Genome-wide Variants of Eurasian Facial Shape

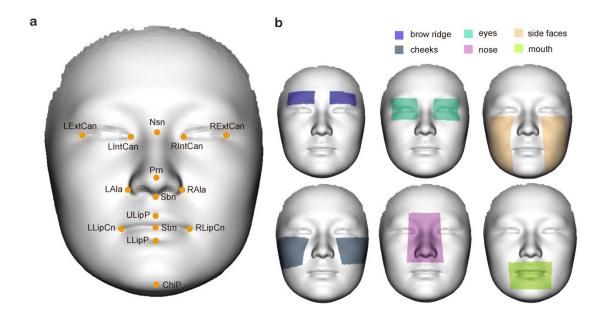
Differentiation and DNA based Face Prediction

Lu Qiao^{1,2}, Yajun Yang^{3,4}, Pengcheng Fu⁵, Sile Hu^{1,2}, Hang Zhou^{1,2}, Jingze Tan^{3,4}, Yan Lu¹, Haiyi Lou¹, Dongsheng Lu^{1,2}, Sijie Wu^{1,2}, Jing Guo¹, Shouneng Peng^{1,2}, Li Jin^{1,2,3,4,7}, Yaqun Guan⁶, Sijia Wang^{1,2,7,*}, Shuhua Xu^{1,2,7,8,*} & Kun Tang^{1,2,*}

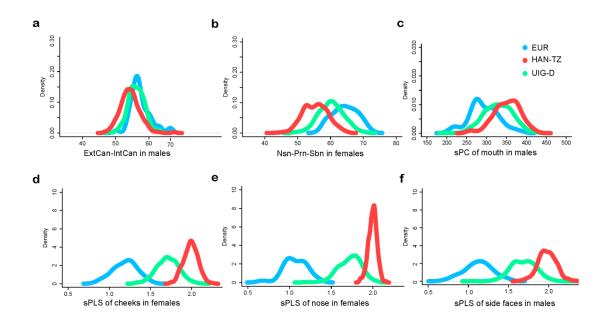
¹ Chinese Academy of Sciences (CAS) Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China; ²University of Chinese Academy of Sciences, Beijing 100049, China;

³State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200433, China;

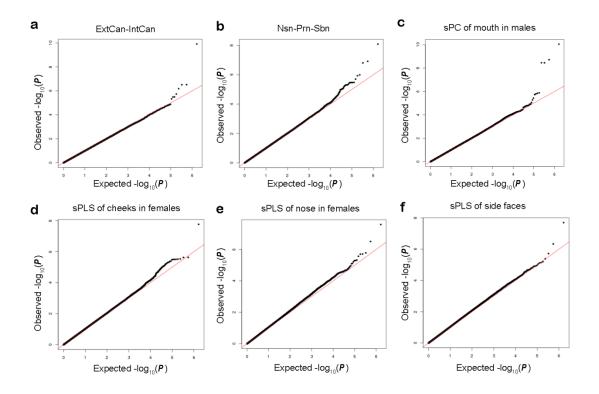
³Fudan-Taizhou Institute of Health Sciences, 1 Yaocheng Road, Taizhou, Jiangsu 225300, China;

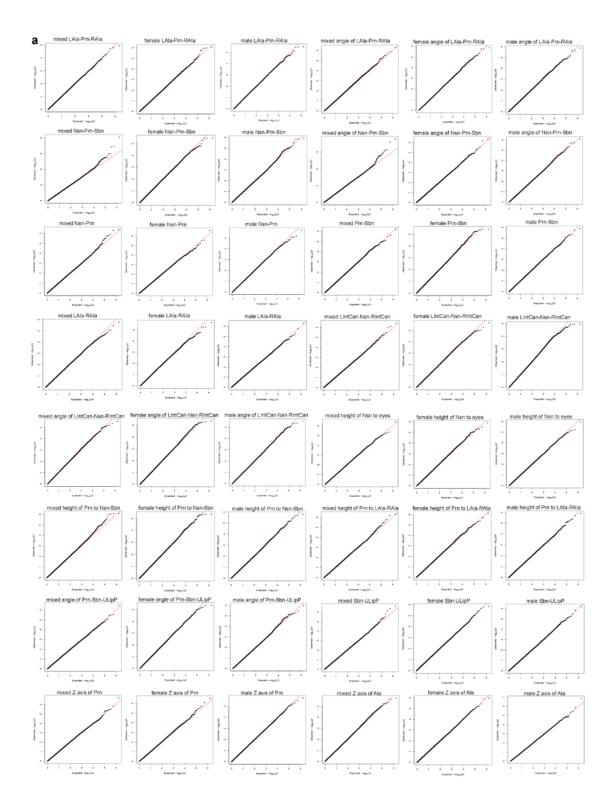

⁵Department of neurology, the First People's Hospital of Chenzhou, Hunan, 423000, China;

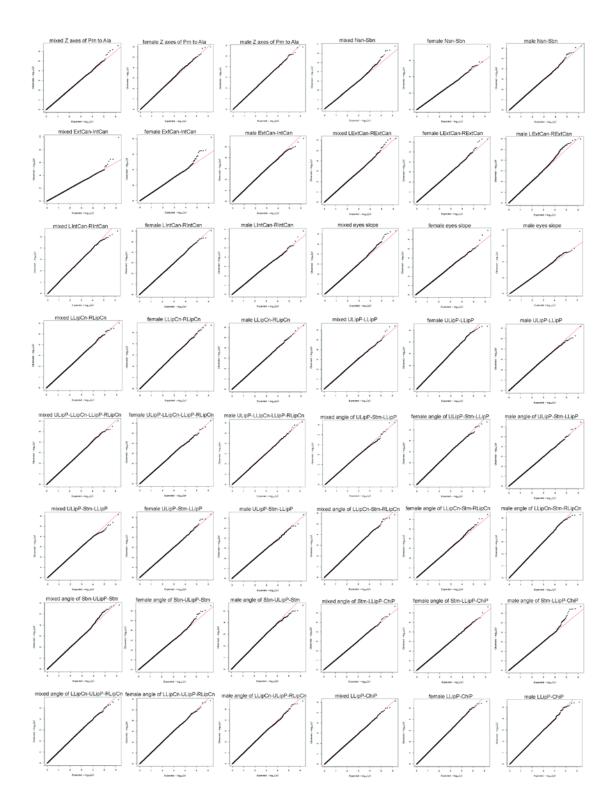
⁶Department of Biochemistry and Molecular Biology, Preclinical Medicine College, Xinjiang Medical University, Urumqi 830011, P. R China;

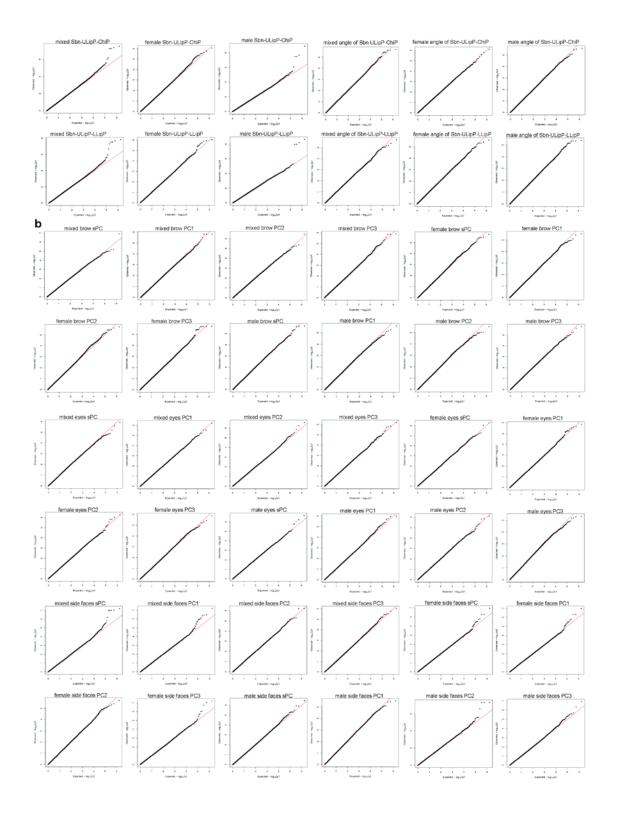

⁷Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China;

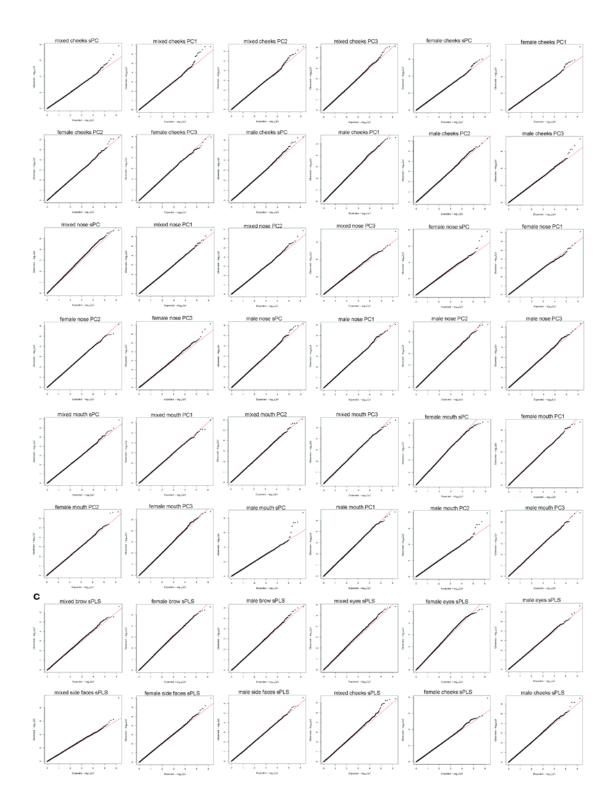
⁸School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.

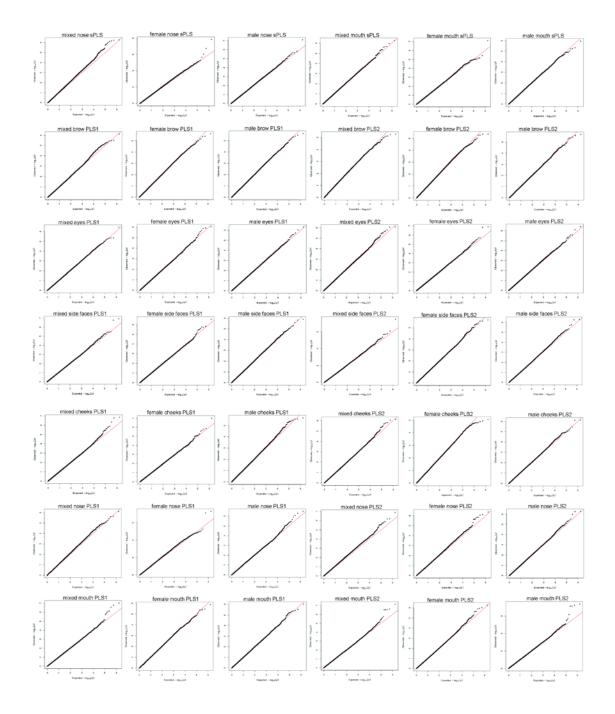

*Correspondence could be addressed to K.T. (<u>tangkun@picb.ac.cn</u>), S.X. (<u>xushua@picb.ac.cn</u>), S.W. (<u>wangsijia@picb.ac.cn</u>),

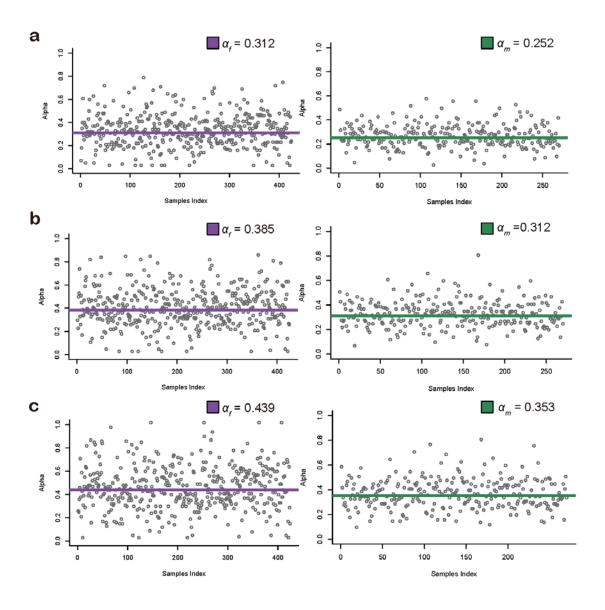

Supplementary Figure 1 | The 15 landmarks and facial features extracted from 3D images. (a) the annotation of the fifteen landmarks. (b) the extraction of six facial features on the 3dDFM data.

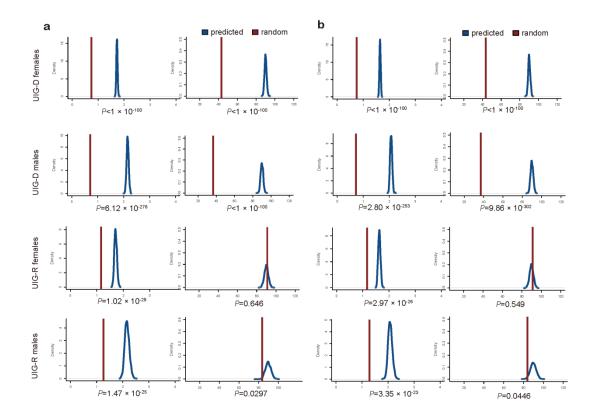


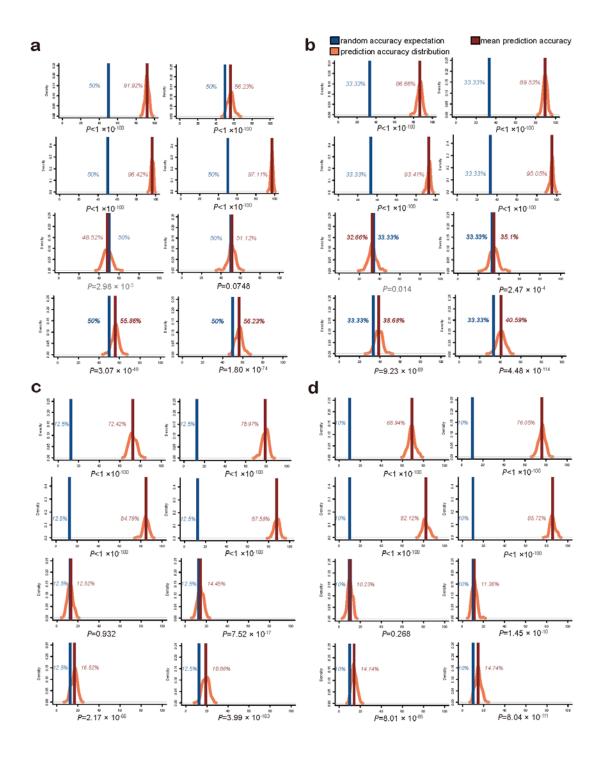

Supplementary Figure 2 | **Examples of candidate phenotypes showing high divergence between EUR and HAN-TZ.** (a) distance of ExtCan-IntCan in males, (b) distance of Nsn-Prn-Sbn in females, (c) sPC of mouth in males, (d) sPLS of cheek in females, (e) nasal sPLS in females, (f) sPLS of side faces in males.

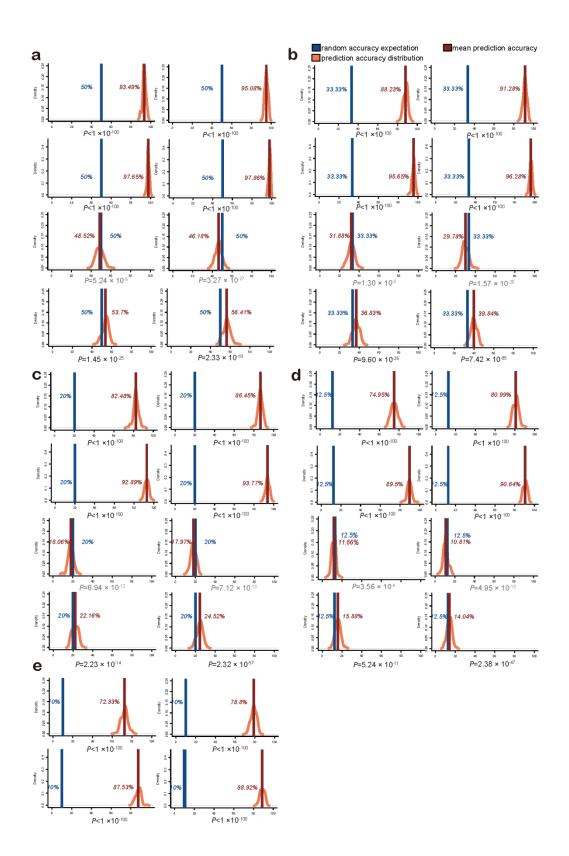


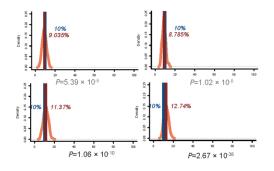

Supplementary Figure 3 | **Q-Q plot of GWAS showing six genome-wide significant SNPs.** (a) rs1868752, (b) rs118078182, (c) rs60159418, (d) rs17868256, (e) rs3920540, (f) rs61672954.



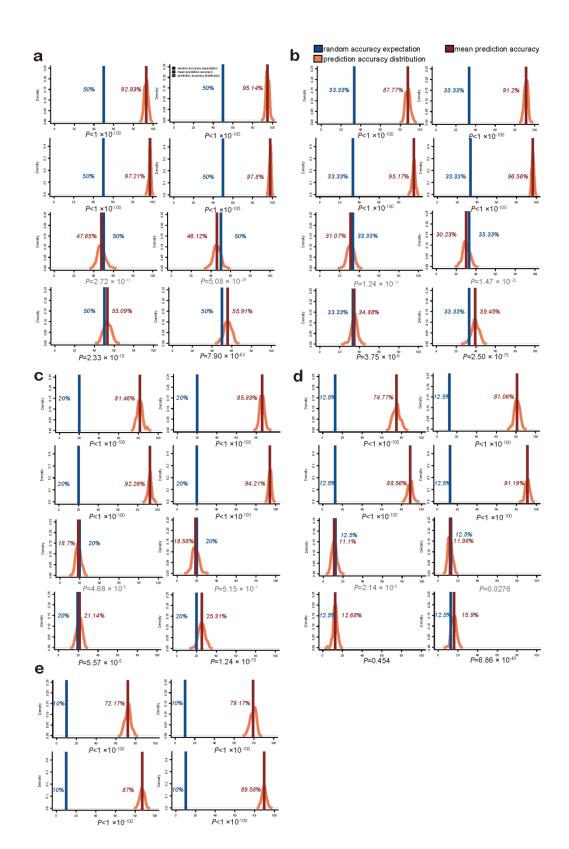


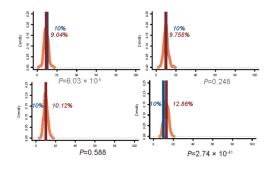

Supplementary Figure 4 | **Q-Q plot of all GWAS.** (a) inter-landmark phenotyping GWAS, (b) PCA-based phenotyping GWAS, (c) PLS-based phenotyping GWAS.

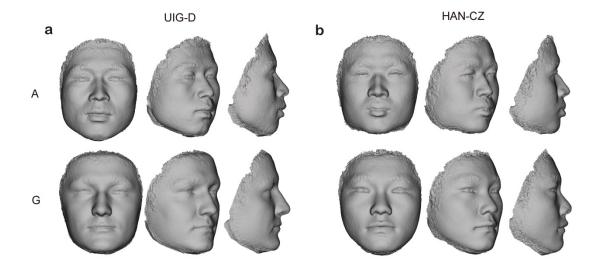

Supplementary Figure 5 | Global effect coefficient a_f and a_m from UIG-D females and UIG-D males. The coefficient α was plotted respectively for (a) the full prediction model of 277 top SNPs; (b) the prediction model of 240 top-SNPs after trimming the SNPs of pairwise LD > 0.8. (c) the prediction model of 209 top-SNPs after trimming SNPs within a physical distance of < 400kb. The global coefficient was obtained by averaging over all individuals.



Supplementary Figure 6 | **Test of prediction model using 240-SNP and 209-SNP prediction models.** For the (a) 240-SNP prediction model, and (b) 209-SNP prediction model, the average PSD (left column) and SSA (right column) determined for the sample cohorts (in red) were compared to the random distributions under null hypothesis (in blue).




Supplementary Figure 7 | Evaluation of the face prediction in hypothetic forensic scenarios (2/3/8/10 candidates) using 277-SNP face prediction model. (a) N=2, (b) N=3, (c) N=8, (d) N=10. In each scenario, the samples from top row to bottom are UIG-D females, UIG-D males, UIG-R females, UIG-R males. For each cohort, the accuracy rates are decided based on PSD (left column) and SSA (right column). P values in black indicate that the prediction perform significantly better than random draws.



Supplementary Figure 8 | Evaluation of the face prediction in hypothetic forensic scenarios (2/3/5/8/10 candidates) using 240-SNP face prediction model. (a) N=2, (b) N=3, (c) N=5, (d) N=8, (e) N=10. In each scenario, the samples from top row to bottom are UIG-D females, UIG-D males, UIG-R females, UIG-R males. For each cohort, the accuracy rates are decided based on PSD (left column) and SSA (right column). *P* values in black indicate that the prediction perform significantly better than random draws.

Supplementary Figure 9 | Evaluation of the face prediction in hypothetic forensic scenarios (2/3/5/8/10 candidates) using 209-SNP face prediction model. (a) N=2, (b) N=3, (c) N=5, (d) N=8, (e) N=10. In each scenario, the samples from top row to bottom are UIG-D females, UIG-D males, UIG-R females, UIG-R males. For each cohort, the accuracy rates are decided based on PSD (left column) and SSA (right column). *P* values in black indicate that the prediction perform significantly better than random draws.

Supplementary Figure 10 | **Extrapolated faces of rs61672954 in discovery and independent cohorts.** (a) in UIG-D males, (b) in HAN-CZ males. We showed the extreme faces based on residual faces with their allele labeled in front. The top extrapolated faces and alleles are corresponding to Han Chinese liked faces. The bottom extrapolations are European liked faces.

Supplementary Movie 1 | 3D visualization of extrapolated face affected by rs1868752. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs1868752. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 2 | 3D visualization of extrapolated face affected by rs118078182. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs118078182. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 3 | 3D visualization of extrapolated face affected by rs60159418. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs60159418. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 4 | 3D visualization of extrapolated face affected by rs17868256. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs17868256. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 5 | 3D visualization of extrapolated face affected by rs3920540. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs3920540. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 6 | 3D visualization of extrapolated face affected by rs61672954. The animation show the extreme facial shape change from Han-trend to European-trend affected by rs61672954. (a) anterior view, (b) cant view, (c) lateral view.

Supplementary Movie 7 | **3D visualization of actual face and predicted face.** cases of visualization of actual face (left column) and predicted face (right column). (a) case from UIG-D female, (b) case from UIG-D male, (c) case from UIG-R female, (d) case from UIG-R male.

Supplementary Table 1 Landmark-based phenotypes		
Landmrk-based phenotypes	1	Р
	Female	Male
LAla-Prn-RAla	$2.70 imes 10^{-11}$	1.52×10^{-21}
Nsn-Prn-Sbn	$2.43\times10^{\text{-15}}$	6.71 × 10 ⁻²³
LIntCan-Nsn-RIntCan	2.38×10^{-10}	5.27 × 10 ⁻²⁷
height of Nsn to eyes	1.22×10^{-21}	$5.50 imes 10^{-47}$
Sbn-ULipP	$\textbf{3.28}\times \textbf{10}^{\textbf{-8}}$	2.80×10^{-9}
LLipCn-RLipCn	0.00535	$1.52\times 10^{\text{-8}}$
ULipP-Stm-LLipP	0.0026	7.41×10^{-9}
ExtCan-IntCan	1.46×10^{-7}	2.58×10^{-10}
LIntCan-RIntCan	8.69×10^{-7}	4.31 × 10 ⁻⁹
Sbn-ULipP-ChiP	0.00359	6.78×10^{-7}

		PC	PCA based		PLS based	
Partial Features	Gender ^A	ncomp. ^B	P ^C	ncomp. ^B	P ^C	
brow ridge	Female	2	$5.80\times10^{\text{-19}}$	1:6	6.41 × 10 ⁻²³	
	Male	2	1.00×10^{-29}	1:8	2.78×10^{-49}	
eyes	Female	5	$\textbf{1.69}\times\textbf{10}^{\textbf{-16}}$	1:8	1.45×10^{-25}	
	Male	2	$\pmb{8.62\times10^{\text{-}17}}$	1:11	$1.00 imes 10^{-60}$	
side faces	Female	1	$\textbf{5.79}\times\textbf{10}^{\textbf{-13}}$	1:25	6.48 × 10 ⁻²⁷	
	Male	2	$\textbf{1.71}\times\textbf{10}^{\textbf{-17}}$	1:9	1.94×10^{-47}	
cheeks	Female	1	$\textbf{4.71}\times\textbf{10}^{\textbf{-15}}$	1:22	1.10×10^{-27}	
	Male	2	$\textbf{5.79}\times\textbf{10}^{-21}$	1:8	$4.03 imes 10^{-43}$	
nose	Female	2	1.43×10^{-22}	1:17	$2.94 imes 10^{-29}$	
	Male	2	$\textbf{2.24}\times \textbf{10}^{\textbf{-46}}$	1:12	6.09 × 10 ⁻⁵⁷	
mouth	Female	4	$\textbf{3.41}\times\textbf{10}^{\textbf{-11}}$	1:20	1.85×10^{-24}	
	Male	2	$\textbf{8.73}\times \textbf{10}^{\textbf{-18}}$	1:15	1.72×10^{-48}	
specified test						

SNP	Р	GWAS Inflation factor	genome PC corrected	genome PC corrected	
51 VE	1	initiation factor	P values	Inflation factor	
rs1868752	$1.22 imes 10^{-10}$	1	1.02×10^{-10}	1	
rs118078182	8.19 × 10 ⁻⁹	1.00961	$\textbf{1.09}\times\textbf{10^{-8}}$	1.01032	
rs60159418	$\pmb{8.96\times10^{\text{-}11}}$	1.01437	1.38×10^{-9}	1	
rs17868256	$7.22 imes 10^{-9}$	1.03422	$\boldsymbol{1.20\times10^{\text{-7}}}$	1.0013	
rs3920540	$\textbf{3.31}\times\textbf{10}^{-8}$	1.06986	2.28×10^{-7}	1.00707	
rs61672954	2.00×10^{-8}	1.03794	1.04×10^{-7}	1	

SNP	Chr.	BP ^A	Gene	Discovered Trait ^B	Studied Trait	Female	Male	Mixed
rs4648379	1	3261516	PRDM16	LAla-Prn-RAla	LAla-Prn-RAla	0.7133	0.172	0.2357
					angle of LAla-Prn-Rala	0.2207	0.02539	0.02028
rs642961	1	209989270	IRF6	ULipP-Stm-LLipP	ULipP-Stm-LLipP	0.05197	0.778	0.2358
rs3827760	2	109513601	EDAR	Chin protrusion	angle of Sbn-ULipP-ChiP	0.06131	0.09733	0.01238
rs7559271	2	223068286	PAX3	Nasion	height of Nasion to eyes	0.005811	0.117	0.001986
s17447439	3	189549423	TP63	EyeR-EyeL	LExtCan-RExtCan	0.7631	0.4777	0.9567
rs2045323	4	154831899	DCHS2	Columella inclination/Nose protrusion/Nose tip angle	height of Prn to Ala	0.05813	0.04288	0.815
rs6184	5	42719344	GHR	mandibular height (ear-Gn)	Ear-ChiP	0.0915	0.2674	0.5894
rs1852985	6	45329656	SUPT3H/RUNX2	Nose bridge breadth	LAla-RAla	0.6941	0.1894	0.244
rs7773292	6	132099761	ENPP1	upper and lower face height	Sbn-UlipP-ChiP	0.9239	0.9781	0.9585
rs17640804	7	42131390	GLI3	Nose wing breadth	LAla-RAla	0.1402	0.1242	0.03421
rs805722	10	105810400	COL17A1	EyeLR-Nsn	LIntCan-Nsn-RExtCan	0.4636	0.3311	0.9475
					angle of LIntCan-Nsn-RExtCan	0.004021	0.8374	0.01856
rs927833	20	22041577	PAX1	Nose wing breadth	LAla-RAla	0.4841	0.007729	0.02703