Supporting File 1: Mutated SF3B1 is associated with transcript isoform changes of the genes UQCC and RPL31 both in CLLs and uveal melanomas

Alejandro Reyes, Carolin Blume, Vicent Pelechano, Petra Jakob, Lars M Steinmetz, Thorsten Zenz, Wolfgang Huber

2013

Contents

1	Preparation	2		
2	Testing for differential exon usage			
3	Reactome pathway enrichment analysis			
4	Differential expression	7		
5	Figures 5.1 Figure 1	17		
6	Session information	27		

This document contains a documented R session with all the code used to analyse the RNA-seq data. It also describes the code used to generate the figure templates from the manuscript. Readers are welcome to reproduce the code.

1 Preparation

In order to reproduce the code from this document, the Bioconductor data package CLL.SF3B1 should be installed. This package contains input files that resulted from a first round of data preprocessing that are needed to reproduce the results. Therefore, we first load the package and the data:

```
suppressMessages( library("CLL.SF3B1") )
data("ecsSF3B1")
```

If you don't have the package installed, you can install it by typing in your R session

biocLite("CLL.SF3B1")

Also, modify the variable "cores" specifying the number of CPUs available in your machine. This will allow to distribute the computationally expensive jobs into many cores.

```
cores <- 15
```

2 Testing for differential exon usage

```
ecsSF3B1 <- estimateSizeFactors( ecsSF3B1 )
formulaDispersion <- ~ sample + ( phenotype + sf3b1) * exon
ecsSF3B1 <- estimateDispersions( ecsSF3B1, formula=formulaDispersion, nCores=cores)
ecsSF3B1 <- fitDispersionFunction( ecsSF3B1 )
formula0 = ~sample + sf3b1 + exon
formula1 = ~sample + sf3b1 * exon
ecsSF3B1 <- testForDEU( ecsSF3B1, formula0=formula0, formula1=formula1, nCores=cores )</pre>
```

We found 50 exons to be differentially used between the mutated samples and the normal samples

table(fData(ecsSF3B1)\$padjust < 0.1)</pre>

FALSE	TRUE
253106	50

These were distributed along 41 genes

```
genes <- unique( geneIDs(ecsSF3B1)[which( fData(ecsSF3B1)$padjust < 0.1 )] )
length(genes)</pre>
```

[1] 41

3 Reactome pathway enrichment analysis

Then, we download the file from the database reactome that maps uniprot gene identificators to annotated pathways and read it as a data frame. After download, we reformat the data frame to make it easier to access.

```
reactome <- read.delim(</pre>
    url(
     "http://www.reactome.org/download/current/uniprot_2_pathways.txt"
         ),
    header=FALSE)
rownames(reactome) <- as.character( reactome$V1 )</pre>
processes <- gsub(</pre>
    "^\\[\\d+\\sprocesses\\]: ",
    "",
    as.character( reactome$V3 ),
    perl=TRUE)
processes <- strsplit( processes, "; ")</pre>
names( processes ) <- rownames( reactome )</pre>
processesDF <- lapply(</pre>
    seq_along( processes ),
    function(x){
        data.frame(
```

```
uniprot=names(processes)[x],
            process=processes[[x]]
            )
    })
processesDF <- do.call( rbind, processesDF )</pre>
head( processesDF )
   uniprot
                                                         process
 1 E9Q414 Binding and Uptake of Ligands by Scavenger Receptors
 2 E9Q414
                                 Scavenging by Class A Receptors
 3 E9Q414
                                 Scavenging by Class B Receptors
 4 G5EF96
                                                   Axon guidance
 5 G5EF96
                              DCC mediated attractive signaling
 6 G5EF96
                                           Developmental Biology
```

The pathways in reactome are based on uniprot IDs, therefore we use biomaRt to map our ensembl gene identificators with uniprot identificators. We do the same to translate ensembl gene IDs to gene names.

```
library(biomaRt)
mart <- useMart("ensembl", dataset="hsapiens_gene_ensembl")</pre>
bm <- getBM(</pre>
    attributes=
      c("ensembl_gene_id", "uniprot_swissprot_accession"),
    filter="ensembl_gene_id",
    values=
      as.character(unique(geneIDs(ecsSF3B1))),
    mart=mart )
uniprots <- bm$'uniprot_swissprot_accession'</pre>
names( uniprots ) <- bm$'ensembl_gene_id'</pre>
uniprots <- uniprots[uniprots != ""]</pre>
bm <- getBM(</pre>
   c("ensembl_gene_id", "external_gene_id"),
   "ensembl_gene_id",
   values=as.character(unique(geneIDs(ecsSF3B1))),
   mart=mart)
geneName <- bm$'external_gene_id'</pre>
names(geneName) <- bm$'ensembl_gene_id'</pre>
```

Now we can test for over-representation of the genes with isoform regulation associated to the mutation in SF3B1 compared to all the genes that contain at least 600 counts across all the samples. We do this in order to to avoid biases associated to expression strength.

```
library(DESeq2)
```

```
foreground <- uniprots[names(uniprots) %in% genes]</pre>
toTest <- unique(</pre>
    processesDF[processesDF[,"uniprot"]
                 %in% foreground, "process"] )
expressed <- rownames(counts(dseSF3B1))[rowSums( counts(dseSF3B1) ) > 600]
background <- uniprots[names(uniprots) %in% expressed]</pre>
testForReactome <- function( toTest, foreground, background ){</pre>
  pvals <- mclapply( toTest, function(x){</pre>
          df2 <- processesDF[processesDF[,"process"] %in% x,]</pre>
          a <- sum( df2[,"uniprot"] %in% foreground )</pre>
          b <- sum( df2[,"uniprot"] %in% background )</pre>
          c <- df2[,"uniprot"] %in% foreground</pre>
          c <- unique( df2[,"uniprot"][which(c)] )</pre>
          c <- paste(c, collapse=",")</pre>
          c(a, length(foreground) - a)
          mat <- t( data.frame(</pre>
              fore=c(a, length(foreground)-a),
              back=c(b, length( background)-b ) )
                    )
          colnames(mat) <- c("in", "out")</pre>
          ft <- fisher.test( mat , alternative="greater" )</pre>
          ft$estimate
          list( genes=c,
               numbers=c( foreground=mat[1,],
                    background=mat[2,],
                    ft$estimate,
                    pval=ft$p.value ))
          }, mc.cores=cores)
  names(pvals) <- toTest</pre>
  againstMM <- pvals
```

```
for(i in seq_along( againstMM )){
    sepGenes <- unlist( strsplit( againstMM[[i]]$genes, "," ) )</pre>
    againstMM[[i]]$geneNames <- paste(</pre>
         unique( geneName[names( uniprots[uniprots %in% sepGenes] )] ),
         collapse=",")
  }
  table <- t( sapply( againstMM, "[[", "numbers" ) )</pre>
  table <- as.data.frame( table )</pre>
  table$genes <- sapply( againstMM, "[[", "geneNames" )</pre>
  table$padj <- p.adjust( table$pval, method="BH" )</pre>
  table
}
allGenes <- testForReactome(toTest, uniprots[names(uniprots) %in% genes], background )
enriched <- allGenes[allGenes$padj < 0.1,c("foreground.in", "pval", "genes")]</pre>
rownames(enriched)
 Antigen Presentation: Folding, assembly and peptide loading of class I MHC
```

```
Antigen processing-Cross presentation
Cytokine Signaling in Immune system
Endosomal/Vacuolar pathway
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
Interferon Signaling
Interferon gamma signaling
Processing of Capped Intron-Containing Pre-mRNA
mRNA Splicing
mRNA Splicing - Major Pathway
Acyl chain remodelling of PG
Acyl chain remodelling of PI
Acyl chain remodelling of PS
Cap-dependent Translation Initiation
Eukaryotic Translation Initiation
GTP hydrolysis and joining of the 60S ribosomal subunit
Translation
3' -UTR-mediated translational regulation
L13a-mediated translational silencing of Ceruloplasmin expression
```

4 Differential expression

We tested for differential expression between the samples with mutated SF3B1 and the samples with wt SF3B1.

```
data("dseSF3B1")
dseSF3B1 <- DESeq(dseSF3B1)</pre>
res <- results(dseSF3B1)</pre>
upregulated <-
  rownames(res)[
    which( res$padj < 0.1 & res$log2FoldChange > 0 )]
downregulated <-
  rownames(res)[
    which( res$padj < 0.1 & res$log2FoldChange < 0 )]</pre>
table( res$padj < 0.1 )</pre>
  estimating size factors
 estimating dispersions
 gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
 fitting model and testing
FALSE TRUE
14315
         228
plotMA(dseSF3B1, ylim=c(-3, 3))
```


mean of normalized counts

Set of upregulated genes on SF3B1 mutated genes

geneName[names(geneName) %in% downregulated]

ENSG00000168675	ENSG00000156755	ENSG00000199691	ENSG00000202058	ENSG00000077782
"LDLRAD4"	"IGKV1OR-2"	"RN7SKP173"	"RN7SKP80"	"FGFR1"
ENSG00000111331	ENSG00000241666	ENSG00000224295	ENSG00000202077	ENSG00000252481
"OAS3"	"RP3-455J7.4"	"AC087380.14"	"RNU1-60P"	"SCARNA13"
ENSG00000104938	ENSG00000199879	ENSG00000203799	ENSG00000112242	ENSG00000261040
"CLEC4M"	"RNU1-120P"	"CCDC162P"	"E2F3"	"CTD-2319I12.1"
ENSG00000148926	ENSG00000161513	ENSG00000252010	ENSG00000251495	ENSG00000175893
"ADM"	"FDXR"	"SCARNA5"	"PPIAP11"	"ZDHHC21"
ENSG00000166510	ENSG00000137628	ENSG00000188886	ENSG00000158050	ENSG00000159256
"CCDC68"	"DDX60"	"ASTL"	"DUSP2"	"MORC3"
ENSG00000123739	ENSG00000244405	ENSG00000198642	ENSG00000170734	ENSG00000117862

"PLA2G12A"	"ETV5"	"KLHL9"	"POLH"	"TXNDC12"
ENSG00000100596	ENSG00000133103	ENSG00000145864	ENSG00000198440	ENSG00000257151
"SPTLC2"	"CDG6"	"GABRB2"	"ZNF583"	"PWAR6"
ENSG00000207133	ENSG00000160551	ENSG00000149485	ENSG00000149054	ENSG00000128482
"SNORD116-7"	"TAOK1"	"FADS1"	"ZNF215"	"RNF112"
ENSG00000133835	ENSG00000101577	ENSG00000139116	ENSG00000166710	ENSG00000248302
"HSD17B4"	"LPIN2"	"KIF21A"	"B2M"	"Z95704.4"
ENSG00000211553	ENSG0000006831	ENSG00000069329	ENSG00000152767	ENSG00000171208
"AC118278.1"	"ADIPOR2"	"VPS35"	"FARP1"	"NETO2"
ENSG00000102349	ENSG00000121101	ENSG00000164296	ENSG00000111266	ENSG00000102053
"KLF8"	"TEX14"	"TIGD6"	"DUSP16"	"ZC3H12B"
ENSG00000122877	ENSG00000203668	ENSG00000135698	ENSG0000089682	ENSG00000136810
"EGR2"	"CHML"	"MPHOSPH6"	"RBM41"	"TXN"
ENSG00000146731	ENSG00000163873	ENSG00000136866	ENSG00000185885	ENSG00000108557
"CCT6A"	"GRIK3"	"ZFP37"	"IFITM1"	"RAI1"
ENSG00000152926	ENSG00000213462	ENSG00000146757	ENSG00000239961	ENSG00000252835
"ZNF117"	"ERV3-1"	"ZNF92"	"LILRA4"	"SCARNA21"
ENSG00000197852	ENSG00000136848	ENSG00000204099	ENSG00000134242	ENSG00000216490
"FAM212B"	"DAB2IP"	"NEU4"	"PTPN22"	"IFI30"
ENSG00000163564				
"PYHIN1"				

Set of downregulated genes on SF3B1 mutated genes

geneName[names(geneName) %in% upregulated]

ENSG00000241781	ENSG00000247982	ENSG00000167702	ENSG00000253475	ENSG00000167306
"AL161626.1"	"LINC00926"	"KIFC2"	"RP11-110G21.2"	"MY05B"
ENSG00000215440	ENSG00000163590	ENSG00000184441	ENSG00000108819	ENSG00000227039
"NPEPL1"	"PPM1L"	"AP001062.7"	"PPP1R9B"	"ITGB2-AS1"
ENSG00000068831	ENSG00000128872	ENSG00000197549	ENSG00000211934	ENSG00000185522
"RASGRP2"	"TMOD2"	"PRAMENP"	"IGHV1-2"	"C11orf35"
ENSG00000105655	ENSG00000234902	ENSG00000211945	ENSG00000141577	ENSG0000076344
"ISYNA1"	"AC007879.2"	"IGHV1-18"	"AZI1"	"RGS11"
ENSG00000160014	ENSG00000047644	ENSG00000169682	ENSG00000130758	ENSG00000125347
"CALM3"	"WWC3"	"SPNS1"	"MAP3K10"	"IRF1"
ENSG00000224796	ENSG00000225783	ENSG00000197146	ENSG00000174996	ENSG00000125534
"RPL32P1"	"MIAT"	"AL133458.1"	"KLC2"	"PPDPF"
ENSG00000188599	ENSG00000248275	ENSG00000155158	ENSG00000162877	ENSG00000051128

"NPIPP1"	"TRIM52-AS1"	"TTC39B"	"PM20D1"	"HOMER3"
ENSG00000168071	ENSG00000076928	ENSG00000105663	ENSG00000231925	ENSG00000105063
"CCDC88B"	"ARHGEF1"	"KMT2B"	"TAPBP"	"PPP6R1"
ENSG00000266677	ENSG00000063169	ENSG00000105373	ENSG00000131584	ENSG00000103249
"RP11-258F1.1"	"GLTSCR1"	"GLTSCR2"	"ACAP3"	"CLCN7"
ENSG00000251301	ENSG00000228727	ENSG00000188185	ENSG00000146285	ENSG00000151651
"RP11-81H14.2"	"SAPCD1"	"LINC00265"	"SCML4"	"ADAM8"
ENSG00000214021	ENSG00000063245	ENSG00000064547	ENSG00000182379	ENSG00000196668
"TTLL3"	"EPN1"	"LPAR2"	"NXPH4"	"LINC00173"
ENSG00000163704	ENSG00000124496	ENSG00000244486	ENSG0000099910	ENSG00000136819
"PRRT3"	"TRERF1"	"SCARF2"	"KLHL22"	"C9orf78"
ENSG00000180096	ENSG0000005844	ENSG00000137216	ENSG0000008710	ENSG00000127419
"SEPT1"	"ITGAL"	"TMEM63B"	"PKD1"	"TMEM175"
ENSG00000109113	ENSG00000135596	ENSG00000177084	ENSG00000204681	ENSG00000127415
"RAB34"	"MICAL1"	"POLE"	"GABBR1"	"IDUA"
ENSG00000128284	ENSG00000144283	ENSG00000139668	ENSG00000107742	ENSG00000149499
"APOL3"	"PKP4"	"WDFY2"	"SPOCK2"	"EML3"
ENSG00000129355	ENSG00000122707	ENSG00000160326	ENSG00000252438	ENSG00000101493
"CDKN2D"	"RECK"	"SLC2A6"	"SNORD45"	"ZNF516"
ENSG00000124570	ENSG00000158526	ENSG00000161618	ENSG00000169994	ENSG00000123933
"SERPINB6"	"TSR2"	"ALDH16A1"	"MY07B"	"MXD4"
ENSG00000148384	ENSG00000143793	ENSG0000005379	ENSG00000100321	ENSG00000122515
"INPP5E"	"C1orf35"	"BZRAP1"	"SYNGR1"	"ZMIZ2"
ENSG00000196642	ENSG00000104154	ENSG00000105698	ENSG00000077044	ENSG00000136286
"RABL6"	"SLC30A4"	"USF2"	"DGKD"	"MYO1G"
ENSG00000142173	ENSG00000153443	ENSG00000160799	ENSG00000100351	ENSG00000160796
"COL6A2"	"UBALD1"	"CCDC12"	"GRAP2"	"NBEAL2"
ENSG00000135318	ENSG00000104960	ENSG00000168264	ENSG00000170476	ENSG00000265735
"NT5E"	"PTOV1"	"IRF2BP2"	"MZB1"	"RN7SL5P"
ENSG0000004777	ENSG00000182087	ENSG00000101400	ENSG00000185989	
"ARHGAP33"	"TMEM259"	"SNTA1"	"RASA3"	"SLC2A5"
ENSG00000177483	ENSG00000071575		ENSG00000153551	
"RBM44"	"TRIB2"	"TSPAN18"	"CMTM7"	"P2RY14"
ENSG00000164574	ENSG00000182195	ENSG00000185920	ENSG00000133275	ENSG00000154134
"GALNT10"	"LDOC1"	"PTCH1"	"CSNK1G2"	"ROBO3"
ENSG00000072071			ENSG00000135736	ENSG00000104814
"LPHN1"	"SF3A2"	"RP11-611L7.1"	"CCDC102A"	"MAP4K1"
			ENSG0000007264	
"SLCO5A1"	"CRELD2"	"SYT11"	"MATK"	"LMF2"
ENSG00000106780	ENSG0000099331	ENSG00000167280	ENSG00000185864	ENSG00000143320

```
"MEGF9"
                        "MY09B"
                                        "ENGASE"
                                                        "NPIPB4"
                                                                         "CRABP2"
ENSG00000119608 ENSG00000198910 ENSG00000139899 ENSG00000105639 ENSG00000134250
        "PROX2"
                        "L1CAM"
                                         "CBLN3"
                                                           "JAK3"
                                                                         "NOTCH2"
ENSG00000125648 ENSG00000168280 ENSG00000075826 ENSG00000163386 ENSG00000145020
     "SLC25A23"
                        "KIF5C"
                                        "SEC31B"
                                                        "NBPF10"
                                                                            "AMT"
ENSG00000198816 ENSG00000182179
                         "UBA7"
       "ZNF358"
```

5 Figures

We load the data from the supplementary materials presented by Furney et al, and load the information from the pfam domains.

```
suppressMessages( library(ggbio ) )
suppressMessages(library(AnnotationDbi))
suppressMessages(library(GenomicRanges))
suppressMessages(library(GenomicFeatures))
suppressMessages(library(Biostrings))
colorSamples <- c("#238B45", "#238B45", "#0C2C84", "#0C2C84", "#0C2C84", "#0C2C84")
colorConditions <- c("#238B45", "#0C2C84")
path <- system.file(package="CLL.SF3B1", "extdata")
um <- read.delim( list.files( path, pattern="^furney", full.names=TRUE ) )
umRanges <- GRanges(um$chr, IRanges( start=um$start, end=um$end ), um$strand )</pre>
```

data("domains")

We also need to create a transcript database object based on the annotation file. We first download from ENSEMBL the reference fasta files and the annotation file in the gtf format. We need both of this in order to create our transcript database. This is done in a command line, not in an R session:

wget \
ftp://ftp.ensembl.org/pub/release-68/fasta/homo_sapiens/dna/Homo_sapiens.GRCh37.68.dna
gunzip Homo_sapiens.GRCh37.68.dna_sm.primary_assembly.fa.gz
wget \
ftp://ftp.ensembl.org/pub/release-68/gtf/homo_sapiens/Homo_sapiens.GRCh37.68.gtf.gz

```
gunzip Homo_sapiens.GRCh37.68.gtf.gz
perl -ne 'if( $_ !~ /^(HS|\S+PATCH|HG)/){ print $_; }' Homo_sapiens.GRCh37.68.gtf \
> Homo_sapiens.GRCh37.68.filtered.gtf
```

We now can create the transcript database in our R session based on the files that we downloaded:

fastq <- readDNAStringSet("Homo_sapiens.GRCh37.68.dna_sm.primary_assembly.fa")</pre>

```
df <- data.frame(
    chrom=sapply( strsplit( names(fastq), " " ), "[[", 1),
    length=width(fastq),
    is_circular=rep(FALSE, length(fastq)))</pre>
```

```
transcriptDb <- makeTranscriptDbFromGFF(
    "Homo_sapiens.GRCh37.68.filtered.gtf",
    format="gtf",
    exonRankAttributeName="exon_number",
    chrominfo=df,
    dataSource=paste("ensembl human release 68"),
    species="Homo sapiens"
    )</pre>
```

```
saveDb(transcriptDb, file="transcriptDb.sqlite")
```

We load the transcriptDb object

```
library(GenomicFeatures)
transcriptDb <- loadDb("transcriptDb.sqlite")</pre>
```

Below is the code that was used to create the templates for each figure, afterwards they were merged, modified and adapted to the journal requirements using inkscape.

5.1 Figure 1

We use the package h5vc in order to generate this figure, this package is designed to work with genomic DNA sequencing. Here we tricked h5vc and use it with RNA-seq data in order to see the expression of the SF3B1 K700E variant.

```
library(CLL.SF3B1)
path <- system.file( package="CLL.SF3B1" )</pre>
path <- file.path( path, "bam")</pre>
bamFiles <- list.files( path, pattern="bam$" )</pre>
suppressPackageStartupMessages(library(h5vc))
suppressPackageStartupMessages(library(rhdf5))
suppressPackageStartupMessages(library(deepSNV))
chrom <- "2"
study <- "/SF3B1"
tallyFile <- file.path(".", "SF3B1.tally.hfs5")</pre>
if (file.exists(tallyFile)) {
    file.remove(tallyFile)
}
h5createFile(tallyFile)
group <- paste(study, chrom, sep = "/")</pre>
h5createGroup(tallyFile, study)
h5createGroup(tallyFile, group)
end <- 198299815
start <- 198256698
dim4 <- end +1000
h5createDataset(tallyFile,
    paste(group, "Counts", sep = "/"), dims = c(12, 6,
    2, dim4), storage.mode = "integer", level = 9)
h5createDataset(tallyFile,
    paste(group, "Coverages", sep = "/"), dims = c( 6,
    2, dim4), storage.mode = "integer", level = 9)
h5createDataset(tallyFile,
```

```
paste(group, "Deletions", sep = "/"), dims = c(6,
    2, dim4), storage.mode = "integer", level = 9)
h5createDataset(tallyFile,
   paste(group, "Reference", sep = "/"), dims = c(dim4),
   storage.mode = "integer", level = 9)
sample <- sapply( strsplit( bamFiles, "_sf3B1"), "[[", 1)</pre>
names( sample ) <- c("1", "2", "6", "5", "4", "3")
sampleData <- data.frame(</pre>
   Sample = sample, Column=0:5,
   Patient=names(sample),
   Type = c("CLL", "CLL", "CLL", "CLL", "healthy", "healthy"),
   stringsAsFactors = FALSE)
sampleData
setSampleData(tallyFile, group, sampleData)
getSampleData(tallyFile, group )
Counts <- lapply(file.path(path, bamFiles), function(bamf){</pre>
   bam2R( file=bamf, chr=chrom, start=start, stop=end )
})
Coverages <- lapply(Counts, function(count) matrix(c(rowSums(count[, c("A",
    "C", "G", "T", "DEL")]), rowSums(count[, c("a", "c", "g", "t", "del")])),
    ncol = 2, byrow = FALSE, dimnames = list(NULL, c("Fwd", "Rev"))))
Deletions <- lapply(Counts, function(count) count[, c("DEL", "del")])</pre>
Counts <- lapply(Counts, function(count) count[, c("A", "C", "G", "T", "a",
    "c", "g", "t")])
ref <- apply(Counts[[1]][, 1:4] +</pre>
          Counts[[1]][5:8] + Counts[[2]][, 1:4] +
          Counts[[2]][5:8],
    1, which.max)
for( j in 1:6){
  for (i in seq(length(ref))) {
    Counts[[j]][i, ref[i]] <- 0
    Counts[[j]][i, (ref[i] + 4)] <- 0
```

```
}
}
Reference <- ref - 1
h5ls(tallyFile)
for( sample in 1:6 ){
    h5write(t(Counts[[sample]][, 1:4])+t(Counts[[sample]][, 5:8]),
       tallyFile, paste(group, "Counts", sep = "/"),
        index = list(5:8, sample, 1, start:end))
    h5write(Coverages[[sample]][, "Fwd"] + Coverages[[sample]][, "Rev"],
       tallyFile, paste(group, "Coverages",
        sep = "/"), index = list(sample, 1, start:end))
}
h5write(Reference, tallyFile,
   paste(group, "Reference", sep = "/"),
    index =list( start:end))
position <- 198266834
windowsize <- 20
data <- h5dapply(filename = tallyFile,</pre>
    group = group, blocksize = 1e+08,
    range = c(position -
       windowsize, position + windowsize))[[1]]
sampledata <- getSampleData(tallyFile, group)</pre>
samples <- sampledata$Sample</pre>
[1] TRUE
             Sample Column Patient
                                       Туре
```

```
1 sample1_sf3b1.bam
                          0
                                  1
                                        CLL
                                         CLL
2 sample2_sf3b1.bam
                          1
                                  2
6 sample3_sf3b1.bam
                          2
                                  6
                                         CLL
                                        CLL
5 sample4_sf3b1.bam
                          3
                                  5
4 sample5_sf3b1.bam
                          4
                                  4 healthy
3 sample6_sf3b1.bam
                          5
                                  3 healthy
  Column Patient
                             Sample
                                        Type
1
       1
               1 sample1_sf3b1.bam
                                         CLL
2
       2
               2 sample2_sf3b1.bam
                                         CLL
3
       3
               6 sample3_sf3b1.bam
                                         CLL
4
       4
               5 sample4_sf3b1.bam
                                         CLL
5
       5
               4 sample5_sf3b1.bam healthy
6
       6
               3 sample6_sf3b1.bam healthy
                            otype dclass
                                                              dim
                name
     group
0
               SF3B1
                        H5I_GROUP
         /
1
    /SF3B1
                        H5I_GROUP
                   2
              Counts H5I_DATASET INTEGER 12 x 6 x 2 x 198300815
2 /SF3B1/2
3 /SF3B1/2 Coverages H5I_DATASET INTEGER
                                                6 x 2 x 198300815
4 /SF3B1/2 Deletions H5I_DATASET INTEGER
                                                6 x 2 x 198300815
5 /SF3B1/2 Reference H5I_DATASET INTEGER
                                                        198300815
library(ggplot2)
p <- mismatchPlot(data, sampledata,</pre>
    samples, windowsize, position) + facet_wrap(
```

 \sim Sample, ncol = 2)

print(p)

```
16
```


Note that this plot was generated from the coverage calculated to the "+" strand and SF3B1 is on the minus strand. Therefore this plot was mirrored afterwards with inkscape so that it reflected the coverage for the "-" strand.

5.2 Figure 2: RPL31

```
plotDEXSeq(ecsSF3B1, "ENSG00000071082",
    norCounts=TRUE, lwd=1.3, legend=TRUE, fitExpToVar="sf3b1",
    splicing=FALSE, expression=FALSE,
    cex.axis=1, color=c("#238B45", "#0C2C84"),
    color.samples=colorSamples)
```


zoomed region,

```
library(ggbio)
thisRange <- fData(ecsSF3B1)[geneIDs(ecsSF3B1)
    %in% "ENSG0000071082",
    c("chr", "start", "end", "strand", "padjust")]
exonRange <- GRanges( thisRange$chr,
    IRanges(
      start=thisRange$start,
      end=thisRange$end,
      names=rownames(thisRange)),
    thisRange$strand )</pre>
```

```
geneRange <- GRanges( 2, IRanges(start=101618000, end=101640594))
exonRange$significant <- as.numeric( thisRange$padjust < 0.1 )</pre>
```

```
exonRange$significant[is.na( exonRange$significant )] <- 0</pre>
overlap <- findOverlaps( exonRange, umRanges, type="equal" )</pre>
exonRange$significantUM <-</pre>
   as.numeric( names( exonRange ) %in%
    names( exonRange[queryHits(
       findOverlaps( exonRange, umRanges, type="equal" ) )] ) )
wh <- geneRange
tracks(
  autoplot( GRangesList( exonRange ),
     fill=ifelse(exonRange$significant == 1, "#F219ED", "gray"),
     colour=ifelse(exonRange$significant == 1, "black", "black")),
  autoplot( GRangesList( exonRange ),
     fill=ifelse(exonRange$significantUM == 1, "#F219ED", "gray"),
     colour=ifelse(exonRange$significant == 1, "black", "black")),
  autoplot( transcriptDb, wh, group.selfish=TRUE, names.expr=""),
xlim=wh, heights=c(1, 1, 2))
```


5.3 Figure 3: UQCC

```
plotDEXSeq(ecsSF3B1, "ENSG00000101019",
    norCounts=TRUE, lwd=1.3, legend=TRUE, fitExpToVar="sf3b1",
    splicing=FALSE, expression=FALSE,
    cex.axis=1, color=c("#238B45", "#0C2C84"),
    color.samples=colorSamples)
```


33890369 33902544 33914719 33926894 33939069 33951244 33963419 33975594 33987769 339999944

```
thisRange <- fData(ecsSF3B1)[
   geneIDs(ecsSF3B1) %in% "ENSG00000101019",
   c("chr", "start", "end", "strand", "padjust")]
exonRange <- GRanges( thisRange$chr,
   IRanges(
    start=thisRange$start,
    end=thisRange$end,
    names=rownames(thisRange)),
   thisRange$strand )</pre>
```

```
geneRange <- GRanges( 20, IRanges(start=33890369, end=33999944))
exonRange$significant <- as.numeric( thisRange$padjust < 0.1 )
exonRange$significant[is.na( exonRange$significant )] <- 0
overlap <- findOverlaps( exonRange, umRanges, type="equal" )</pre>
```

```
exonRange$significantUM <- as.numeric(
    names( exonRange ) %in% names(
        exonRange[queryHits(
           findOverlaps( exonRange, umRanges, type="equal" ) )] ) )
wh <- geneRange
domainRange <- GRangesList(
    reduce( unique(
        domainRanges[
        subjectHits( findOverlaps( geneRange, domainRanges ) )] )
))</pre>
```

```
tracks(
  autoplot( GRangesList( exonRange ),
    fill=ifelse(exonRange$significant == 1, "#F219ED", "gray"),
    colour=ifelse(exonRange$significant == 1, "black", "black")),
  autoplot( GRangesList( exonRange ),
    fill=ifelse(exonRange$significantUM == 1, "#F219ED", "gray"),
    colour=ifelse(exonRange$significant == 1, "black", "black")),
  autoplot( domainRange ), heights=c(1, 1, 1), xlim=wh)
```


plotDEXSeq(ecsSF3B1, "ENSG00000162894", norCounts=TRUE, lwd=1, legend=TRUE, fitExpToVar="sf3b1", splicing=FALSE, expression=FALSE, cex.axis=1, color=colorConditions, color.samples=colorSamples, displayTranscripts=FALSE, names=FALSE)

```
mutated
                                                             normal
              ENSG0000162894 -
      10000
     Normalized counts
       1000
        100
        10
                              E011 E013 E015 E017 E019 E021 E023 E025 E027
          E001 E003 E005 E007
                          E009
                     207081922
                                              207090305
        207077731
                                 207086114
                                                           207094496
thisRange <- fData(ecsSF3B1)[</pre>
     geneIDs(ecsSF3B1) %in% "ENSG00000162894",
     c("chr", "start", "end", "strand", "padjust")]
thisRange$padjust[is.na( thisRange$padjust )] <- 1</pre>
geneRange <- GRanges( thisRange$chr,</pre>
   IRanges(
      start=thisRange$start,
      end=thisRange$end,
      names=rownames(thisRange)),
  thisRange$strand )
geneRange$significant <- as.numeric( thisRange$padjust < 0.1 )</pre>
wr <- GRanges( "1", IRanges(start=207095100, end=207095400 ) )</pre>
```

tr1 <- autoplot(transcriptDb, which=wr, group.selfish=TRUE, names.expr=FALSE)</pre>

```
tr2 <- autoplot(</pre>
   GRangesList( geneRange ),
   colour=ifelse(geneRange$significant == 1,
     "#F219ED", "black"))
tracks( tr2, tr1, heights=c(1, 2), xlim=wr )
            FALSE
            FALSE
            FALSE
            FALSE
            FALSE
            FALSE
            FALSE
            FALSE
            FALSE
```

207.0951 Mb 207.09515 Mb 207.0952 Mb 207.09525 Mb 207.09535 Mb 207.09535 Mb 207.09535 Mb 207.0954 PLot NFAT5

plotDEXSeq(ecsSF3B1, "ENSG00000102908", norCounts=TRUE, lwd=1, legend=TRUE, fitExpToVar="sf3b1", splicing=FALSE, expression=FALSE, cex.axis=1,


```
thisRange <- fData(ecsSF3B1)[</pre>
     geneIDs(ecsSF3B1) %in% "ENSG00000102908",
     c("chr", "start", "end", "strand", "padjust")]
 thisRange$padjust[is.na( thisRange$padjust )] <- 1</pre>
 geneRange <- GRanges( thisRange$chr,</pre>
    IRanges(
      start=thisRange$start,
      end=thisRange$end,
      names=rownames(thisRange)),
   thisRange$strand )
 geneRange$significant <- as.numeric( thisRange$padjust < 0.1 )</pre>
```

```
prueba <- GRanges( "16", IRanges(start=69718874-150, end=69719978+100 ))</pre>
```

```
tr1 <- autoplot( transcriptDb, prueba, group.selfish=TRUE, names.expr="")
tr2 <- autoplot( GRangesList( geneRange ),
    fill=ifelse(geneRange$significant == 1, "#F219ED", "black"))
tracks( tr2, tr1, heights=c(1, 2), xlim=prueba )</pre>
```


69.7188 Mb 69.719 Mb 69.7192 Mb 69.7194 Mb 69.7196 Mb 69.7198 Mb 69.72 Mb

6 Session information

```
sessionInfo()
```

```
R version 3.0.3 (2014-03-06)
Platform: x86_64-unknown-linux-gnu (64-bit)
```

```
locale:
 [1] LC_CTYPE=en_US.UTF-8
                                 LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8
                                 LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8
                                 LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8
                                 LC_NAME=C
 [9] LC_ADDRESS=C
                                 LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
                                              graphics grDevices utils
 [1] stats4
               splines
                         parallel stats
 [8] datasets methods
                         base
other attached packages:
 [1] deepSNV_1.8.0
                               VariantAnnotation_1.8.13 VGAM_0.9-4
 [4] Rsamtools_1.14.3
                                                        bit 1.1-12
                               bit64_0.9-4
 [7] rhdf5_2.6.0
                              h5vc_1.0.0
                                                        Biostrings_2.30.1
                                                        ggbio_1.10.16
[10] GenomicFeatures_1.14.5
                               AnnotationDbi_1.24.0
[13] ggplot2_1.0.0
                               biomaRt_2.18.0
                                                        CLL.SF3B1_0.0.1
[16] DESeq2_1.2.10
                              RcppArmadillo_0.4.300.0 Rcpp_0.11.1
[19] GenomicRanges_1.14.4
                              XVector_0.2.0
                                                        IRanges_1.20.7
[22] DEXSeq_1.8.0
                              Biobase_2.22.0
                                                        BiocGenerics_0.8.0
[25] BiocInstaller_1.12.1
loaded via a namespace (and not attached):
 [1] annotate_1.40.1
                         biovizBase_1.10.8
                                              bitops_1.0-6
 [4] BSgenome_1.30.0
                         cluster_1.15.2
                                              colorspace_1.2-4
                         dichromat_2.0-0
 [7] DBI_0.2-7
                                              digest_0.6.4
[10] Formula_1.1-1
                         genefilter_1.44.0
                                              grid_3.0.3
[13] gridExtra_0.9.1
                         gtable_0.1.2
                                              Hmisc_3.14-4
[16] hwriter_1.3
                         labeling_0.2
                                              lattice_0.20-29
[19] latticeExtra_0.6-26 locfit_1.5-9.1
                                              MASS_7.3-33
[22] munsell_0.4.2
                         plyr_1.8.1
                                              proto_0.3-10
[25] RColorBrewer_1.0-5
                         RCurl_1.95-4.1
                                              reshape_0.8.5
[28] reshape2_1.4
                         RSQLite_0.11.4
                                              rtracklayer_1.22.7
[31] scales_0.2.4
                         statmod_1.4.18
                                              stringr_0.6.2
[34] survival_2.37-7
                         tools_3.0.3
                                              XML_3.98-1.1
[37] xtable_1.7-3
                         zlibbioc_1.8.0
```

```
28
```