	
  A	
  pseudo	
  count	
  is	
  added	
  to	
  silent	
  
mutations	
  to	
  avoid	
  divide	
  by	
  zero.	
  

normalized	
  mutation	
  entropy	
   Calculated	
  from	
  mutations	
  

Normalized	
  entropy	
  score	
  (see	
  Materials	
  and	
  Methods).	
  Missense	
  	
  
mutations	
  are	
  binned	
  together	
  based	
  on	
  codon	
  position	
  (see	
  Materials	
  and	
  
Methods).	
  Each	
  silent	
  mutation	
  is	
  regarded	
  in	
  its	
  own	
  bin.	
  Potentially	
  	
  
inactivating	
  mutations	
  (nonsense,	
  splice	
  site,	
  lost	
  stop,	
  and	
  	
  
lost	
  start)	
  mutations	
  are	
  grouped	
  into	
  a	
  single	
  bin.	
  

mean	
  missense	
  MGAEntropy	
  
Calculated	
  from	
  mutations.	
  
MGAEntropy	
  scores	
  obtained	
  
from	
  SNVBox	
  16.	
  

Mean	
  MGAEntropy	
  score	
  for	
  missense	
  mutations	
  16.	
  MGAEntropy	
  for	
  a	
  
missense	
  mutation	
  is	
  the	
  entropy	
  of	
  the	
  column	
  for	
  a	
  protein-­‐translated	
  
version	
  of	
  UCSC's	
  46-­‐way	
  vertebrate	
  alignment	
  

mean	
  VEST	
  score	
  13	
   Calculated	
  from	
  mutations	
  
Mean	
  score.	
  Score	
  for	
  missense	
  mutations	
  are	
  taken	
  as	
  the	
  VEST	
  	
  
score,	
  silent	
  mutations	
  receive	
  a	
  score	
  of	
  0,	
  and	
  other	
  mutations	
  	
  
receive	
  a	
  score	
  of	
  1.	
  

inactivating	
  SNV	
  p-­‐value	
   Calculated	
  from	
  mutations	
   See	
  Materials	
  and	
  Methods.	
  SNV=single	
  nucleotide	
  variant.	
  

missense	
  entropy	
  p-­‐value	
   Calculated	
  from	
  mutations	
   See	
  Materials	
  and	
  Methods	
  

missense	
  VEST	
  p-­‐value	
  13	
   Calculated	
  from	
  mutations	
   See	
  Materials	
  and	
  Methods	
  

missense	
  combined	
  p-­‐value	
   Calculated	
  from	
  mutations	
   Combined	
  p-­‐value	
  composed	
  of	
  missense	
  entropy	
  and	
  missense	
  VEST	
  
	
  p-­‐value	
  using	
  Fisher’s	
  method	
  

gene	
  degree	
   BioGrid	
  17	
   Number	
  of	
  other	
  genes	
  that	
  are	
  connected	
  in	
  the	
  BioGrid	
  interaction	
  
network	
  

gene	
  betweenness	
  centrality	
   BioGrid	
  17	
   Fraction	
  of	
  shortest	
  paths	
  that	
  pass	
  through	
  a	
  gene's	
  node	
  in	
  the	
  BioGrid	
  	
  
interaction	
  network	
  

gene	
  length	
   Longest	
  SNVBox	
  transcript	
  
16	
   CDS	
  length	
  of	
  reference	
  transcript	
  

expression	
  CCLE	
   MutsigCV	
  8	
   Average	
  expression	
  of	
  a	
  gene	
  in	
  the	
  Cancer	
  Cell	
  Line	
  Encyclopedia	
  15	
  

replication	
  time	
   MutsigCV	
  8	
   DNA	
  replication	
  time	
  during	
  cell	
  cycle	
  

HiC	
  compartment	
   MutsigCV	
  8	
   HiC	
  measures	
  open	
  vs	
  closed	
  chromatin	
  14	
  

 

 



Table S2. Eight evaluated methods and p-value of overlap of predicted drivers and 

Cancer Gene Census genes.  The overlap is highly significant for all methods (one-

tailed Fisher's Exact Test). 

Method	
   P	
  value	
  
TUSON	
   <2.2e-­‐16	
  
20/20+	
   <2.2e-­‐16	
  
MutsigCV	
   <2.2e-­‐16	
  
MuSiC	
   <2.2e-­‐16	
  
OncodriveClust	
   <2.2e-­‐16	
  
OncodriveFM	
   <2.2e-­‐16	
  
OncodriveFML	
   <2.2e-­‐16	
  
ActiveDriver	
   5.50E-­‐07	
  
  



 

 
References 
 
1 Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer 

drivers. Nucleic acids research 40, e169, doi:10.1093/nar/gks743 (2012). 
2 Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveCLUST: 

exploiting the positional clustering of somatic mutations to identify cancer genes. 
Bioinformatics 29, 2238-2244, doi:10.1093/bioinformatics/btt395 (2013). 

3 Adzhubei, I. A. et al. A method and server for predicting damaging missense 
mutations. Nature methods 7, 248-249, doi:10.1038/nmeth0410-248 (2010). 

4 Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein 
function. Nucleic acids research 31, 3812-3814 (2003). 

5 Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein 
mutations: application to cancer genomics. Nucleic acids research 39, e118, 
doi:10.1093/nar/gkr407 (2011). 

6 Speir, M. L. et al. The UCSC Genome Browser database: 2016 update. Nucleic 
acids research 44, D717-725, doi:10.1093/nar/gkv1275 (2016). 

7 Kircher, M. et al. A general framework for estimating the relative pathogenicity of 
human genetic variants. Nature genetics 46, 310-315, doi:10.1038/ng.2892 
(2014). 

8 Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new 
cancer-associated genes. Nature 499, 214-218, doi:10.1038/nature12213 (2013). 

9 Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 
21 tumour types. Nature 505, 495-501, doi:10.1038/nature12912 (2014). 

10 Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive 
aneuploidy patterns and shape the cancer genome. Cell 155, 948-962, 
doi:10.1016/j.cell.2013.10.011 (2013). 

11 Stouffer, S. A., Suchman, E. A., Devinney, L. C., Star, S. A. & Williams Jr, R. M. 
The American soldier: adjustment during army life. (Studies in social psychology 
in World War II, Vol. 1.).  (Princeton Univ. Press, 1949). 

12 Reimand, J. & Bader, G. D. Systematic analysis of somatic mutations in 
phosphorylation signaling predicts novel cancer drivers. Molecular systems 
biology 9, 637, doi:10.1038/msb.2012.68 (2013). 

13 Carter, H., Douville, C., Stenson, P. D., Cooper, D. N. & Karchin, R. Identifying 
Mendelian disease genes with the variant effect scoring tool. BMC genomics 14 
Suppl 3, S3, doi:10.1186/1471-2164-14-S3-S3 (2013). 

14 Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation 
of genomes. Methods 58, 268-276, doi:10.1016/j.ymeth.2012.05.001 (2012). 

15 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive 
modelling of anticancer drug sensitivity. Nature 483, 603-607, 
doi:10.1038/nature11003 (2012). 

16 Wong, W. C. et al. CHASM and SNVBox: toolkit for detecting biologically 
important single nucleotide mutations in cancer. Bioinformatics 27, 2147-2148, 
doi:10.1093/bioinformatics/btr357 (2011). 

17 Chatr-Aryamontri, A. et al. The BioGRID interaction database: 2015 update. 
Nucleic acids research 43, D470-478, doi:10.1093/nar/gku1204 (2015). 

 
 


