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Supplementary Figure 1 | The computational framework leading to InWeb_IM. Details can be seen using the Adobe Zoom Tool 
and in Text, Figures, and Supplementary Notes as indicated with bold text. InWeb_IM is available from www.lagelab.org and 
https://www.intomics.com/inbiomap. Moreover, we make the data accessible from a graphical user interface 
http://apps.broadinstitute.org/genets#InWeb_InBiomap so that it can interactively explored by any individual researcher that wishes 
to study the interactions of proteins of interest. 
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Supplementary Note 1 | Determining the optimal orthology majority voting scheme. To 
quantitatively test how different parameter choices in our orthology transfer scheme influences 
the resulting network we repeated the pathway analysis (detailed in the Main Text, Figure 2a, 
and Supplementary Note 5) with different parameters (i.e., requiring that two, three, four, five 
or six orthology databases needed to agree before transferring data from model organisms to 
human protein pairs). This analysis shows that requiring at least four orthology methods agree 
gives the best resulting network (i.e., the best pathway signal and still very good coverage as 
summarized below): 
 

Number of databases required Two Three Four Five Six 

Area under curve (analogous 
to Figure 2a in the Main Text). 

0.80 0.80 0.83 0.81 0.80 

Number of interactions without 
pathways databases 

1,607,858 738,775 451,304 303,210 247,809 
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Supplementary Note 2 | Other networks. There are five other resources with which InWeb_IM 
was compared. In the case where multiple networks exist for different species only the human 
network was used. For fair comparison, HGNC symbol and UniProt accession were converted 
using the mapping table provided by the HUGO Gene Nomenclature Committee (HGNC, 
http://www.genenames.org/cgi-bin/download). : 
  
  
Interologous Interaction Database (I2D1-2, http://ophid.utoronto.ca/) was downloaded on 
November 3, 2015. It is the most recent version of the network (v2.9, updated on July 10, 2015). 
  
Mentha3 (http://mentha.uniroma2.it/) was downloaded on November 3, 2015. It is updated on a 
weekly basis. 
  
iRefIndex4 (http://irefindex.org/) was downloaded on November 3, 2015. Only binary interactions 
where both interactors are human proteins and where both interactors had UniProt accessions 
were used in the analysis; complexes were not included. It is the most recent version of the 
network (v14.0, updated on April 7, 2015). 
  
Protein Interaction Network Analysis Platform (PINA5, http://cbg.garvan.unsw.edu.au/pina/) was 
downloaded on November 3, 2015, and only interactions where both interactors are human 
proteins were included in the analysis. It is the second and most recent version of the network, 
updated on May 21, 2014. 
  
High-quality Interactomes (HINT6, http://hint.yulab.org/) was downloaded on November 3, 2015. 
Binary, co-complex, high-throughput, and literature-curated interactome for human was pooled 
to form the resulting network. It was the third and most recent version of the resource (website 
updated on September 30, 2015).   
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Supplementary Note 3 | Details to calculating a confidence score for each interaction. 
  
Initial confidence score: 
  
The interaction databases define a ternary relation between PubMed IDs and pairs of UniProt 
ACs: If an evidence record claims that a publication with PMID 𝑝  describes an interaction 
between two proteins that can be mapped to UniProt ACs 𝑢  and 𝑣  we write 𝑢 ← 𝑝 → 𝑣 . To 
account for symmetry, we only consider proteins 𝑢 and 𝑣 with 𝑢 ≤ 𝑣 for some total ordering ≤. 
We define the size of the experiment 𝑋(𝑝) = |	{(𝑢, 𝑣)	|	𝑢 ≤ 𝑣 ∧ 	𝑢 ← 𝑝 → 𝑣}	|, i.e. the number of 
different interactions described in the experiment. Note that for pathway databases we do not 
include the PMIDs that describe the pathway databases themselves. 
  
If 𝑎 represents a human protein that is orthologous to a protein 𝑢, we write 𝑎 ∼ 𝑢. Furthermore, 
we define: 
  

• The ternary relation of inferred interactions, written 𝑎 ⇐ 𝑝 ⇒ 𝑏 , iff there exist 𝑢  and 𝑣 
such that 𝑎 ∼ 𝑢, 𝑏 ∼ 𝑣, and 𝑢 ← 𝑝 → 𝑣. 

• The binary relation of inferred interactions, written 𝑎 ⇔ 𝑏, iff there exists a 𝑝 so that 𝑎 ⇐
𝑝 ⇒ 𝑏. 

• The neighbors of a protein 𝑁(𝑎) = 	 {𝑏	|	𝑎 ⇔ 𝑏}. 
  
Note that a human protein is considered to be orthologous with itself, i.e. the relation 𝑎 ∼ 𝑎 
holds. Also note, that we are only interested in interactions 𝑎 ⇔ 𝑏 between human proteins 𝑎 
and 𝑏 with 𝑎 ≤ 𝑏 (where ≤ is the same total ordering as mentioned before) and 𝑎 ≠ 𝑏, i.e. we 
disregard self-interactions. 
  
For an interaction 𝑎 ⇔ 𝑏  let 𝑛 = |	{𝑝	|	𝑎 ⇐ 𝑝 ⇒ 𝑏}	| be the number of supporting experiments. 
We denote these experiments by 𝑝:, … , 𝑝< and order them so that 𝑋(𝑝:) ≤ ⋯ ≤ 𝑋(𝑝<). For 𝑖 ∈
{1, … , 𝑛} we let 𝑥B = 1 if 𝑋(𝑝B) ≤ 9, and 𝑥B =

DEF(G)
DEF(H(IJ)KL)

 otherwise. Furthermore, we let 𝐷(𝑎 ⇔

𝑏) = (|𝑁(𝑎)\(𝑁(𝑏) ∪ {𝑎, 𝑏})| + 1) ∙ (|𝑁(𝑏)\(𝑁(𝑎) ∪ {𝑎, 𝑏})| + 1), and define the initial score of the 
interaction 𝑎 ⇔ 𝑏  as 𝐼(𝑎 ⇔ 𝑏) = 𝐷(𝑎 ⇔ 𝑏)KS :KT

T
𝑥B𝜖B<

BV:  for suitable parameters 𝜖  and 𝜏 . As 
the initial score is calibrated to the final score that has a probabilistic interpretation, the exact 
values are not important. To avoid circularity in the following, we only assign an initial 
confidence score to interactions with evidence from at least one non-pathway source. 
 
  
Validating the initial score and providing a probabilistic interpretation: 
  
To validate the initial score, we used it to rank all interactions with evidence from at least one 
non-pathway source, and plotted the percentage of interactions derived from pathway 
databases (158,092 interactions extracted from NetPath7, Reactome8, and WikiPathways9, 
excluding neighboring reactions) found as a function of the percentage of the interactions 
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investigated, starting with those with highest scores (Figure 1a, Main Text). The diagonal 
shows expected performance of a randomized dataset. A strong signal is seen in the first third 
of the ranked interaction list, indicating that the initial confidence score is capable of prioritizing 
the interactions most likely to be true. 
  
 
Probabilistic interpretation of the confidence score: 
  
To give a probabilistic interpretation of the initial confidence score we used the interactions 
derived from pathway databases as a benchmark set, assuming these interactions are true 
positives. We ordered the inferred interactions 𝑎: ⇔ 𝑏:, … , 𝑎< ⇔ 𝑏<that had evidence from at 
least one non-pathway database such that 𝐼(𝑎: ⇔ 𝑏:) 	≤ ⋯ ≤ 𝐼(𝑎< ⇔ 𝑏<) , and by using a 
sliding window approach we then calculated the median score and the benchmark rate for each 
window (the number of benchmark interactions divided by the window size). A generalized 
logistic function with lower asymptote 0 and upper asymptote 1 was then fitted to these (median 
score, benchmark rate) points using the method of least squares (Figure 1b, Main Text). The 
initial scores were then transformed into the final scores using this function and by artificially 
assigning a final score of 1 to the inferred interactions with evidence from at least one pathway 
database. Assuming a higher initial score for an interaction implies a higher probability for the 
interaction to be a true interaction, the final score can then be interpreted as a lower bound on 
the probability for the interaction being a true positive, since the benchmark set of interactions is 
assumed to be a subset of the true interactions, and since the benchmark rate must then be 
lower than the true positive rate. 
  
Providing the scores in standard formats such as PSISCORE 
 
Both the initial scores and the final confidence scores are reported using the PSI-MITAB file 
format allowing for integration with standards based systems like PSISCORE. This allows the 
community to easily benefit from the protein-protein interaction scoring scheme that has a 
probabilistic interpretation, enabling seamless integration with large genetic datasets.  
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Supplementary Note 4 | Comparing to benchmarking against generating 58 human pull 
downs  
 
Rationale behind our analysis: To test if our confidence score is correlated with an 
experimentally derived measure of the confidence of binding between two proteins from an 
independent dataset of human protein-protein interactions we correlated it with the heavy-to-
light (H-L) isotope ratios from a stable isotope labeling in cell culture (SILAC) experiment in 
human cells. This metric enables the quantitative assessment of the amounts of a protein (e.g., 
protein X) seen in an immunoprecipitation experiment with a bait compared to a control 
condition (which is the reason for terming these experiments ‘quantitative interaction 
proteomics’). Importantly, this metric is well suited to compare our confidence score to as it is 
used widely in the experimental proteomics communities as a direct measure of interaction 
confidence between proteins in an immunoprecipitation experiment (personal communication 
Jake Jaffe, Associate Director of the Proteomics Platform of the Broad Institute, and Steve Carr, 
Director of the Proteomics Platform of the Broad Institute). It was also critical to the choice of 
dataset for this analysis that it has enough coverage to allow a rigorous correlation of our score 
and the experimental data. For these reasons we used a recently generated dataset of 58 pull-
downs in human cells from Rosenbluh, Mercer et al., in press Cell Systems which matched 
these criteria. Indeed we confirm that our final confidence score and the experimental values 
are robustly correlated (correlation coefficient of 0.38, C.I. [0.35, 0.42]). We repeated this 
analysis for the only other two network that assigns scores to the interactions, and found a 
comparable correlation in iRefIndex (0.41, C.I. [0.38, 0.44]), and a lower correlation in Mentha 
(0.23, C.I. [0.17, 0.29]), where both correlations are statistically significant. Together these 
analyses confirm the reliability of our score and show it is significantly correlated with an 
experimentally derived measure of the confidence of binding between proteins.  
 
Description of the pull down dataset and confirming its quality: Fifty-eight genes involved in 
colon cancers were chosen as the starting point of a quantitative interaction proteomics 
experiment based on the stable Isotope labeling by amino acids in cell culture (SILAC) 
methodology. The bait proteins were tagged with a V5 epitope tag and immunoprecipitated in 
DLD1 cells to identify 15,189 protein interactions using an anti V5 antibody. The quality of the 
interaction data was confirmed by developing a method for protein interaction credibility scoring 
(ICS). For each of the 15,189 PPI identified in draft-PPI, we computed three predictors: (1) 
Heavy to light ratio, (2) Jaccard similarity coefficient; and (3) Edge betweenness centrality. As 
true positive protein interactions, we considered 1,149 that were identified in draft-PPI and are 
also reported as high confidence protein interactions in publicly available PPI databases10. We 
found that using each of these predictors we correctly identified only a subset of the true 
positive PPIs suggesting that none of predictors alone was suitable for this application. As such, 
we developed ICS using the Random Forest (RF) binary response classifier, which uses the 
true positive PPI as a response and computes 5000 different combinations (modules) of these 
classifiers that correctly enrich true positive PPI. The ICS score is calculated using the number 
of modules in which a draft-PPI protein interaction scores together with the true positives. We 
trained the RF model on 70% of the data and used the area under the ROC curve (AUC) on the 
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remaining 30% of the dataset to calculate classification power. The ICS showed high AUC (AUC: 
96.9 confidence intervals (95.7%, 98.1%) and 5-fold cross validation showed similar AUC 
estimates. Furthermore, ICS correctly identified the majority of true positive PPI, demonstrating 
the reliability of this approach. Importantly, this approach identified well-characterized 
relationships such as interactions between β-catenin and TCF7L2 or YAP1 and TEAD 
transcription factors, as well as more recently reported observations between YAP1 and β-
catenin. More information about the dataset can be found in (Rosenbluh et al., Cell Systems 
2016, Accepted). The quality of the interaction data we use here is further supported by the 
observation that in Figure 2e our comparisons of the dataset and the six different networks 
leads to AUCs in the range from 0.84 to 0.78. 
 
 
 
 
  



 9 

 
Supplementary Note 5 | Biological signal of InWeb_IM compared to other resources. The 
ability for a protein-protein interaction network to reveal structures of biological pathways and 
discover new proteins functionally associated with a given set of proteins testifies the relevance 
of the network in understanding a variety of biological processes. We used the Quack algorithm 
(described in detail on http://www.broadinstitute.org/genets#users/userguide) to examine and 
compare the performance of each resource to classify pathway membership based on a subset 
of canonical pathways from the Molecular Signatures Database (MSigDB C2:CP, 
http://software.broadinstitute.org/gsea/msigdb). The final list of 𝑛 = 853	pathways met a well-
established pathway definition (http://www.genome.gov/27530687#al-1), had a reasonable size 
(extremely large pathways were removed), and were ensured to be non-redundant by analyzing 
the pairwise Jaccard index of set similarity between pathways. Quack then evaluates how well 
each network recapitulates the 853 pathways based on machine learning of eighteen 
topological features in each of the networks and assessing the importance of each of these 
topological measures in determining which proteins participate in pathways together. We 
defined the context of each protein to be its first-order interaction partners in the respective 
networks, and calculated the topological features for both pathway proteins and their contexts. 
We thus created a 18-dimensional feature vector for each of the proteins specific for each of the 
853 pathways. Using the Random Forest algorithm, we trained our classifier on 70% of the data 
to predict the binary outcome of each of the 30% left-out proteins (to be in an MSigDB gene set 
or not in an MSigDB gene set). We calculated the area under the receiver operating curve (AUC) 
for the classifiers in each of the network as a basis for comparing the biological signal in each 
resource. We assess the performance of each network using both a normalized and a non-
normalized dataset where the normalized analysis does not penalize if proteins in a pathway 
being tested are not covered by data in the network in question. In the normalized analysis 
InWeb_IM has an AUC of 0.95, Mentha 0.93, I2D 0.91, iRefIndex and PINA 0.89, and HINT 
0.88.  
 
If we do take into consideration pathway proteins that are not covered by data in the individual 
networks (meaning that proteins we are trying to assign to a given pathway, but are not covered 
by data in the network being tested, will be counted as false negatives), InWeb_IM is 10% better 
than the next best network with an AUC of 0.86. the next best network is I2D (AUC of 0.78), 
followed by Mentha (AUC of 0.77), iRefIndex (AUC of 0.74), PINA (AUC of 0.73), and HINT 
(AUC of 0.63). Additional details available from described in detail on 
http://www.broadinstitute.org/genets#users/userguide and in Mercer et al., 2016, in preparation. 
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Supplementary Note 6 | Biological signals of unique and orthology transferred data in 
InWeb_IM 
  
To further dissect and evaluate the quality of InWeb_IM interactions, we performed Quack on 
subsets of InWeb_IM. First, we looked at the 343,319 interactions from 13,119 proteins that are 
uniquely identified in InWeb_IM compared to the other five networks and executed the analysis 
detailed in Figure 2d and Supplementary Note 5. The original AUC on this subset is 0.90. For 
comparison the 242,524 interactions from 16,408 proteins found in InWeb_IM and at least one 
other network (i.e., shared interactions) lead to an AUC of 0.95, showing that, while the unique 
interactions have a slightly lower signal, the data is still of high quality. 
 
We then looked at the 253,347 interactions from 10,898 proteins which stem from orthology 
transfer. The AUC of this subset is 0.85 showing that orthology transfer also results in high 
quality interactions. 
 
The analysis result is summarized in the following table: 
 

Quack AUC (analogous to 
Figure 2d in the Main 
Text) 

Orthology Transfer vs Human  Unique vs Shared Entire 
InWeb_IM 

Transferred Human Only Unique Shared 

No Normalization 0.85 0.95 0.90 0.95 0.95 

# of proteins 10,898 17,187 13,119 16,408 17,530 

# of Interactions 253,347 332,496 343,319 242,524 585,843 
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Supplementary Note 7 | Details to annotation of genes from 21 tumor types. Network 
mutation burden (NMB) is an algorithm that tests and quantifies the degree to which cancer 
driver genes can be accurately classified based on the mutation burden in their first order 
neighborhood. Briefly, for a given index gene the NMB is formalized into a score that reflects the 
empirical probability of the observed mutation signal aggregated across its first order biological 
network, excluding the index gene itself, while normalizing for the number of genes in the 
network. We confirmed that the NMB accurately calculates the significance level of the mutation 
burden in the neighborhood of an index gene, based on the fact that the majority of genes fit the 
null hypothesis and lie on the diagonal in a Q-Q plot. Details of the NMB algorithm can be found 
here: http://biorxiv.org/content/early/2015/08/25/025445 . For each of the six different protein-
protein interaction networks, we tested the extent to which 219 cancer genes in the Cancer5000 
Stringent set from Lawrence et al., 2014 (Ref. 11) can be accurately identified amongst a set of 
genes not related to cancers by using the NMB score as the classifier. 
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Supplementary Note 8 | Assessing tissue-specific interactions across networks. We 
downloaded all data on tissue-specific expression quantitative trait loci (eQTL)s from the 
Genotype-Tissue Expression Project12 (http://www.gtexportal.org/home/eqtls/) and collapsed 
eQTLs from tissues with the same higher order label (e.g., all tissues denoted as Brain - X, 
Brain - Y, … Brain N). This provided 27 tissue-specific sets of genes and for each set we filtered 
the interaction data in InWeb_IM (by only including interaction data between gene pairs 
represented in the set in question) to derive 27 tissue-specific InWeb_IM networks. For each 
tissue-specific InWeb_IM network we counted 1) the amount of physical interactions present in 
the network and 2) the amount of proteins covered by data. This procedure was repeated for 
I2D, Mentha, PINA, iRefIndex, and HINT and the tissue-specific networks derived from this 
procedure were quantitatively compared to each other (Supplementary Figures 2 and 3). The 
tissue-specific InWeb_IMs have between 2 and 3 times more interactions than the median of all 
networks and 2 times more interactions than the next largest network it is being compared to. 
InWeb_IM has a comparable amount of proteins covered by tissue-specific interactions in each 
context (Supplementary Figure 4). 
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Supplementary Figure 2 | Tissue specific interaction counts. Details can be seen by using the Adobe Zoom Tool. Networks 
are indicated on the x axis and interactions between proteins in which the corresponding genes are involved in a tissue-specific 
expression quantitative trait locus on the y axis. The analysis is made for 27 tissues as indicated on the top of each panel. 
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Supplementary Figure 3 | Proteins covered by tissue-specific interactions. Details can be seen using the Adobe Zoom Tool. 
Networks are indicated on the x axis and proteins that have at least one interaction to another protein with a similar tissue-specific 
expression quantitative trait locus on the y axis. The analysis is made for 27 tissues as indicated on the top of each panel. 
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Supplementary Figure 4 | Tissue-specific interactions across networks in InWeb_IM compared to other networks. The x-
axis represents the 27 different tissue types from GTEx and the y-axis shows how much data compared to InWeb_IM. Red bars 
denote the values for the amount interactions in the next-largest network, green bars denote the values for the amount of proteins 
covered by data in the network with the next highest count, light blue denotes the values for the median amount of interactions 
across all five comparable networks, and purple denotes the values for the median amount of proteins covered by interactions 
across all five comparable networks. 
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Supplementary Note 9 | Annotating autism genes. InWeb_IM has close to 3 times more 
brain-specific interaction data than the median of the other interaction networks 
(Supplementary Figure 2 and 4). Therefore, we hypothesized that it would be a uniquely 
enabling property of InWeb_IM to recapitulate pathway relationships between genes involved in 
psychiatric diseases such as autism. Analogously to the way in which we applied Network 
Mutation Burden (NMB) to cancer genes we tested and quantified the degree to which known 
autism genes can be accurately classified based on the association burden in their first order 
neighborhood. Briefly, for a given index gene the NMB is formalized into a score that reflects the 
empirical probability of the observed association signal aggregated across its first order 
biological network, excluding the index gene itself, while normalizing for the number of genes in 
the network (described in detail in Supplementary Note 7 and 
http://biorxiv.org/content/early/2015/08/25/025445). For each of the six different protein-protein 
interaction networks tested the extent to which 65 bona fide autism genes (defined as those with 
an FDR <=0.1 in the paper by Sanders et al., 201513) can be accurately identified amongst a set 
genes not related to autism by using their NMB scores as a classifier. Performance was was 
determined using standard areas under the receiver operating characteristics curves (AUCs). 
We determined the statistical significance of the AUCs for each network through permutation 
tests. Specifically, for each network we created 120 sets of 65 random genes matched to the 
degree distribution of the 65 autism genes in the network in question and repeatedly the NMB 
calculation for these random sets (Supplementary Figure 5). InWeb_IM has an AUC of 0.65 
which is significant at the Adj. P < 0.05 level as the only network. Although one network (HINT) 
has a marginally higher AUC (0.66) this AUC is not significant at that level because the random 
AUCs for HINT are inflated (median random AUC = 0.58). This is likely to be because of the 
smaller amount of interactions in this network which leads to an overestimation of the 
significance of the NMB scores both for autism genes but also the random controls. A 
consequence of this is also that the difference between the medium random AUCs and the 
AUCs observed for the 65 autism genes is smaller in HINT than in InWeb_IM (0.08 versus 0.10). 

 
                     
Supplementary Figure 5 | The AUCs derived from applying NMB in autism. The AUC observed in the network denoted on the 
x axis is indicated with the blue diamonds (InWeb_IM = 0.65, I2D = 0.58, Mentha = 0.61, iRefIndex = 0.63, PINA = 0.59, HINT = 
0.66).  The null distribution of AUCs of 120 matched random sets are shown with box whiskers plots. Of these AUCs only the one 
of InWeb_IM is significant at the Adj. P < 0.05 level.  
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Supplementary Note 10 | Example of interactions traced to source databases and original 
publications. We provide InWeb_IM in the PSI-MITAB file format in two versions: “core” and 
“full”. Both versions use UniProtKB accession numbers as their primary identifier and provide 
UniProtKB IDs, Ensembl and HUGO identifiers for convenience. In the column for “Interaction 
detection methods”, the “core” version has the string psi-mi:"MI:0045"(experimental interaction 
detection) if the exact same interaction was reported in at least one of the source databases 
using this value (or a descendent in the PSI-MI controlled vocabulary). The column contains the 
string psi-mi:"MI:0362"(inference) if the exact same interaction was not reported in any of the 
source databases (e.g., if the interaction is inferred using orthology). In the column for 
“Confidence score” we report the confidence scores followed by the initial scores. An example 
of a line from the “core” version is shown below with each column on a line of its own for 
readability: 
 

Column Content 

1 uniprotkb:O00429 

2 uniprotkb:Q96C03 

3 uniprotkb:DNM1L_HUMAN|ensembl:ENSG00000087470|ensembl:ENST000... 

4 uniprotkb:MID49_HUMAN|ensembl:ENSG00000177427|ensembl:ENST000... 

5 uniprotkb:DNM1L(gene name)|uniprotkb:DNM1L(display_short) 

6 uniprotkb:MIEF2(gene name)|uniprotkb:MIEF2(display_short) 

7 psi-mi:"MI:0045"(experimental interaction detection) 

8 - 

9 - 

10 taxid:9606(Homo sapiens) 

11 taxid:9606(Homo sapiens) 

12 - 

13 - 

14 - 

15 0.409|0.693 

16 - 

  
Columns 8, 9, 12, 14, and 16 are not used in the “core” version and always contain a dash. 
Column 13 contains the string psi-mi:"MI:1106"(pathways database) if at least one interaction 
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derived from a pathways database was used as evidence for the interaction, and a dash 
otherwise. 
 
The “full” version consists of the same lines as the “core” version. However, after each line 
describing an interaction as shown above (“interaction line”), we inserted additional lines 
reporting the evidence for the interaction (“evidence line”). These two types of lines can be 
distinguished using column 9, “Identifier of the publication”, which is always a dash for 
interaction lines and always contains a PubMed reference for evidence lines. The InWeb_IM 
interactions can therefore be found by scanning column 9 in the preceding lines until a dash is 
found. For evidence lines, columns 7, 9-14, and 16 contain information extracted from the 
source databases, in particular the PubMed ID in column 9. The following four tables continue 
the previous example by each representing a line of evidence for the interaction described in the 
table above: 
 

Column Content 

1 uniprotkb:O00429 

2 uniprotkb:Q96C03 

3 uniprotkb:DNM1L_HUMAN|ensembl:ENSG00000087470|ensembl:ENST000... 

4 uniprotkb:MID49_HUMAN|ensembl:ENSG00000177427|ensembl:ENST000... 

5 uniprotkb:DNM1L(gene name)|uniprotkb:DNM1L(display_short) 

6 uniprotkb:MIEF2(gene name)|uniprotkb:MIEF2(display_short) 

7 psi-mi:"MI:0096"(pull down) 

8 - 

9 pubmed:23530241 

10 taxid:9606(Homo sapiens) 

11 taxid:9606(Homo sapiens) 

12 psi-mi:"0407"(direct interaction) 

13 psi-mi:"MI:0463"(biogrid) 

14 biogrid:853691 

15 - 

16 - 
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Column Content 

1 uniprotkb:Q8K1M6 

2 uniprotkb:Q5NCS9 

3 uniprotkb:DNM1L_MOUSE|ensembl:ENSMUSG00000022789|ensembl:ENS... 

4 uniprotkb:MID49_MOUSE|ensembl:ENSMUSG00000018599|ensembl:ENS... 

5 uniprotkb:Dnm1l(gene name)|uniprotkb:Dnm1l(display_short) 

6 uniprotkb:Mief2(gene name)|uniprotkb:Mief2(display_short) 

7 - 

8 - 

9 pubmed:24508339 

10 taxid:10090(Mus musculus) 

11 taxid:10090(Mus musculus) 

12 - 

13 psi-mi:"MI:0465"(dip) 

14 dip:- 

15 - 

16 - 

 
 

Column Content 

1 uniprotkb:O00429 

2 uniprotkb:Q96C03 

3 uniprotkb:DNM1L_HUMAN|ensembl:ENSG00000087470|ensembl:ENST000... 

4 uniprotkb:MID49_HUMAN|ensembl:ENSG00000177427|ensembl:ENST000... 

5 uniprotkb:DNM1L(gene name)|uniprotkb:DNM1L(display_short) 

6 uniprotkb:MIEF2(gene name)|uniprotkb:MIEF2(display_short) 

7 psi-mi:"MI:0018"(two hybrid) 

8 - 
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9 pubmed:21508961 

10 taxid:9606(Homo sapiens) 

11 taxid:9606(Homo sapiens) 

12 psi-mi:"0915"(physical association) 

13 psi-mi:"MI:0469"(intact) 

14 intact:EBI-8630872 

15 - 

16 - 

 
 

Column Content 

1 uniprotkb:O00429 

2 uniprotkb:Q96C03 

3 uniprotkb:DNM1L_HUMAN|ensembl:ENSG00000087470|ensembl:ENST000... 

4 uniprotkb:MID49_HUMAN|ensembl:ENSG00000177427|ensembl:ENST000... 

5 uniprotkb:DNM1L(gene name)|uniprotkb:DNM1L(display_short) 

6 uniprotkb:MIEF2(gene name)|uniprotkb:MIEF2(display_short) 

7 psi-mi:"MI:0030"(cross-linking study) 

8 - 

9 pubmed:21508961 

10 taxid:9606(Homo sapiens) 

11 taxid:9606(Homo sapiens) 

12 psi-mi:"0915"(physical association) 

13 psi-mi:"MI:0469"(intact) 

14 intact:EBI-8630904 

15 - 

16 - 
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Supplementary Note 11 | Discussion of unique features of the score and transparency of 
InWeb_IM data compared to other networks. The combination of a reliable confidence score 
with a probabilistic interpretation and complete transparency of the source data for all 
interactions is unique to InWeb_IM.  Two resources (PINA and I2D) do not provide any 
confidence score or quality-based stratification of the data. HINT separates the interactions 
crudely into high and low confidence data, and Mentha and iRefIndex provides a score which 
reflects the weighted sum of the independent publications supporting an interaction which does 
not have a probabilistic interpretation (Figure 2c, Main Text). For I2D, the next largest network, 
it is not possible to trace the publications supporting the interaction data. Importantly, of all 
these networks only I2D integrate data between organisms to increase coverage of the human 
protein-protein interaction data. 
  
  
 
 
  



 22 

Supplementary Note 12 | Manual Curation 
 
To assess the accuracy of the curated interactions in InWeb_IM and to demonstrate the 
accessibility of supporting evidence, we randomly selected 20 human interactions from non-
pathway sources, and manually checked whether each interaction is supported by the 
publications as reported in InWeb_IM. The list of selected interactions is as follows (listing 
UniProtKB IDs/mnemonics, UniProtKB accession numbers, confidence scores and a concise 
representation of the supporting evidence): 
 

POTEF_HUMAN    ANTR1_HUMAN    A5A3E0    Q9H6X2    0.087 BioGRID|binary|A5A3E0-Q9H6X2|26186194|9606-
9606|9606-9606 

SYNE4_HUMAN    DJC11_HUMAN    Q8N205    Q9NVH1    0.087 BioGRID|binary|Q8N205-Q9NVH1|26186194|9606-
9606|9606-9606 

MGRN1_HUMAN    UB2D4_HUMAN    O60291    Q9Y2X8    0.092 BioGRID|binary|O60291-Q9Y2X8|19549727|9606-
9606|9606-9606 
IntAct|binary|O60291-Q9Y2X8|19549727|9606-
9606|9606-9606 

HSPB1_HUMAN    ANKR7_HUMAN    P04792    Q92527    0.094 BioGRID|binary|P04792-Q92527|25277244|9606-
9606|9606-9606 
IntAct|binary|P04792-Q92527|25277244|9606-9606|9606-
9606 

PBX1_HUMAN    FOXC1_HUMAN    P40424    Q12948    0.220 IntAct|binary|P40424-Q12948|15684392|9606-9606|9606-
9606 

ANM8_HUMAN    TR150_HUMAN    Q9NR22    Q9Y2W1    0.087 BioGRID|binary|Q9NR22-Q9Y2W1|26186194|9606-
9606|9606-9606 

CBL_HUMAN    TRIM8_HUMAN    P22681    Q9BZR9    0.093 BioGRID|binary|P22681-Q9BZR9|22493164|9606-
9606|9606-9606 
IntAct|binary|P22681-Q9BZR9|22493164|9606-
9606|9606-9606    

GPC4_HUMAN    IQCB1_HUMAN    O75487    Q15051    0.090 BioGRID|binary|O75487-Q15051|21565611|9606-
9606|9606-9606  
IntAct|spoke|O75487-Q15051|21565611|9606-9606|9606-
9606   

ENOG_HUMAN    MAX_HUMAN    P09104    P61244    0.088 BIND|binary|P09104-P61244|12808131|9606-9606|9606-
9606 

RFA3_HUMAN    TAGL2_HUMAN    P35244    P37802    0.090 BioGRID|binary|P35244-P37802|24332808|9606-
9606|9606-9606 

NOP56_HUMAN    EF1A1_HUMAN    O00567    P68104    0.103 DIP|matrix|Q12460-P02994|11805837|4932-
4932|559292-559292   
BioGRID|binary|O00567-P68104|12777385|9606-
9606|9606-9606  

UBC_HUMAN    PLCH1_HUMAN    P0CG48    Q4KWH8    0.098 BioGRID|binary|P0CG48-Q4KWH8|21139048|9606-
9606|9606-9606  
BioGRID|binary|P0CG48-Q4KWH8|25015289|9606-
9606|9606-9606   

RFIP4_HUMAN    TS101_HUMAN    Q86YS3    Q99816    0.214 BioGRID|binary|Q86YS3-Q99816|22348143|9606-
9606|9606-9606 

CBX7_HUMAN    HS71A_HUMAN    O95931    P0DMV8    0.097 DIP|matrix|Q8VDS3-P0DMV8|20543829|10090-
9606|10090-9606 
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BUB3_HUMAN    TCPB_HUMAN    O43684    P78371    0.087 BioGRID|binary|O43684-P78371|26186194|9606-
9606|9606-9606 

NHRF3_HUMAN    S22A4_HUMAN    Q5T2W1    Q9H015    0.131 BioGRID|binary|Q5T2W1-Q9H015|14531806|9606-
9606|9606-9606 

PLIN3_HUMAN    MPRD_HUMAN    O60664    P20645    0.385 BIND|binary|O60664-P20645|9590177|9606-9606|9606-
9606    
BioGRID|binary|O60664-P20645|9590177|9606-
9606|9606-9606  

RNH2A_HUMAN    ITLN1_HUMAN    O75792    Q8WWA0    0.088 BioGRID|binary|O75792-Q8WWA0|26186194|9606-
9606|9606-9606 

SAMD1_HUMAN    SH3K1_HUMAN    Q6SPF0    Q96B97    0.095 BioGRID|binary|Q6SPF0-Q96B97|19531213|9606-
9606|9606-9606 

PROF1_HUMAN    ASB2_HUMAN    P07737    Q96Q27    0.093 BioGRID|binary|P07737-Q96Q27|24337577|9606-
9606|9606-9606 

 
We found all 20 interactions as reported in their respective supporting publications. For only one 
interaction (Q5T2W1/Q9H015), the experiments were performed with mouse proteins, while the 
rest 19 were correctly labeled as having evidence from experiments with human proteins. 
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Supplementary Note 13 | A discussion of protein-protein interaction networks versus 
other functional genomics networks.  
 
If the objective of an analysis is to define all possible functional associations between a gene of 
interest and other genes, it can increase coverage to include many types of functional 
association data. However, such networks also have a more ambiguous interpretation in terms 
of the molecular biology and biochemistry underlying their gene-gene relationship. Moreover, 
the point of many network analyses, particularly those where the network data is used to 
augment and interpret genetic datasets, is to inform specific follow-up experiments and not only 
to annotate any potential functional association between genes of interest. In these cases it can 
be an advantage to constrain the network building to physical protein interactions because if an 
interesting network is identified it will be immediately clear that a follow up protein-protein 
interaction experiment based on interesting network nodes, is a way to validate and expand the 
network in question to get added insight into its molecular biology. A more detailed discussion 
can be seen in Ref. 14. 
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Supplementary Note 14 | Roadmap for future updates and information about data access 
 
To be maximally useful as a resource to the community we here provide a roadmap for the 
update of InWeb_IM as well as an overview of the different file formats and resources from 
where the data can be accessed.  
 
In the past we have updated the network on a quarterly basis and this practice will continue in 
the future. Upon completion of an InWeb_IM update, the new version will be made available for 
download for the academic community in standard formats (PSI-MI TAB) – see URLs below. 
Previous versions of InWeb_IM with build dates and release notes will be available from an 
archive. The graphical user interfaces from which the data can be accessed will always be 
updated with the most recent version of the InWeb_IM data (see Supplementary Figure XX for a 
schematic). 
 
It is not unlikely that new future use cases for InWeb_IM may necessitate update of data 
formats, user interface and even further improvements of the underlying framework for 
constructing InWeb_IM. It is therefore also the ambition to continue the development of formats, 
interface and methods, we expect to make major releases of the InWeb_IM interface on annual 
basis.  

 
 
Supplementary Figure 6 | Roadmap for updates of the InWeb_IM data. 

 
Data access:  
 

The raw data can be accessed and downloaded from:  
 
https://www.intomics.com/inbiomap/  

 
This resource includes current version, data archive (all in PSI-MI TAB 
format), and release notes. 

 
The data can also be accessed from a graphical user interface:  
 

http://apps.broadinstitute.org/genets#InWeb_InBiomap 
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