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1 Penalized Estimation Methods for Cox Models

1.1 From Ridge Regression to Lasso

In real-world high-dimensional regression and classification tasks, the number of vari-
ables p in the dataset could be large while the number of samples n is relatively
small. In extreme cases, we have p� n. Such ill-posed problems are challenging for
estimators developed under the traditional framework for linear models.

To solve such problems, certain constraints are often imposed on the parameters
to be estimated in the statistical model, to reduce the model complexity. In many
cases, such constraints yield the effect of variable selection (e.g. some of the estimated
coefficients in the linear model will be exactly 0).

Consider the linear regression model (Gaussian case):

y = Xβ + ε. (1)

Here we assume that Xn×p is the predictor matrix, and yn×1 is the response vector.
The parameter of the linear model is βp×1, and εn×1 is the error term.

One intuitive idea for constraining the estimated parameters is by introducing a
penalty term in the model based on the magnitudes of the regression coefficients,
such that the “less relevant” variables could have a small coefficient. One of the most
successful designs of such penalty terms is from the ridge regression [1]:

β̂(ridge) = arg min
β

(
‖y −Xβ‖22/n+ λ‖β‖2

)
. (2)

The above norm notation ‖β‖s indicates
∑p

i=1 |βi|s.
The ridge estimator will effectively “shrink” the coefficients towards 0, though

not exactly 0. The (positive) tuning parameter λ controls the amount of shrinkage.
Larger λ means more intensive shrinkage, and vice versa.

For high-dimensional linear models, the ridge estimator (`2 penalization) usually
gives informative results about effect size. However, ridge estimation does not select
variables explicitly.

By simply changing the `2 penalty to `1 penalty, we have the lasso estimator:

β̂(lasso) = arg min
β

(
‖y −Xβ‖22/n+ λ‖β‖1

)
(3)

The lasso regression achieves simultaneous variable selection and effect size esti-
mation, which means the variables not being selected have the coefficient 0. Such
property makes the method very attractive, since it sufficiently reduced the model
complexity, improves the model interpretability, while still gives a relatively good pre-
dictive performance. The `1 penalty then became very popular and was extensively
applied in many more statistical learning problems under more general settings. For
a recent review of lasso-inspired methods and related applications, please refer to [2].
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The lasso regression corresponds to a unique convex optimization problem. As a
milestone in the development of lasso, the Least Angle Regression (LARS) [3] gave a
very elegant geometrical explanation and an efficient solution for the lasso.

Even more efficient numerical optimization methods were proposed for solving
large-scale lasso-type penalized estimation problems later, including the Coordinate
Descent algorithm implemented in the R package glmnet [4], and the more recent
Alternating Direction Method of Multipliers (ADMM) algorithm [5]. The hdnom

package is partially depended on the glmnet package, which means the shrinkage
parameter λ is always automatically tuned over a grid.

1.2 From Lasso to Cox Lasso

The Cox proportional hazards model is:

h(t) = h0(t) exp(Xβ) (4)

where h(t) is the hazard at time t, h0(t) is the baseline hazard function shared by all
samples. A solution for the Cox model could be obtained by maximizing the partial
likelihood for the observed data:

β̂(Cox) = arg max
β

L(β) = arg max
β

∏
i∈E

exp(Xj(i)β)∑
j∈Ri

exp(Xjβ)
(5)

where E is the event (e.g. death) set, Ri represents the set of individuals at risk at
time point ti−0. To make the optimization problem easier, the log likelihood is often
used instead of the original likelihood.

By constraining the sum of magnitude of β, we have the Cox lasso estimator via
maximizing the penalized log partial likelihood [6]:

β̂(CoxLasso) = arg max
β

{
2

n

(∑
i∈E

Xj(i)β − log

(∑
j∈Ri

exp(Xjβ)

))
− λ‖β‖1

}
. (6)

Note that the penalized likelihood might need some scaling here ( 2
n
).

This penalized maximum likelihood estimation for β is aligned in spirit with
the penalized linear model (Gaussian case) we investigated above. By changing the
penalty term (e.g. λ‖β‖1), we could easily extend the penalization designed for the
Gaussian case to Cox models (although some of the details might need to be slightly
modified). Therefore, to simplify the notations, we will only focus on the Gaussian
regression case with modifications on the penalty terms in the next sections.

Not too surprisingly, path algorithms, such as LARS-Cox [7], are available for
solving the above optimization problem. Besides, coordinate descent algorithms are
also applicable here [8].
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1.3 From Lasso to Elastic-Net

The lasso is an efficient off-the-shelf method for penalized estimation problems. How-
ever, several limitations have been found for lasso estimation, for example:

• Under certain conditions, the lasso procedure is not theoretically consistent;

• The maximum number of selected variables could not be larger than the number
of observations (n);

• For correlated variables (which are common in high-dimensional datasets), the
selection made by lasso is not stable enough. Sometimes it will select one
randomly, instead of including both of the correlated variables.

To overcome such limitations, several important modifications have been made
for lasso. For example, the elastic-net penalty [9] was designed as a linear mixture of
the `1 (lasso) and `2 penalty (ridge):

β̂(ENet) =

(
1 +

λ2
n

){
arg min

β
‖y −Xβ‖22 + λ2‖β‖22 + λ1‖β‖1

}
(7)

For better interpretability, we could use two parameters, namely λ and α (0 <
α < 1), as the tuning parameters for controlling the intensity of shrinkage and the
sparsity of the model. Essentially, we rewrite the elastic-net penalty as:

λΩα(β) = λ

(
α‖β‖1 +

1

2
(1− α)‖β‖22

)
(8)

In the above case, with α → 1, the model tends to be more sparse, with fewer
variables selected. In practice, the values of the parameters λ and α are determined
by cross-validation with particular evaluation metrics (e.g. RMSE, BIC, etc.).

The major advantages of the elastic-net penalty could be summarized as:

• Grouping effect [9]. For highly correlated variables in the dataset, simulations
showed that elastic-net tends to select them together as a group, or remove
them together as a group, which usually produces a more stable estimation
result compared to original lasso.

• A larger number of (more than the number of samples) variables could be se-
lected. This could be potentially beneficial if the sample size n is very small.

• The predictive performance of the model is improved in many cases, partially
due to the additionally selected (informative) variables.

The models produced by elastic-net are often less sparse than lasso. There is
a possibility that more false positive variables will be included, due to correlations
among the variables. However, this could be an inherently difficult problem if there
are highly correlated variables in the dataset. Imagine some of them are true positives
while some of them are false positives, and from the predictive point of view, there
are not many differences between these two types of variables.
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1.4 From One-Step Estimation to Adaptive Estimation

Adaptive lasso is another modification for the lasso, and it was introduced as an two-
step estimation procedure. The second step is a weighted version of lasso estimation:

β̂(AdaLasso) = arg min
β
‖y −Xβ‖22 + λ

p∑
j=1

ŵj|βj| (9)

Here, ŵj are the data dependent weights derived from the coefficients β′j of the
first step estimation (ridge estimation are often used). For example, the weights could
be derived as ŵj = 1/|β′j|γ, where γ is a tunable parameter.

The adaptive lasso utilizes the information from the first-step estimation to impose
more shrinkage for the variables with smaller coefficients, and less shrinkage for the
variables with larger coefficients. The modification makes adaptive lasso achieve
selection consistency when p is fixed [10]. Such good asymptotic properties of the
estimator are formally named as oracle properties as was defined in [11].

The adaptive lasso penalty was then further applied in penalized Cox models [12].
Similarly, adaptive elastic-net [13] was proposed as a two-step estimation proce-

dure based on the original elastic-net penalty:

β̂(AdaEnet) =

(
1 +

λ2
n

){
arg min

β
‖y −Xβ‖22 + λ2‖β‖22 + λ∗1

p∑
j=1

ŵj|βj|
}

(10)

Compared to one-step estimations (lasso and elastic-net), adaptive lasso and adap-
tive elastic-net usually have better predictive performance and better false positive
control. Ultimately, the idea of multi-step estimation could go even further, with
estimators designed with more than two estimation steps [14].

1.5 SCAD, MCP, Snet, and Mnet

The smoothly clipped absolute deviation (SCAD) penalty and minimax concave
penalty (MCP) are another two sparsity inducing penalties designed for high-dimensional
regression modeling. The SCAD penalty function [11] is defined as

ΩSCAD(β) =


λβ, for β ≤ λ
γλβ−0.5(β2+λ2)

γ−1 , for λ < β ≤ γλ
λ2(γ2−1)
2(γ−1) , for β > γλ.

(11)

with parameters λ ≥ 0 and a scaling factor γ > 2. The original authors recommended
to set γ as 3.7. Similarly, the MCP [15] is defined as

ΩMCP(β) =

{
λβ − β2

2γ
, for β ≤ γλ

1
2
γλ2, for β > γλ

(12)
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with parameters λ ≥ 0 and a scaling factor γ > 1. By computing the first-order
derivatives for these two types of penalty functions, we could see the way they work:
for variables with very small coefficients, they give (almost) the same amount of pe-
nalization as lasso does. As β grows larger, the intensity of the penalization decreases,
and finally, there will be no penalization for β > γλ, where β is large enough.

The development of SCAD and MCP provided critical analytical frameworks for
evaluating if certain types of similar estimators are good enough in theory, especially
the oracle properties proposed in [11]. In principle, SCAD and MCP could be both
treated as competitive alternatives to the original lasso penalty, and they generally
yield less biased estimation results.

In practice, the optimization for SCAD and MCP could be done with coordinate
descent algorithms [16], although both of the optimization problems are not exactly
convex. Empirically, it takes a longer time to converge than the `1 and `2-based
methods above.

By combining the `2 penalty with SCAD and MCP, we will have the Snet [17]
and Mnet penalty [18], some theoretical and empirical results have been established
for them, though they are less used in practice. In essence, it might be worthy to
compare their performance with the results from (adaptive) elastic-net.

1.6 Fused Lasso and Structured Regularization

In some of the high-dimensional datasets we have, the spatial order of the variable
is meaningful. For example, the position of the variables in copy number variation
(CNV) data [19] reflects the genomic location of the variable, and if a variable at a
specific location was selected, we hope that its adjacent variables are also selected.

To incorporate such knowledge into our penalized estimation, an extra constraint
could be added to the lasso penalty, and this estimator is named fused lasso [20]:

ΩFusedLasso(β) = λ1‖β‖1 + λ2

p∑
i=2

|βi − βi−1|. (13)

By further constraining the difference between the coefficients of adjacent vari-
ables, fused lasso can usually achieve the specific selection aims we described above.
Moreover, such penalties could also be used jointly with other types of penalties
mentioned above, such as elastic-net [21].

As a more general formulation, the generalized lasso [22] extended the fused lasso
idea to a larger class of problems, by constraining the relationship between vari-
ables with a matrix. Other commonly observed structures, such as the hierarchical
structure [23], the graph [24] or network structure [25] formed by the variables, has
also been successfully incorporated using similar approaches. Such methods could
be classified as the structured regularization methods, which often reflects our prior
knowledge about the explicit or latent structures that existed among the variables.
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1.7 Summary

We have described all the penalized estimation methods supported by hdnom for high-
dimensional Cox models. In fact, there is no single method consistently working better
than other methods in the real world. We should keep in mind that the method which
works best with your data, is probably a good choice. Therefore, an empirical model
comparison is necessary for choosing a better model. In hdnom, we have the built-
in functions hdnom.compare.validate() and hdnom.compare.calibrate() which
supports model comparison via certain validation and calibration procedures.

Additionally, based on our experience on high-dimensional data modeling, we try
to offer some basic guidelines and principles on choosing the appropriate method here:

• If you have prior knowledge that the order of the variable in the dataset matters
(adjacent variables should be selected together), please try fused lasso first. Less
optimal choices could be (adaptive) elastic-net, Snet and Mnet.

• If you do not have any apparent prior knowledge of the correlation structure in
the dataset, and you want to build a model with minimal number of selected
variables: start with lasso, SCAD, MCP, and see if their results (tAUC, selected
variables) are similar or make sense (biologically/clinically). If lasso yielded
good results, try adaptive lasso to improve estimation and prediction.

• If you want to further improve the predictive performance of the model and do
not care much about introducing more variables into the model, try elastic-net,
Snet, Mnet, and tune the sparsity parameter α. If elastic-net gave good results,
try adaptive elastic-net and see if it gives even better results (less selected
variables, higher tAUC).

Ultimately, a good model should achieve a good balance between the number of se-
lected variables and predictive performance. To be more explicit, for high-dimensional
regression modeling, there is usually a trade-off between model sparsity and predic-
tion accuracy. With more variables, the predictive performance of the model could
be improved. To have a sparser model (which will have better interpretability), some
prediction accuracy often needs to be sacrificed. It is sometimes a difficult task to
build a linear model which is very sparse and also have excellent prediction accuracy.

For more specific guidelines on choosing the penalty in Cox regression, please see
[26]. A general review of the application of high-dimensional linear models in biology
and medicine could be found in [27].
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2 Methods for Model Validation and Calibration

Model evaluation, or benchmarking, is a critical part in the predictive modeling pro-
cess. This step determines the quality of the models and the corresponding nomo-
grams we built [28]. The evaluation should be rigorous, comprehensive, and often
involves model validation, model calibration using internal/external datasets.

2.1 Fitting

This method is most frequently used for model calibration in the relevant literature.
The method simply uses the entire dataset to fit the Cox model, then make predictions
based on this model for the training set. The predicted responses are then compared
with the actual observed response to measure the difference.

We believe that this method provides over-optimistic estimates for model per-
formance in most of the cases and could not be qualified as a rigorous method for
model evaluation. The reason is, the testing set is identical to the training set, and
intuitively, this will usually make the prediction task easier, as if the model could fit
the original data well. Therefore, the hdnom package only offers support for model
calibration with this method, and we do not really recommend to employ this method
to “evaluate” models under any circumstances.

In hdnom, we also support the next three sampling-based methods (bootstrap,
cross-validation, and repeated cross-validation). Although they are often used in
model validation, they are also made to be applicable to model calibration, too.

2.2 Bootstrap

Bootstrap is a widely-used resampling-based method. Particularly, it is the most used
method in previous publications on prognostic model validation.

The procedure is fairly straightforward: sample the same number of observations
from the original dataset with replacement, use this new dataset as the training set,
build the model, make predictions on the original dataset (the test set), and compare
the differences between the predicted response and the observed response (with met-
rics like time-dependent AUC). Restart and repeat this procedure for certain times
(e.g. 200). After getting a set of tAUC values, we could estimate the empirical mean
and variance of them to analyze the model’s predictive performance.

Since the bootstrap requires to use the original number of samples to build a
model each time and repeat this for a substantial number of times, it will be a slow
procedure when the sample size is large. More importantly, sometimes it could give
over-optimistic estimates for the predictive performance. Similar to the direct fitting
method above, some of the samples in the test set still exist in the training set,
although some of them are not selected in the training set by chance each time.

7



2.3 K-fold Cross-Validation

The k-fold cross-validation (CV) method is popular in the machine learning commu-
nity. It avoided the problem described above by a training-test splitting design.

The procedure is also simple: split the original dataset randomly into k (k often
being 5, 10, or other integers > 3, depending on the sample size) partitions. Use all
the k − 1 partitions as the training set to build a model, predict on the remaining
partition (the test set). Move on until k models are built and every partition served
as the test set once. Now each sample in the original dataset has a corresponding
predicted response, compare them with the observed response using tAUC.

K-fold cross-validation is generally faster than bootstrap since a much less num-
ber of models have to be built. It is also more resistant to be over-optimistic since
the test set and training set are not intersected at all in each time. However, the
number of folds on choice could be controversial sometimes. Also, the reported per-
formance could be unstable, especially if the sample size is small. This is because the
dataset splitting may cause the training set and test set to be drastically different
distributionally, and this will lead to potential bad predictive performance.

A seemingly good solution for the above problems could be leave-one-out cross-
validation (LOOCV). This method only leaves one sample out as the test set each
time and use the rest n− 1 samples as the training set. This is actually an extreme
case of the k-fold CV. Unfortunately, it also tends to yield over-optimistic estimates
for predictive performance in practice. An intuitive explanation could be, it will be
much easier for a good model to make accurate predictions for one sample, with the
information from all the other samples available. The one-sample test set is somehow
more covered by the training set when being compared to k-fold cross-validation.

2.4 Repeated Cross-Validation

Repeated cross-validation could be a possible remedy for the weaknesses of k-fold CV.
It repeats the k-fold CV many times (say, 100), and of course, with randomly different
fold splitting schemes every time. This modification makes repeated CV more robust
than k-fold CV, and produce stable performance estimates with reduced variance.
Repeated cross-validation, like bootstrap, could be slow to run if the repeated number
of times is large. Compared to the other methods, we prefer and recommend to use
repeated cross-validation in model performance evaluation in practice.

2.5 Further Notes on Cross-Validation

Although k-fold cross-validation and its derivations are routinely used in statistical
machine learning research, there have been extensive studies on searching for an even
better model performance evaluation approach (with appropriate bias and variance
trade-off). For linear models and particularly linear models, one of the most striking
theoretical results was obtained in [29], which essentially proved that the leave-one-out
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cross-validation (LOOCV) could not yield asymptotically consistent results regarding
variable selection. For this case, to achieve consistent selection, a simple yet effective
approach is the Monte-Carlo Cross-Validation (MCCV) [30]. This reminds us that it
is always important to consider the purpose of the model (e.g. prediction or variable
selection) we built when choosing the evaluation scheme. Just like the many penalized
estimation methods, there is no single best evaluation approach; however, there could
be a comparatively appropriate one for your data and model.

2.6 External Validation and Calibration

To prepare the built survival models ready for real clinical use, model evaluation
only within the internal dataset is obviously still not enough. An “independent”
external test set (preferably from another data source collected independently) is
often required to evaluate the model’s performance. In hdnom, the built-in func-
tions hdnom.external.validate() and hdnom.external.calibrate() are specifi-
cally designed for such external evaluation needs (the web application also supports
such external evaluation). For practical considerations when performing external
validation on prognostic models, please refer to the comprehensive review [31].

2.7 Evaluation Metrics

There are a few types of criteria for prognostic model evaluation. For model valida-
tion, we usually measure the model’s ability of discrimination, which indicates the
differences between the survival curves for different samples or sample groups.

Several measures have been proposed to quantify discrimination. The area under
the receiver operating curve (AUC) is considered to be a standard method for such
purpose. However, unlike the simple definition of AUC when evaluating classification
models, different opinions exist about how to design a better time-dependent AUC
estimator for time-to-event data. In hdnom, three types of time-dependent AUC
metrics [32, 33, 34] are supported. The selected estimators are mostly based on the
idea of cumulative or dynamic control AUC. These estimators usually yield reasonable
and stable tAUC estimates in our experiments. For a recent review of the design of
such measures and estimators, please refer to [35].

3 Construct Nomograms from Cox Models

In hdnom, the nomogram visualizations are finally created with the support from
the rms package [36]. However, to correctly map the estimated parameters derived
by penalized Cox models to the parallel coordinate system in the nomogram, some
intermediate computational steps are still required for all supported types of penalized
Cox models. The major components we implemented for this mapping include:
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• Survival curve prediction for all supported types of penalized Cox models. This
includes computing the predicted survival probabilities and linear predictors for
all observations used to fit the Cox model.

• To compute the survival curves, Breslow estimator is used to derive the baseline
hazard functions for all supported types of penalized Cox models.

• With the computed survival curves and the linear predictors derived from the
penalized Cox model, ordinary least squares is used for creating the mapping
between the linear predictors and the selected variables. A similar and reference
implementation for survey-weighted Cox models could be found in [37].

4 Implementation Notes

4.1 The R Package

Several high-quality R packages are depended by hdnom to facilitate the implemen-
tation of several key features in the package. For building penalized Cox models:
the glmnet package was used to implement all `1 and `2 penalty-based methods; the
penalized package [38] was used for fitting fused lasso models; the ncvreg package
[16] was used for the nonconvex penalty (SCAD, MCP, Snet, and Mnet) based mod-
els. The survAUC package was used for computing the time-dependent AUC metrics
for model evaluation. The rms package was used for creating the nomograms, and all
visualizations for performance evaluation are produced by ggplot2 [39]. We thank
the authors of the above packages for their work.

4.2 Web Application

The web application hdnom.io is built with Shiny [40] and is hosted by shinyapps.io
kindly provided by RStudio, Inc. The web application offers an easier way to start
for users with less programming experience, and could provide some initial insights
when exploring the dataset. We recommend trying the web application with small to
medium size datasets since it usually takes a longer time to finish the computation
for certain procedures (e.g. nonconvex penalty based models, bootstrap-based model
validation). It would be more optimal to perform these analyses using the R package.
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