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S1 Priors for the groups

Our goal is to classify observed allelic read counts at each site and each tissue
into one of the three groups. We want the groups to represent (i) no ASE
(group N') where both alleles are (almost) equally expressed, (ii) strong ASE
(group &) where one of the alleles is expressed very little if at all, and (iii)
moderate ASE (group M) that represents everything in between the first two
groups. In the main text we propose the following priors for the reference
allele read count frequencies of these groups:

B(N) ~ Beta(2000, 2000),
1 1
g(M) ~ 3 Beta(36,12) + 3 Beta(12, 36),

1 1
6(S) ~ 5 Beta(80,1) + 5 Beta(1, 80).

Figure S1 shows the densities of these priors together with the regions of the
read count frequency space where each of the group is dominating the other
two by at least a factor of 10. We see that our choices for prior parameters
satisfy our goal since:

e (i) group N dominates in the small region (0.47,0.53) around 0.5,
e (ii) group S dominates at extreme frequencies of < 0.07 and > 0.93,

e (iii) group M dominates at nearly all the remaining frequencies: (0.10,0.46)
and (0.54,0.90).

Truncated prior. Our implementation allows to truncate each Beta-
distribution on a user-specified interval in order to make the support of the
different groups non-overlapping. This is useful especially when one-sided
priors are used. For example, if we are studying non-sense mediated decay
and want that ASE is called only if the reference allele shows read count
frequency over 0.5, we could use the following one-sided truncated priors:

0(./\/’) ~ Beta(QOOO, 2000)][070'52),
0(M) ~ Beta(36, 12)1[0.52,0.95)’
9(8) ~ Beta(80, 1)[[0.95?1.0],

where I}, denotes truncation of the distribution on the interval [a, b).
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Independent tissues. Our implementation allows relaxing the assump-
tion that all tissues in one group have exactly the same reference allele read
count frequency. This is done by modeling each tissues-specific 6, as an in-
dependent draw from the corresponding prior for the group. This is useful
when we have informative data with a large number of reads for each tissue
and the tissues within one group do not have exactly the same value for 6.
On the other hand, with a small number of reads per tissue the basic GTM
(without independence assumption) is our default choice because it allows
borrowing strength across the tissues in the same group.

S2 Gibbs sampler for GTM

We use a Gibbs sampler algorithm to explore the posterior distribution of
configuration ¥ € {N, M, S}, where T is the number of tissues. We denote
by 7y the (fixed) prior probability of heterogeneity states. (In the main text
we use 7y = 0.25.) As in the main text, we denote by y the observed read
count data at one site and across all tissues.

We fix the number of iterations nj., = 2,000 and the number of burn-in
iterations npy, = 10 and run the following Gibbs sampler.

1. Initialize 7 = (%0)’ e p) with a random configuration.
2. Repeat for t = 1,2,..., (Npurn + Niter):
For s=1,2,...,T:
e Compute probability vector
P = (PN, p (M), p(S))
where for each group G € {N, M, S},
p(G) o< f (y:70(6) 7 (F(@)) -

Here f(y;7) is the beta-binomial marginal likelihood for the data
given the group indicators 7 and the prior distributions for € pa-
rameters of each group; 7(7) is the prior probability of the config-
uration 7, which is determined by 7wy together with the distance

d(¥); and
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e Generate

N,  with probability p” (N)
P~ M, with probability p{’ (M)
S,  with probability pi”(S).

S3 Hierarchical model (GTM?¥)

We extend the grouped tissue model (GTM) defined in the main text to the
case where many variants with similar properties (such as protein truncating
variants) are analyzed simultaneously. We add one level of hierarchy to
the model by introducing vector @ = (7, mar, Ts, Tro, Th1) that determines
the proportion of variants in each of the five states defined in the main
text (N=NOASE, M=MODASE, S=SNGASE, HO=HETO0 and HI=HET1).

Denote by y©) = ((yﬁ, yé?) ey ( f)TZ, yé%)) the reference (1) and non-

reference (2) allele counts for variant ¢ over available T tissue types, and by
y = (y¥)L, all the data over all L variants.

This extension, called GTM*, is the following model, over variants ¢ =
1,...,L and tissues s = 1,...,T}:

0 (N) ~ Beta(2000,2000)
1 1
0 (M) ~ 5 Beta(36,12) + 5 Beta(12, 36)

1 1
69(S) ~ 5 Beta(80, 1) + - Beta(1, 80)
7 ~ Dirichlet(1,1,1,1, 1)

7 = NOASE,  with probability 7y
7 = MODASE, with probability my,
(W _ 7) i~ { 7=SNGASE, with probability s

7 € HETO, with probability (TF[TJ%}LO el
_ . .- TH1
Y c HETl, with probablhty m

4 . ) ’
yi 120,09 ~ Bin (410 + 569 (7))

where d(7¥) is the distance of configuration 7 from homogeneity (see the main
text) and ho(d) is the number of configurations belonging to state HETO0 and
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having distance d from homogeneity, (similarly hi(d) for HET1 configura-
tions). The values (T — [1;/3]) and |T;/2] are the maximum distances
among all configurations in HET0 and HET1, respectively. In other words,
we directly model the probability of the three homogeneous states by my,
my and g and we distribute the probability (7go and 1) among each het-
erogeneous state uniformly with respect to the distance, and also uniformly
among the configurations with the same distance. This model is slightly dif-
ferent from our original GTM as the probabilities mgo for HETO0 and 7y
for HET1 states have been separated from each other. In settings where we
want to follow the exact prior structure of GTM, our implementation also
makes it possible to run GTM* parameterized with a single heterogeneity
probability 7y = 7o+ mgy1. This mode can be invoked by simply specifying
the Dirichlet prior for v with four parameters instead of five.

We have implemented GTM* through a Gibbs sampler, which follows the
algorithm given above for GTM with an additional Gibbs update for = with

7 ~ Dirichlet(nnoase + 1, nmopase + 1, nsnease + 1, naero + 1, e + 1),

where each ng denotes the number of variants currently assigned to state S.

An advantage of GTM* over variant specific analyses using GTM is that
the posterior distribution of 7r is available. We expect that the posterior of 7
using GTM* is more accurate than averaging the variant specific posteriors
from GTM, and, importantly, properly accounts for uncertainty in these
estimates. However, when read counts are not very small, (say we have 30 or
more reads per tissue per variant), we expect that the two approaches give
fairly similar estimates. We next give some comparisons between GTM* and
GTM approaches to inference about 7.

S4 Comparing GTM and GTM*

First we analysed the simulated data of the main text with GTM* (1,000
data sets per T = 5,10, 30 tissues and n = 10,50 reads and each of the
nine scenarios). We present the posterior expectation of 7 from GTM* in
Figure 52, together with the original GTM results from the main text, which
average the individual state posteriors across the 1,000 data sets.

The results show that with 50 reads GTM* correctly infers the true state
even in scenarios which were not completely solved by GTM. Also for 10
reads, GTM* improves the proportion estimate compared to GTM in most



cases. A notable exception is scenario 5, which according to GTM* is al-
most completely in HET'1 state whereas the data sets were simulated with
a HETO state. This phenomenon happens because the prior probability of
HET1 state has been separated from HET0 in GTM* and thus, under GTM*,
any one tissue-specific configuration in HET1 state has a higher prior prob-
ability than a tissue-specific configuration in HETO state (as there are fewer
such configurations in HET1 than in HETO0). Thus, if data have little in-
formation to distinguish between a configuration in HETO and another one
in HET1, then GTM* tends to prefer the HET1 state. On the other hand,
GTM gives the same prior probability for every tissue-specific configuration,
whether it belongs to HETO0 or HET1 state. When the latter property of the
model is considered more appropriate, one can run our GTM* implementa-
tion parameterized with combined heterogeneity probability 7y = mgyo+ 71
by simply specifying the Dirichlet prior for 7 with four parameters instead
of five. More importantly, when the amount of information increases, the
small differences between the two prior specifications become insignificant,
as shown by the results with 50 reads in Figure S2.

The above comparison shows how much GTM* estimation of 7 differs
from GTM in an extreme case where all the variants analysed belong to the
same underlying state. More realistically, variants would represent different
states, and in that case we expect that the difference between GTM* and
GTM decreases. To compare the approaches on such a setting we randomly
subsampled from among our simulated data sets for 7" = 10 tissues and for
both 10 and 50 read counts per tissue, 50 collections of 200 variants with
the following proportions of states: 10% NOASE (from scenario 1), 30%
MODASE (from scenario 2), 40% HETO (from scenario 8) and 20% HET1
(from scenario 9). The 50 point estimates of the proportions by GTM* and
GTM together with the true values are show in Figure S3.

For 10 reads per tissue, both GTM* and GTM underestimate the propor-
tion of heterogeneous variants and overestimate the homogeneous one. This
is in line with the principle that with insufficient information we prefer homo-
geneous states. GTM™* is notably more accurate than GTM with MODASE
and HET1 states while the opposite is true with NOASE and HETO states.

For 50 reads per tissue, both approaches give accurate estimates for prac-
tical purposes, but GTM* is more accurate than GTM.

We conclude that when many variants are available and we are interested
in the state proportions 7r, we should apply GTM* to estimate m together
with its uncertainty. However, GTM is both an essential building block for
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GTM* and an important model on its own, since it is quick to run, easy to
understand and requires data on only a single variant. For these reasons, we
have devoted the main text of this work to GTM.

S5 Combinatorics of configurations

Consider T tissues and a configuration 7 = (vy,...,7yr) where each 74 €
{N, M,S8}. All together there are 37 configurations of which 3 are homoge-
neous and 37 — 3 are heterogeneous. Total number of HET1 configurations
is 27" — 2 and hence the number of HETO configurations is 37 — 27 — 1.

Consider the configurations at distance d from homogeneity, where
d=T —max{ly,ly,ls} with lg = #{s:7s = G}

being the number of tissues in group G € {N, M,S}. Denote the three
counts ({n, ¢y, ls) in ascending order by i < d —i < T — d whence

max{0,2d — T} <i < |d/2].

The number of heterogeneous configurations at distance d is

ld/2] T 3!
hdy= > (Z (d—i) (T_d)) (4—#{i,d—i,T - d})!

i=max{0,2d—T'}

where the first term in the sum is the multinomial coefficient telling how
many ways there are to split T' tissues among the given group counts, and
the second term multiplies by 6, 3 or 1 according to whether all three counts
are different, exactly two of the counts are equal to each other or all of the
counts are equal.

The number of HET'1 configurations at distance d = 1,...,[7/2] is

T 2!
uld) = (d) B-# T )

Using the above derived formulae, the number of HETO0 configurations at
distance d is ho(d) = h(d) — hy(d).
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Figure S1: The top panel shows the densities for the prior distributions of the
reference allele for the three groups: N, M and S. The lower panel shows the
regions where each of the densities is dominating the other two by a factor of at
least 10 and 95% highest probability regions for each of the prior distributions.
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Figure S2: Results of GTM* and GTM on the simulated data sets of the main
text. Each of the nine simulation scenarios (Table 1 in the main text) is represented
by three numbers of tissues (5, 10, 30) and two values for number of reads (10, left
columns and 50, right columns). Each bar is divided into five colors (map given
at the bottom) according to the posterior expectation of the state probabilities,
7, for GTM* and the (average) posterior probability of the five states for GTM.
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Figure S3: Fifty collections of 200 variants with 10 tissue types were analysed
and the estimates of the proportions of variants in each of the five states are
shown for GTM* (posterior expectation of 7) and for GTM (average over variant
specific state posteriors). The true proportions are shown with horizontal lines.
The analyses were done for both 10 and 50 reads per tissue per variant.
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