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5Instituto de Ecologı́a, Universidad Nacional Autónoma de México, México.
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Supplementary Methods

Boolean networks basic definitions
Let B = {0,1} and N≤n = {1,2, . . . ,n}, an initial segment of natural numbers. A synchronous Boolean network is a triple
(V,σ , f ), where V = {v1,v2, . . . ,vn} is a set of variables ranging over B, V represents the set of modeled molecules, σ an
ordering of the variables and f defines the dynamics of the network.

A state of the network is a tuple x = (x1,x2, . . . ,xn) such that x ∈ Bn. The dependency of the state on the discrete time
parameter t is denoted as x(t) and obeys the evolution rule given by f . That is for all t ∈ Z

x(t +1) = f (x(t)) . (1)

The state x represents the activation state of every variable in the network , while the activation value of a particular variable is
denoted by the indexing function σ , if xσ(vi) = 1 the gene represented by vi is active, whilst if xσ(vi) = 0 the gene represented
by vi is inactive.

For synchronous Boolean networks, an attractor is a set of states A⊆ Bn where for all x(0) ∈ A there exist l > 0 such that
l = min

k
x(k) = x(0) and for all s ∈ N≤l , x(s) ∈ A; l is the size of the attractor.

For simplicity, we refer to the variable v j by its position in the vector x, that is variable i means i = σ(v j). For a state x ∈ Bn

and a variable i we denote as x∼ i the vector resulting from replacing the value of the variable i in x with its opposite value.
Given two variables j and i and the update function of variable i, namely fi, j activates i if there exists a pair of network

states x, y that differ only in the state of activation of variable j, that is y = x∼ j, x j = 0 and y j = 1, such that fi(y)− fi(x)> 0.
Conversely, j inhibits i if there exists a pair of network states x, y that differ only in the state of activation of variable j, that
is y = x∼ j, x j = 0 and y j = 1, such that fi(y)− fi(x)< 0. An interaction, denoted as the pair (i, j), i, j ∈ N≤n is functional
if variable j activates or inhibits node i. Note that according to this definition, it is possible for variable j to both activate



and inhibit variable i. A non-functional interaction does not provide useful information about the biological system and it
is an accepted convention that interactions, where a molecule activates and inhibits the same gene are scarce in molecular
regulations1, 2. Thus, we excluded both non-functional regulations and regulations where variable j both activate and inhibit
variable i.

Circuits functionality analyses
A feedback circuit is defined as a set of directed interactions forming a closed path. Feedback circuits can be positive or
negative. The sign of a circuit is given by the signs of its interactions. A circuit is positive if it has an even number of negative
interactions, it is negative otherwise. It is important to note that the sole presence of a circuit in a network does not guarantee
the appearance of the corresponding dynamical behavior (i.e., oscillations or multistability). Thus, a circuit is considered
functional if at least one combination of the states of external regulators of its members allows all interactions of the circuit to
be functional together3.

In more formal terms, the functionality context of the interaction(i, j) of a Boolean network F = (V,σ , f ) is the set Φ( f , i, j)
defined by:

Φ( f , i, j) = {x | f j(x) 6= f j(x∼ i) and x ∈ Bn} (2)

For a Boolean network F = (V,σ , f ) we say that GF is its structure or interaction graph GF = 〈V,I +
f ,I −f 〉, where: I +

f is
its set of positive interactions defined by

I +
f = {(σ−1(i),σ−1( j)) | ∀x ∈Φ( f , i, j) xi = f j(x)} (3)

and I −f is its set of negative interactions defined by

I −f = {(σ−1(i),σ−1( j)) | ∀x ∈Φ( f , i, j) xi 6= f j(x)} (4)

For a circuit C = (c1,c2, . . . ,ck) (simple cycle with no shortcuts) of an interaction graph GF , where ci ∈ N≤n, ci 6= c j if
i 6= j, we define the functionality context of the circuit C, denoted Φ( f ,C) as follows:

Φ( f ,C) =
k⋂

i=1

Φ( f ,ci,c(i mod k)+1) . (5)

The circuit C is functional if Φ( f ,C) is not empty.
The functionality context for a circuit C with shortcuts S = {(ci,c j) | |( j mod k)− i| 6= 1} is defined by:

Φ( f ,C,S) = Φ( f ,C)−
⋃

(i, j)∈S

{x | x ∈Φ( f ,C)∧ x∼ i /∈Φ( f ,C)} . (6)

As with the previous case the circuit C is functional if Φ( f ,C,S) is not empty.
A functional circuit description is given by the triple (C,n,ς) where C is a circuit, n = |Φ( f ,C,S)| the cardinality of its

functionality context, an its sign ς ∈ S , where S= {+,−} is the set of signs.
The combination of the functionality of (feedback) circuits of a Boolean network F is defined as the set of functional circuit

descriptions for all circuits in its interaction graph GF .

Networks structural and dynamical distances
We define the adjacency matrix of a graph G = 〈V,E〉 with V = {v1, . . . ,vn} and E ∈ V ×V as A (G) = (ai j), (ai j) ∈ Bn×n

with entries satisfying

ai j =

{
1 if (vi,v j) ∈ E
0 otherwise

(7)

Accordingly, the structural distance Dstr( f ,g) between two Boolean networks F = (V,σ , f ) y G = (V,σ ,g) is defined by

Dstr( f ,g) =
∥∥∥A (〈VI +

f ∪I −f 〉)−A (〈V,I +
g ∪I −g 〉)

∥∥∥
1

(8)
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where ‖·‖p is the matrix entrywise norm defined by

∥∥(ai j)
∥∥

p =

(
∑

i
∑

j
|ai j|p

)1/p

(9)

The signed structural distance Dς

str( f ,g) between two Boolean networks F = (V,σ , f ) y G = (V,σ ,g) is defined by

Dς

str( f ,g) = ∑
ς1∈S

∑
ς2∈S

#ς1 ·#ς2 ·
∥∥∥A (〈V,I ς1

f 〉)−A (〈V,I ς2
g 〉)

∥∥∥
1

(10)

where # : S→{−1,1}, is defined by

#ς =

{
−1 if ς =−
1 if ς =+

(11)

The dynamical distance between two Boolean networks F = (V,σ , f ) y G = (V,σ ,g) is defined by

Ddyn( f ,g) = ∑
x∈Bn

∑
i∈N≤n

| fi(x)−gi(x)| (12)

We compared each pair of networks A and B of size N using the three distances described above, implementing the necessary
algorithms in Python. The dynamical distance clustering analysis was done using the scipy/linkage function (ward)4 for the
dynamical distance. We considered that only distances below a certain threshold where valid edges (0 and 8 for the structural
and dynamical distance, respectively). In the resulting networks each node represents a PLN and the edges’ weight corresponds
to the dynamical or structural distance. We analyzed the network properties using. python/networkx5.

PLNs simulations and queries
For the first two sections of the Results, PLNs were simulated using R/BoolNet 2.1.16. There were 9× 103 biologically
meaningful 1-PLNs, all of which were analyzed. As for biologically meaningful 2-PLNs, due to their astronomical number, we
used samples of sizes between 104 and 32.8×106 of them to analyze their properties.

For the third and fourth Results sections, the search of PLNs with the epistasis expected set of attractors (see section 3.3)
was done with Griffin7. Griffin is a software tool that uses symbolic algorithms for the inference of Boolean networks. Griffin
transforms the set of constraints into a Boolean sentence, which in turn using a Tseitin transformation8, 9 is converted into
an equisatisfiable conjunctive normal form sentence. This sentence is then provided as an input to a SAT4j10 solver instance.
When the solver finds an assignment of the Boolean variables that make the sentence true, this assignment is returned to Griffin.
Griffin then decodes the assignment into a set of Boolean functions corresponding to the network dynamics.

Certain biological constraints were added to Griffin to formulate the epistasis queries. First, we use a set of generalized
interactions which are a set of gene interaction constraints that corresponded to the MUS,OUS and MP interactions. The
expected fixed point attractors of the 2-PLNs required partially defined fixed points and the double mutant experiment required
multiple genes mutations with partially defined states. All of these biological constraints were transformed by Griffin into the
Boolean sentence representing the query. Finally, we prohibited networks that exhibit cyclic trajectories in the state space. As it
is computationally intractable to add this constraint a priori, Griffin performs a posteriori refinement of cycles using Dubrova
and Teslenko’s SAT based algorithm11. Any satisfying assignment will be decoded to a biologically meaningful Boolean
network. The extended version of Griffin containing all the biological constraints is available under request.

Statistical Analyses
All statistical analyses were carried out in R version 3.2.312.

To test the relationship between number of attractors and attractor average size we carried out a non-parametric Spearman
rank correlation, given that the assumptions of parametric correlation were violated (Fligner-Killeen test for homogeneity of
variances X2 = 526.784, d. f .= 9, P = 2.2x1016 ).

The differences between the circuits and structural properties in the singles and 2-PLNs were analyzed with generalized
linear models (GLM) with Poisson error structure and log link function. In GLMs with overdispersion (overdispersion test
P < 0.05;13) we used models with quasipoisson errors14. For analyzing attractor sizes and ratio of positive/negative circuits we
used generalized least squares (GLS) to account for heterogeneous variances found by type (Fligner-Killeen test P < 0.001)15, 16.

Finally, in order to test the frequency distribution of networks (N = 6.3X107 networks) of the attractors size and number
we used Kolmogorov-Smirnov tests for log-normal, exponential, normal and Poisson distributions implemented in R package
nortest. To test for power law distributions we used a bootstrapping procedure with 30 simulations in R package poweRlaw17.
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Statistical analyses results
Attractors properties
The attractors size was significantly larger for 2-PLNs than for 1-PLNs (GLS F1,18998 = 217.63,P < 0.001; C.I.95%:
2-PLNs= 1.62±0.012; 1-PLNs = 1.49±0.012).

The number of attractors was significantly larger for 2-PLNs than for 1-PLNs (Poisson GLM z = 103.2, d. f .= 1,18998,
P < 0.001; C.I.95%: 2PLN = 6.22±0.049; 1-PLNs = 2.91±0.035).

Feedback circuits and PLNs structure
In 1-PLNs, the number of negative feedback circuits was significantly larger for the complete set of PLNs than for n+s– (Poisson
GLM z= 31.92, P< 0.001) and for n–s– (z= 3.27, P= 0.001) and lower than for n–s+ (z= 19.70, P< 0.001; d. f .= 3,12596).
The number of positive feedback circuits was significantly larger for the complete set of PLNs than for n–s+ (Poisson GLM
z = 23.36, P < 0.001) and lower than for n+s– (z = 28.43, P < 0.001) and n–s– (z = 3.22, P = 0.001; d. f .= 3,13795). The
total number of feedback circuits did not differ significantly between the complete set of PLNs and n+s– (GLM z = 0.13,
P = 0.897), n–s+ (z = 1.74, P = 0.083) or n–s– (z = 0.02, P = 0.988; d. f .= 3,13795). The positive/negative feedback circuits
ratio was significantly larger for the complete set of PLNs than for n–s+ (GLS t = 19.56, P < 0.001), significantly lower than
n+s– (t = 24.83, P < 0.001) and did not differ significantly from n–s– (t = 0.64, P = 0.520; d. f .= 3,8215).

In 2-PLNs, the number of negative feedback circuits was significantly larger for the complete set of PLNs than for n+s–
(Quasipoisson GLM t = 38.31, P < 0.001) and for n–s– (t = 2.62, P = 0.009) and lower than for n+s+ (t = 5.17,P < 0.001) and
n–s+ (t = 27.92, P < 0.001; d. f .= 4,39480). The number of positive feedback circuits was significantly larger for the complete
set of PLNs than for n+s– (Quasipoisson GLM t = 27.66, P < 0.001) and for n–s– (t = 2.27, P = 0.023) and lower than for n+s+
(t = 14.79, P< 0.001) and n–s+ (t = 15.78, P< 0.001; d. f .= 4,39480). The total number of feedback circuits was significantly
larger for the complete set of PLNs than for n+s– (Quasipoisson GLM t = 39.65, P < 0.001) and for n–s– (t = 2.81, P = 0.005)
and lower than for n+s+ (t = 11.37, P < 0.001) and n–s+ (t = 25.13, P < 0.001; d. f . = 4,39480). The positive/negative
feedback circuits ratio was significantly larger for the complete set of PLNs than for n–s+ (GLSt = 9.29, P < 0.001), lower
than for n+s+ (t = 3.47, P < 0.001) and n+s– (t = 19.83, P < 0.001) and did not differ from n–s– (t = 1.22,P = 0.223;
d. f .= 4,35536).

The number of combinations of the functionalities of feedback circuits was significantly larger for 2-PLN than for n–s– 2-
PLN (Quasipoisson GLM t = 53.96, d. f .= 30768, P< 0.001; C.I.95%: 2PLN = 14.24±0.199; n–s– 2-PLNs = 2.36±0.146).

The number of combinations of the functionalities of feedback circuits was not significantly different for 1-PLNs and 1-n–s–
PLNs (Quasipoisson GLM t = 1.423, d. f .= 19, P = 0.172).

The combinations of the functionalities of feedback circuitrs were contained in a significantly different number of PLNs
structures by Type (Quasipoisson GLM Res.Dev.= 280865, d. f .= 254468, P < 0.001). A priori contrasts show that 2-PLNs
have lower values (1.46±0.010) than 2-PLNs with the n–s– functionalities (2.60±0.060) (t = 46.896,P < 0.001) and similar
values to n–s– 2-PLNs (1.43±0.044) (t = 0.973, P = 0.331); finally 2-PLNs with the n–s– functionalities has higher values
than n–s– 2-PLNs (t = 29.95, P < 0.001).

Relations
In 1-PLNs, the relationship between the number of attractors and the attractors average size was significant and negative
(Poisson GLM: Res.Dev.= 1139.8, d. f .= 8998, z =−22.59, P < 0.001). In 1-PLNs, the relationship between the number
of attractors and the number of negative loops was significant and negative (Poisson GLM: Res.Dev.= 5683.8, d. f .= 8998,
z =−30.45, P < 0.001). The relationship between the number of attractors and the number of positive loops was significant
and positive (Poisson GLM: Res.Dev.= 5633.5, d. f .= 8998, z = 34.29, P < 0.001). The relationship between the attractors
average size and the number of negative loops was significant and positive (Poisson GLM: Res.Dev.= 5428.5, d. f .= 8998,
z = 38.15, P ¡ 0.001). The relationship between the attractors average size and the number of positive loops was significant and
negative (Poisson GLM: Res.Dev.= 4975.5, d. f .= 8998, z =−37.45, P < 0.001).

In 2-PLNs to test the relationship between the number of attractors and the attractors average size we took a random sample
of 10,000 networks and carried out a generalized linear model (GLM) with Poisson errors and log link function. We found a
significant, negative relation between the number of attractors and the attractors average size (Poisson GLM: Res.Dev.= 1968.9,
d. f .= 9998, z =−14.00,P < 0.001). The relationship between the number of attractors and the number of negative loops was
significant and negative (Poisson GLM: Res.Dev.= 146.46, d. f .= 9998, z =−11.79, P < 0.001). The relationship between
the number of attractors and the number of positive loops was significant and positive (Poisson GLM: Res.Dev. = 9305.5,
d. f .= 9998, z = 39.60, P < 0.001). The relationship between the attractors average size and the number of negative loops was
significant and positive (Poisson GLM: Res.Dev.= 9607.10, d. f .= 9998, z = 39.45, P < 0.001). The relationship between
the attractors average size and the number of positive loops was significant and negative (Poisson GLM: Res.Dev.= 10621.00,
d. f .= 9998, z =−11.53, P < 0.001).
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Distributions
For the number of attractors, the frequency distribution differed significantly from a normal distribution (D = 0.205, P < 0.001)
or from a Poisson distribution (D = 0.256, P < 0.001). For the attractors size, the frequency distribution differed significantly
from a normal distribution (D = 0.265, P < 0.001), from a Poisson distribution (D = 0.420, P < 0.001) or from a power law
distribution (KS = 0.013, Xmin = 6, Scaling = 10.278, P < 0.001). For the number of attractors, the frequency distribution
differed significantly from a log-normal distribution (D = 0.853, P < 0.001) and from an exponential distribution (D = 0.474,
P < 0.001). The attractors size frequency distribution also differed significantly from a log-normal (D = 0.307, P < 0.001) and
an exponential distribution (D = 0.401, P < 0.001).
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Figure 1. 1-PLNs properties.(A) Number of attractor vs. attractors mean size. (B) and (C) number of attractors vs. quantity
of negative and positive feedback circuits, respectively. (D) and (E) size of attractors vs. quantity of negative and positive
feedback circuits, respectively. As observed, negative and positive feedback circuits have opposite effects, just as in 2-PLNs.
Each point represents a single 2-PLN data. Points are displaced in the X axis only for visual purpose. The lines are predicted by
Poisson GLMs.
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Figure 2. Two examples of wrongly inferred interactions using epistasis analysis. Examples of the cases where the
interactions from GEN1 to GEN2 (A) and the interaction from GEN2 to OUTPUT (B) are wrongly inferred. In both cases the
expected pathway variant is ++. The orange edge is the incorrect inferred interaction and the blue edges are an alternative
pathway that contains the expected signs of interactions between INP1, GEN1, GEN2 and OUTPUT with some extra
intermediary interactions. Below the Boolean functions for each of these PLNs.
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