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Evaluated driver gene prediction methods 

In addition to 20/20+, we selected several methods that cover alternate methodological 

approaches: mutational clustering, mutation functional impact, and significantly mutated 

genes.  All methods were run in-house, using the latest version of the software provided 

by the authors.  Detailed output from each method is in Dataset S2. 

Oncodrive Suite We evaluated three methods in the Oncodrive suite, namely 

OncodriveFM 1, OncodriveFML, and OncodriveClust 2, that identify driver genes based 

on mutation functional impact bias (OncodriveFM, OncodriveFML) and mutational 

clustering (OncodriveClust). OncodriveFM functional impact scores for missense 

mutations were obtained using PolyPhen2 (HumVar) 3, SIFT 4, and MutationAssessor  5 

from the pre-computed scores in the hg19 UCSC genome browser database 6. Since 

PolyPhen2, SIFT, and MutationAssessor score missense mutations, silent mutations 

were encoded as the least damaging for each method (0, 1, and -2, respectively) and 

inactivating mutations (nonsense, frameshift indel, lost stop, lost start, and splice site) 

were assigned the most damaging score (1, 0, and 3.5, respectively) in accordance with 

recommendation for OncodriveFM 1. Because low scores for SIFT correspond with more 

damage, SIFT scores were adjusted to be more damaging with higher scores by taking 

one minus the original SIFT score. OncodriveFM version 0.6.0 

(https://bitbucket.org/bbglab/oncodrivefm) was executed with default parameters using 

all three scores as a measure of functional impact bias. OncodriveFML used pre-



computed CADD scores 7 for functional impact bias (fetched via OncodriveFML), and a 

CDS regions file from the OncodriveFML website 

(https://bitbucket.org/bbglab/oncodrivefml). OncodriveFML v1.2 was run using default 

parameters. OncodriveClust version 0.4.1, installed as per directions for python2 

environment (https://bitbucket.org/bbglab/oncodriveclust/overview), was also executed 

with default parameters on missense mutations, except for the minimum mutations were 

lowered to 1 (5 default) for cancer type specific analysis due to few genes passing the 

threshold. 

MutsigCV We evaluated MutsigCV, a significantly mutated gene method 8, which adjusts 

for known covariates of mutation rate. The latest publically available MutsigCV version 

(v1.4) was executed according to recommended practices 

(https://www.broadinstitute.org/cancer/cga/mutsig_run). Briefly, expression, replication 

time, and HiC features obtained from the Broad website 

(https://www.broadinstitute.org/cancer/cga/mutsig_run) were used as mutation rate 

covariates. Additionally, the recommended exome coverage file 

(http://www.broadinstitute.org/cancer/cga/sites/default/files/data/tools/mutsig/reference_fi

les/exome_full192.coverage.zip) was utilized, as precise coverage information was not 

available from the two studies originating the obtained data 9,10. Further, non-coding 

mutations were removed from the data set and the exome coverage file was adjusted to 

reflect an absence of sequencing non-coding bases. 

TUSON (TUmor Suppressor and ONcogenes) Explorer. TUSON uses mutational 

clustering and relative amount of damaging mutations, as indicators of oncogenes and 

tumor suppressor genes 10. TUSON combines p-values (Stouffer-liptak method 11) for 

each feature with a weight optimized by grid-search, using known oncogenes and tumor 

suppressor genes, to yield a single combined p-value for each of oncogene and tumor 

suppressor gene. An updated version of TUSON was obtained directly from the authors 



(June 6, 2014) and executed according to recommendations from the authors. Required 

PolyPhen2 HumVar scores were obtained from the version 2.2.2 whole exome database 

(ftp://genetics.bwh.harvard.edu/pph2/whess/polyphen-2.2.2-whess-2011_12.sqlite.bz2). 

ActiveDriver ActiveDriver identifies driver genes by significantly high mutation rates in 

particular annotated protein sites, e.g., phosphorylation sites or domains 12. We used 

annotations of protein sequences, phosphorylation sites, and predicted disordered 

protein sequences employed in Reimand et al. 12 to identify driver genes with significant 

phosphorylation site mutations. ActiveDriver version 0.0.10 with corresponding 

annotations (downloaded from http://individual.utoronto.ca/reimand/ActiveDriver/) was 

executed using default settings. We used the negative-binomial model rather than 

Poisson model (default) because the negative-binomial model ranked better overall in 

our evaluations. 

MuSiC MuSiC (v0.4) is a method to identify significantly mutated genes. We used the 

recommended regions of interest file (ROI) file for hg19 (obtained 

https://github.com/ding-lab/calc-roi-covg) with a full coverage wig file. To improve the 

calculation of background mutation rate, we performed a search for the background 

mutation rate groups parameter (1(default) through 5), and chose 5 based on best 

performance. Other MuSiC parameters were left as default. Since MuSiC reports three 

p-values all of which assess significantly mutated genes, we chose the Fischer’s 

combined p-value test (FCPT) as it performed better than other single p-values or a 

combination approach of the three. 

 

 

  



 

 

Figure S1.  Fraction of predicted driver genes for each method by consensus 

among methods.  Fraction of predicted drivers unique to each method, predicted by 2-3 

methods or predicted by >3 methods are shown.  A predicted driver gene is defined by 

Benjamini-Hochberg adjusted p-value (q≤0.1). 

  



 

Figure S2.  Quantile-Quantile plots comparing observed and theoretical p-values 

for the tested methods. A. Full p-value range from 0 to 1. B. Blow-up of p-values from 

0. to 0.1.  Observed p-values for the methods (blue) are compared to those expected 

from a uniform distribution (red).  Genes predicted as drivers by at least 3 methods were 

removed along with genes in the Cancer Gene Census. TUSON oncogene and tumor 

suppressor gene p-values are shown separately.  



 

Figure S3.  TopDrop consistency of pan-cancer driver gene predictions as depth 

threshold is varied.  The consistency of each evaluated method is shown as depth 

threshold varies from 20 to 300. Error bars indicate ±1 SEM (standard error of the mean) 

across 10 repeated splits of the data.   



Figure S4.  Evaluation of the eight methods on four different cancer types 

Methods were evaluated for Mean Log Fold Change (MLFC), TDC 10 (TopDrop 

Consistency at a gene rank depth of 10) and number of drivers predicted (q≤0.1).  

20/20+ and OncodriveFML have the lowest MLFC (least divergence between observed 

and theoretical p-values).  MuSiC, 20/20+ and TUSON have the highest TDC 10 
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(consistency in gene rankings across matched random partitions of each tumor type).  

The four cancer types: pancreatic carcinoma (PDAC), breast adenocarcinoma (BRAC), 

head and neck squamous carcinoma (HNSCC) and lung adenocarcinoma (LUAD), have 

background somatic mutation rates ranging from moderate to high.     



 

Figure S5. Background mutation rate is more variable than the ratiometric non-

silent to silent mutation ratio across the 34 cancer types.  The top boxplot for 

mutation rate is on a log10 scale and shows the mutation rate in coding sequence for the 

samples in our pan-cancer dataset.  The bottom boxplot shows the non-silent to silent 

mutation ratio in coding sequence for the same samples. A pseudo-count for a silent 

mutation was added for each sample to avoid dividing by zero. Notches indicate 

bootstrap 95% confidence interval (1,000 iterations) for the median. Outliers, defined as 

1.5*IQR away from the first and third quartile, are not shown.  
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Figure S6. Decision tree underlying 20/20 rule.  Each gene is input into the tree and 

Oncogene (OG) and Tumor suppressor gene (TSG) score computed (Online methods).  

Thresholds of each score and the numerator of the OG score (Recurrence count) and 

TSG score (Inactivating count) are used to determine whether a gene is an OG, TSG or 

passenger.  
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Figure S7. Random forest feature importance ranking for the 24 predictive 

features.  The mean decrease in Gini index is plotted for each feature.  Error bars 

indicate standard deviation when feature importance calculation was repeated on 10 

different cross-validation partitions.  SNV = single nucleotide variant.  VEST = Variant 

Effect Scoring Tool 13.  HiC = 3D chromatin interaction capture 14. CCLE = Cancer Cell 

Line Encyclopedia 15.  MGAEntropy = Shannon entropy in column of a vertebrate 

genome 46-way alignment corresponding to location of the mutation 16.  

  



Table S1.  Features used in 20/20+.  Features use mutations that are small somatic 

variants, including single base substitutions and small insertions/deletions. CCLE = 

cancer cell line encyclopedia.  SNV = single nucleotide variant.  SNVBox = database of 

features of single nucleotide variants.  Biogrid = database of gene networks. 

Name	   Source	   Description	  

silent	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  silent	  mutations	  

nonsense	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  nonsense	  mutations	  

splice	  site	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  2bp	  splice	  site	  mutations	  

missense	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  missense	  mutations	  

recurrent	  missense	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  recurrent	  missense	  

frameshift	  indel	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  frameshift	  indel	  mutations	  

inframe	  indel	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  inframe	  indel	  mutations	  

lost	  start	  and	  stop	  fraction	   Calculated	  from	  mutations	   Fraction	  of	  mutations	  that	  are	  either	  lost	  start	  or	  lost	  stop	  mutations	  
normalized	  missense	  position	  
entropy	   Calculated	  from	  mutations	  

See	  Materials	  and	  Methods	  

missense	  to	  silent	   Calculated	  from	  mutations	   Ratio	  of	  missense	  to	  silent	  mutations.	  A	  pseudo	  count	  is	  added	  to	  silent	  
mutations	  to	  avoid	  divide	  by	  zero.	  

non-‐silent	  to	  silent	   Calculated	  from	  mutations	   Ratio	  of	  non-‐silent	  to	  silent	  mutations.	  A	  pseudo	  count	  is	  added	  to	  silent	  
mutations	  to	  avoid	  divide	  by	  zero.	  

normalized	  mutation	  entropy	   Calculated	  from	  mutations	  

Normalized	  entropy	  score	  (see	  Materials	  and	  Methods).	  Missense	  	  
mutations	  are	  binned	  together	  based	  on	  codon	  position	  (see	  Materials	  and	  
Methods).	  Each	  silent	  mutation	  is	  regarded	  in	  its	  own	  bin.	  Potentially	  	  
inactivating	  mutations	  (nonsense,	  splice	  site,	  lost	  stop,	  and	  	  
lost	  start)	  mutations	  are	  grouped	  into	  a	  single	  bin.	  

mean	  missense	  MGAEntropy	  
Calculated	  from	  mutations.	  
MGAEntropy	  scores	  obtained	  
from	  SNVBox	  16.	  

Mean	  MGAEntropy	  score	  for	  missense	  mutations	  16.	  MGAEntropy	  for	  a	  
missense	  mutation	  is	  the	  entropy	  of	  the	  column	  for	  a	  protein-‐translated	  
version	  of	  UCSC's	  46-‐way	  vertebrate	  alignment	  

mean	  VEST	  score	  13	   Calculated	  from	  mutations	  
Mean	  score.	  Score	  for	  missense	  mutations	  are	  taken	  as	  the	  VEST	  	  
score,	  silent	  mutations	  receive	  a	  score	  of	  0,	  and	  other	  mutations	  	  
receive	  a	  score	  of	  1.	  

inactivating	  SNV	  p-‐value	   Calculated	  from	  mutations	   See	  Materials	  and	  Methods.	  SNV=single	  nucleotide	  variant.	  

missense	  entropy	  p-‐value	   Calculated	  from	  mutations	   See	  Materials	  and	  Methods	  

missense	  VEST	  p-‐value	  13	   Calculated	  from	  mutations	   See	  Materials	  and	  Methods	  

missense	  combined	  p-‐value	   Calculated	  from	  mutations	   Combined	  p-‐value	  composed	  of	  missense	  entropy	  and	  missense	  VEST	  
	  p-‐value	  using	  Fisher’s	  method	  

gene	  degree	   BioGrid	  17	   Number	  of	  other	  genes	  that	  are	  connected	  in	  the	  BioGrid	  interaction	  
network	  

gene	  betweenness	  centrality	   BioGrid	  17	   Fraction	  of	  shortest	  paths	  that	  pass	  through	  a	  gene's	  node	  in	  the	  BioGrid	  	  
interaction	  network	  

gene	  length	   Longest	  SNVBox	  transcript	  
16	   CDS	  length	  of	  reference	  transcript	  

expression	  CCLE	   MutsigCV	  8	   Average	  expression	  of	  a	  gene	  in	  the	  Cancer	  Cell	  Line	  Encyclopedia	  15	  

replication	  time	   MutsigCV	  8	   DNA	  replication	  time	  during	  cell	  cycle	  

HiC	  compartment	   MutsigCV	  8	   HiC	  measures	  open	  vs	  closed	  chromatin	  14	  

 

 



Table S2. Eight evaluated methods and p-value of overlap of predicted drivers and 

Cancer Gene Census genes.  The overlap is highly significant for all methods (one-

tailed Fisher's Exact Test). 

Method	   P	  value	  
TUSON	   <2.2e-‐16	  
20/20+	   <2.2e-‐16	  
MutsigCV	   <2.2e-‐16	  
MuSiC	   <2.2e-‐16	  
OncodriveClust	   <2.2e-‐16	  
OncodriveFM	   <2.2e-‐16	  
OncodriveFML	   <2.2e-‐16	  
ActiveDriver	   5.50E-‐07	  
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