
A Tutorial on Building Nomograms for Penalized

Cox Models with High-Dimensional Data

Nan Xiao, Qing-Song Xu, Miao-Zhu Li

hdnom version 4.0
July 25, 2016

hdnom

hdnom.org

http://hdnom.org

Contents
1 Introduction 1

2 Build Survival Models 1

3 Nomogram Plotting 2

4 Model Validation 4
4.1 Internal Validation . 4
4.2 External Validation . 6

5 Model Calibration 7
5.1 Internal Calibration . 7
5.2 External Calibration . 8
5.3 Kaplan-Meier Analysis for Risk Groups . 10
5.4 Log-Rank Test for Risk Groups . 11

6 Model Comparison 13
6.1 Model Comparison by Validation . 14
6.2 Model Comparison by Calibration . 15

7 Prediction on New Data 18

8 Customize Color Palette 19

References 19

1 Introduction

It is a challenging task to model the emerging high-dimensional clinical data with survival
outcomes. For its simplicity and efficiency, penalized Cox models are significantly useful for
accomplishing such tasks.

hdnom streamlines the workflow of high-dimensional Cox model building, nomogram plotting,
model validation, calibration, and comparison. To load the package in R, simply type:

library("hdnom")

2 Build Survival Models

To build a penalized Cox model with good predictive performance, some parameter tuning is
usually needed. For example, the elastic-net model requires to tune the `1-`2 penalty trade-off
parameter α, and the regularization parameter λ.

To free the users from the tedious and error-prone parameter tuning process, hdnom provides
several functions for automatic parameter tuning and model selection, including the following
model types:

Function Name Model Type

hdcox.lasso() Lasso
hdcox.alasso() Adaptive lasso
hdcox.flasso() Fused lasso
hdcox.enet() Elastic-net
hdcox.aenet() Adaptive elastic-net
hdcox.mcp() MCP
hdcox.mnet() Mnet (MCP + elastic-net)
hdcox.scad() SCAD
hdcox.snet() Snet (SCAD + elastic-net)

In the next, we will use the imputed SMART study data (Steyerberg 2008) to demonstrate
a complete process of model building, nomogram plotting, model validation, calibration, and
comparison with hdnom.

Load the smart dataset:

data("smart")
x = as.matrix(smart[, -c(1, 2)])
time = smart$TEVENT
event = smart$EVENT

library("survival")
y = Surv(time, event)

The dataset contains 3,873 observations with corresponding survival outcome (time, event). 27

1

clinical variables (x) are available as the predictors. See ?smart for a detailed explanation of the
variables.

Fit a penalized Cox model by adaptive elastic-net regularization, with hdcox.aenet:

Enable parallel parameter tuning
suppressMessages(library("doParallel"))
registerDoParallel(detectCores())

aenetfit = hdcox.aenet(x, y, nfolds = 10, rule = "lambda.1se",
seed = c(5, 7), parallel = TRUE)

names(aenetfit)

[1] "seed" "enet_best_alpha" "enet_best_lambda"
[4] "enet_model" "aenet_best_alpha" "aenet_best_lambda"
[7] "aenet_model" "pen_factor"

Adaptive elastic-net includes two estimation steps. The random seed used for parameter tuning,
the selected best α, the selected best λ, the model fitted for each estimation step, and the penalty
factor for the model coefficients in the second estimation step are all stored in the model object
aenetfit.

3 Nomogram Plotting

Before plotting the nomogram, we need to extract some necessary information about the model,
namely, the model object and parameters, from the result of the last step:

fit = aenetfit$aenet_model
alpha = aenetfit$aenet_best_alpha
lambda = aenetfit$aenet_best_lambda
adapen = aenetfit$pen_factor

To plot the nomogram, first we make x available as a datadist object for the rms package
(Harrell 2015), then generate a hdnom.nomogram object with hdnom.nomogram(), and plot the
nomogram:

suppressMessages(library("rms"))
x.df = as.data.frame(x)
dd = datadist(x.df)
options(datadist = "dd")

nom = hdnom.nomogram(fit, model.type = "aenet", x, time, event, x.df,
lambda = lambda, pred.at = 365 * 2,
funlabel = "2-Year Overall Survival Probability")

plot(nom)

According to the nomogram, the Cox model with adaptive elastic-net penalty selected six variables
(AGE, AAA, STENOSIS, HDL, IMT, ALBUMIN) from the original set of 27 variables, effectively reduced
model complexity.

2

Points
0 10 20 30 40 50 60 70 80 90 100

AGE
15 35 55 75

AAA
0

1

STENOSIS
0

1

HDL
4 3 2 1 0

IMT
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ALBUMIN
1 3

2

Total Points
0 20 40 60 80 100 120 140 160 180

Linear Predictor
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2−Year Overall Survival Probability
0.40.60.70.80.90.95

Figure 1: Nomogram for the adaptive elastic-net model

3

Information about the nomogram itself, such as the point-linear predictor unit mapping and
total points-survival probability mapping, can be viewed by printing the nom object directly.

4 Model Validation

It is a common practice to utilize resampling-based methods to validate the predictive performance
of a penalized Cox model. Bootstrap, k-fold cross-validation, and repeated k-fold cross-validation
are the most employed methods for such purpose.

hdnom supports both internal model validation and external model validation. Internal validation
takes the dataset used to build the model and evaluates the predictive performance on the data
internally with the above resampling-based methods, while external validation evaluates the
model’s predictive performance on a dataset which is independent to the dataset used to build
the model.

4.1 Internal Validation

hdnom.validate() allows us to assess the model performance internally by time-dependent AUC
(Area Under the ROC Curve) with the above three resampling methods.

Here, we validate the performance of the adaptive elastic-net model with bootstrap resampling,
at every half year from the second year to the fifth year:

val.int = hdnom.validate(x, time, event, model.type = "aenet",
alpha = alpha, lambda = lambda, pen.factor = adapen,
method = "bootstrap", boot.times = 200,
tauc.type = "UNO", tauc.time = seq(2, 5, 0.5) * 365,
seed = 42, trace = FALSE)

print(val.int)

High-Dimensional Cox Model Validation Object
Random seed: 42
Validation method: bootstrap
Bootstrap samples: 200
Model type: aenet
glmnet model alpha: 0.15
glmnet model lambda: 2.559313e+12
glmnet model penalty factor: specified
Time-dependent AUC type: UNO
Evaluation time points for tAUC: 730 912.5 1095 1277.5 1460 1642.5 1825

summary(val.int)

Time-Dependent AUC Summary at Evaluation Time Points

730 912.5 1095 1277.5 1460 1642.5
Mean 0.6838358 0.6774956 0.7104212 0.7313414 0.6717074 0.6727783
Min 0.6690070 0.6672240 0.6991432 0.7202336 0.6572806 0.6608793

4

0.66

0.68

0.70

0.72

0.74

730.0 912.5 1095.0 1277.5 1460.0 1642.5 1825.0
Time

A
re

a
un

de
r

R
O

C

Figure 2: Time-dependent AUC values for internal model validation

0.25 Qt. 0.6821762 0.6762373 0.7084481 0.7292107 0.6689195 0.6703975
Median 0.6844577 0.6779749 0.7107909 0.7317549 0.6718038 0.6729762
0.75 Qt. 0.6859822 0.6790314 0.7132373 0.7338841 0.6754134 0.6752983
Max 0.6907049 0.6824337 0.7166890 0.7378667 0.6810270 0.6805885
1825
Mean 0.6874231
Min 0.6713106
0.25 Qt. 0.6836848
Median 0.6880464
0.75 Qt. 0.6911997
Max 0.6997200

The mean, median, 25%, and 75% quantiles of time-dependent AUC at each time point across
all bootstrap predictions are listed above. The median and the mean can be considered as the
bias-corrected estimation of the model performance.

It is also possible to plot the model validation result:

plot(val.int)

The solid line represents the mean of the AUC, the dashed line represents the median of the
AUC. The darker interval in the plot shows the 25% and 75% quantiles of AUC, the lighter
interval shows the minimum and maximum of AUC.

It seems that the bootstrap-based validation result is stable: the median and the mean value at

5

each evaluation time point are close; the 25% and 75% quantiles are also close to the median at
each time point. An argument ylim in the plot functions for such model validation objects can
be set to manually adjust the range of y coordinates.

Bootstrap-based validation often gives relatively stable results. Many of the established nomo-
grams in clinical oncology research are validated by bootstrap methods. K-fold cross-validation
provides a more strict evaluation scheme than bootstrap. Repeated cross-validation gives similar
results as k-fold cross-validation, and usually more robust. These two methods are more applied
by the machine learning community. Check ?hdnom.validate for more examples about internal
model validation.

4.2 External Validation

Now we have the internally validated model. To perform external validation, we usually need an
independent dataset (preferably, collected in other studies), which has the same variables as the
dataset used to build the model. For penalized Cox models, the external dataset should have at
least the same variables that have been selected in the model.

For demonstration purposes, here we draw 1,000 samples from the smart data and assume that
they form an external validation dataset, then use hdnom.external.validate() to perform
external validation:

x_new = as.matrix(smart[, -c(1, 2)])[1001:2000,]
time_new = smart$TEVENT[1001:2000]
event_new = smart$EVENT[1001:2000]

External validation with time-dependent AUC
val.ext =

hdnom.external.validate(aenetfit, x, time, event,
x_new, time_new, event_new,
tauc.type = "UNO",
tauc.time = seq(0.5, 2, 0.25) * 365)

print(val.ext)

High-Dimensional Cox Model External Validation Object
Model type: aenet
Time-dependent AUC type: UNO
Evaluation time points for tAUC: 182.5 273.75 365 456.25 547.5 638.75 730

summary(val.ext)

Time-Dependent AUC Summary at Evaluation Time Points

182.5 273.75 365 456.25 547.5 638.75 730
AUC 0.5608442 0.6299909 0.6289888 0.6530596 0.6728417 0.6795879 0.6922393

plot(val.ext, ylim = c(0.5, 0.8))

The time-dependent AUC on the external dataset is shown above.

6

0.5

0.6

0.7

0.8

182.50 273.75 365.00 456.25 547.50 638.75 730.00
Time

A
re

a
un

de
r

R
O

C

Figure 3: Time-dependent AUC values for external model validation

5 Model Calibration

Measuring how far the model predictions are from actual survival outcomes is known as calibration.
Calibration can be assessed by plotting the predicted probabilities from the model versus actual
survival probabilities. Similar to model validation, both internal model calibration and external
model calibration are supported in hdnom.

5.1 Internal Calibration

hdnom.calibrate() provides non-resampling and resampling methods for internal model cal-
ibration, including direct fitting, bootstrap resampling, k-fold cross-validation, and repeated
cross-validation.

For example, to calibrate the model internally with the bootstrap method:

cal.int = hdnom.calibrate(x, time, event, model.type = "aenet",
alpha = alpha, lambda = lambda, pen.factor = adapen,
method = "bootstrap", boot.times = 200,
pred.at = 365 * 5, ngroup = 3,
seed = 42, trace = FALSE)

print(cal.int)

High-Dimensional Cox Model Calibration Object

7

Random seed: 42
Calibration method: bootstrap
Bootstrap samples: 200
Model type: aenet
glmnet model alpha: 0.15
glmnet model lambda: 2.559313e+12
glmnet model penalty factor: specified
Calibration time point: 1825
Number of groups formed for calibration: 3

summary(cal.int)

Calibration Summary Table
Predicted Observed Lower 95% Upper 95%
1 0.8032792 0.7584323 0.7297862 0.7882027
2 0.8933650 0.8939150 0.8726762 0.9156706
3 0.9225957 0.9334446 0.9158670 0.9513596

Here we splitted the samples into three risk groups. In practice, the number of risk groups is
decided by the users according to their needs.

The model calibration results (the median of the predicted survival probability; the median of the
observed survival probability estimated by Kaplan-Meier method with 95% CI) are summarized
as above.

Plot the (internal) model calibration results:

plot(cal.int, xlim = c(0.5, 1), ylim = c(0.5, 1))

In practice, you may want to perform model calibration for multiple time points separately, and
put the plots together in one figure. See ?hdnom.calibrate for more examples about internal
model calibration.

5.2 External Calibration

To perform external calibration with an external dataset, use hdnom.external.calibrate():

cal.ext =
hdnom.external.calibrate(aenetfit, x, time, event,

x_new, time_new, event_new,
pred.at = 365 * 5, ngroup = 3)

print(cal.ext)

High-Dimensional Cox Model External Calibration Object
Model type: aenet
Calibration time point: 1825
Number of groups formed for calibration: 3

summary(cal.ext)

8

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0
Predicted Survival Probability

O
bs

er
ve

d
S

ur
vi

va
l P

ro
ba

bi
lit

y

Figure 4: Internal model calibration plot

9

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0
Predicted Survival Probability

O
bs

er
ve

d
S

ur
vi

va
l P

ro
ba

bi
lit

y

Figure 5: External model calibration plot

External Calibration Summary Table
Predicted Observed Lower 95% Upper 95%
1 0.7940258 0.7533312 0.7057400 0.8041316
2 0.8916822 0.8667762 0.8296887 0.9055215
3 0.9214927 0.9387588 0.9122184 0.9660715

plot(cal.ext, xlim = c(0.5, 1), ylim = c(0.5, 1))

The external calibration results have the similar interpretations as the internal calibration results,
except the fact that external calibration is performed on the external dataset.

5.3 Kaplan-Meier Analysis for Risk Groups

Internal calibration and external calibration both classify the testing set into different risk groups.
For internal calibration, the testing set means all the samples in the dataset that was used to
build the model, for external calibration, the testing set means the samples from the external
dataset.

We can further analyze the differences in survival time for different risk groups with Kaplan-Meier
survival curves and a number at risk table. For example, here we plot the Kaplan-Meier survival

10

Log−rank P < 0.0010.00

0.25

0.50

0.75

1.00

365 730 1095 1460 1825 2190
Time

O
ve

ra
ll

S
ur

vi
va

l P
ro

ba
bi

lit
y

High risk

Medium risk

Low risk

1065 888 677 534 398 277
1057 871 724 584 463 349
1054 884 698 539 432 312

High risk

Medium risk

Low risk

Number at risk

Figure 6: Kaplan-Meier survival curves for the three risk groups (internal calibration)

curves and evaluate the number at risk from one year to six years for the three risk groups, with
the function hdnom.kmplot():

hdnom.kmplot(cal.int, group.name = c('High risk', 'Medium risk', 'Low risk'),
time.at = 1:6 * 365)

hdnom.kmplot(cal.ext, group.name = c('High risk', 'Medium risk', 'Low risk'),
time.at = 1:6 * 365)

The p-value of the log-rank test is also shown in the plot.

5.4 Log-Rank Test for Risk Groups

To compare the differences between the survival curves (of the risk groups), log-rank test is
often applied. hdnom.logrank() performs such tests on the internal calibration and external
calibration results:

cal.int.logrank = hdnom.logrank(cal.int)
cal.int.logrank

11

Log−rank P < 0.0010.00

0.25

0.50

0.75

1.00

365 730 1095 1460 1825 2190
Time

O
ve

ra
ll

S
ur

vi
va

l P
ro

ba
bi

lit
y

High risk

Medium risk

Low risk

309 293 271 241 136 43
314 304 296 284 179 75
325 322 316 304 200 85

High risk

Medium risk

Low risk

Number at risk

Figure 7: Kaplan-Meier survival curves for the three risk groups (external calibration)

12

Call:
survdiff(formula = formula("Surv(time, event) ~ grp"))
##
n=3872, 1 observation deleted due to missingness.
##
N Observed Expected (O-E)^2/E (O-E)^2/V
grp=1 1290 276 151 103.3 154.1
grp=2 1291 118 158 10.1 15.4
grp=3 1291 66 151 47.8 71.3
##
Chisq= 162 on 2 degrees of freedom, p= 0

cal.int.logrank$pval

[1] 8.576116e-36

cal.ext.logrank = hdnom.logrank(cal.ext)
cal.ext.logrank

Call:
survdiff(formula = formula("Surv(time, event) ~ grp"))
##
n=999, 1 observation deleted due to missingness.
##
N Observed Expected (O-E)^2/E (O-E)^2/V
grp=1 333 81 45.2 28.37 41.11
grp=2 333 42 49.5 1.15 1.74
grp=3 333 24 52.3 15.28 23.75
##
Chisq= 45 on 2 degrees of freedom, p= 1.72e-10

cal.ext.logrank$pval

[1] 1.720597e-10

The exact p-values for log-rank tests are stored as cal.int.logrank$pval and cal.ext.logrank$pval.
Here p < 0.001 indicates significant differences between the survival curves for different risk
groups.

6 Model Comparison

Given all the available model types, it might be a natural question for us to ask: which type of
model performs the best for my data? Such model type selection problems can be (partially)
solved by the built-in model comparison functions in hdnom.

13

6.1 Model Comparison by Validation

We can compare the model performance using time-dependent AUC by the same (internal) model
validation approach as before. For example, here we compare lasso and elastic-net by repeated
cross-validation (10 fold, repeat 10 times):

cmp.val =
hdnom.compare.validate(x, time, event,

model.type = c("lasso", "enet"),
method = "repeated.cv", nfolds = 10, rep.times = 10,
tauc.type = "UNO",
tauc.time = seq(0.5, 2, 0.25) * 365,
seed = 42, trace = FALSE)

print(cmp.val)

High-Dimensional Cox Model Validation Object
Random seed: 42
Validation method: repeated cross-validation
Cross-validation folds: 10
Cross-validation repeated times: 10
Model type: lasso
glmnet model alpha: 1
glmnet model lambda: 0.01952497
glmnet model penalty factor: not specified
Time-dependent AUC type: UNO
Evaluation time points for tAUC: 182.5 273.75 365 456.25 547.5 638.75 730
##
High-Dimensional Cox Model Validation Object
Random seed: 42
Validation method: repeated cross-validation
Cross-validation folds: 10
Cross-validation repeated times: 10
Model type: enet
glmnet model alpha: 0.1
glmnet model lambda: 0.1117291
glmnet model penalty factor: not specified
Time-dependent AUC type: UNO
Evaluation time points for tAUC: 182.5 273.75 365 456.25 547.5 638.75 730

summary(cmp.val)

Model type: lasso
182.5 273.75 365 456.25 547.5
Mean of Mean 0.6279719 0.6634524 0.6619716 0.6680223 0.6860378
Mean of Min 0.4858318 0.5472671 0.5311816 0.5387785 0.5560724
Mean of 0.25 Qt. 0.5705519 0.6109838 0.6234290 0.6249972 0.6487304
Mean of Median 0.6214917 0.6586000 0.6592762 0.6699712 0.6877898

14

Mean of 0.75 Qt. 0.6676840 0.7017052 0.7043178 0.7124661 0.7285051
Mean of Max 0.8097248 0.8129838 0.7980135 0.7983564 0.8007999
638.75 730
Mean of Mean 0.6830995 0.6757933
Mean of Min 0.5749002 0.5475929
Mean of 0.25 Qt. 0.6413609 0.6317078
Mean of Median 0.6839922 0.6811731
Mean of 0.75 Qt. 0.7235427 0.7208864
Mean of Max 0.7844050 0.7928456
##
Model type: enet
182.5 273.75 365 456.25 547.5
Mean of Mean 0.6284894 0.6666666 0.6638599 0.6731489 0.6889693
Mean of Min 0.4865484 0.5509019 0.5354278 0.5443231 0.5560948
Mean of 0.25 Qt. 0.5742445 0.6148498 0.6215596 0.6296455 0.6497017
Mean of Median 0.6171197 0.6604381 0.6566286 0.6718296 0.6901206
Mean of 0.75 Qt. 0.6726565 0.7007647 0.7078837 0.7190586 0.7355692
Mean of Max 0.8048343 0.8160801 0.8055489 0.8065498 0.8045257
638.75 730
Mean of Mean 0.6884454 0.6822229
Mean of Min 0.5766107 0.5530374
Mean of 0.25 Qt. 0.6515440 0.6400564
Mean of Median 0.6906430 0.6888784
Mean of 0.75 Qt. 0.7277501 0.7244514
Mean of Max 0.7889265 0.8011706

plot(cmp.val, ylim = c(0.55, 0.75))

The solid line, dashed line and intervals have the same interpretation as above. For this
comparison, there seems to be no substantial difference (AUC difference < 5%) between lasso
and elastic-net in terms of predictive performance, although elastic-net performs slightly better
than lasso, at least for the last four time points in comparison.

The model comparison functions in hdnom have a minimal input design so you do not have to
set the parameters for each model type manually. The program will try to determine the best
parameter settings automatically for each model type to achieve the best performance.

6.2 Model Comparison by Calibration

It is also possible to compare the models by comparing their (internal) model calibration
performance. To continue the example, we split the samples into five risk groups, and compare
lasso to elastic-net via calibration:

cmp.cal =
hdnom.compare.calibrate(x, time, event,

model.type = c("lasso", "enet"),
method = "repeated.cv", nfolds = 10, rep.times = 10,
pred.at = 365 * 9, ngroup = 5,

15

0.55

0.60

0.65

0.70

0.75

182.50 273.75 365.00 456.25 547.50 638.75 730.00182.50 273.75 365.00 456.25 547.50 638.75 730.00
Time

A
re

a
un

de
r

R
O

C

Model
enet

lasso

Figure 8: Model comparison results for lasso and elastic-net by validation

16

seed = 42, trace = FALSE)

print(cmp.cal)

High-Dimensional Cox Model Calibration Object
Random seed: 42
Calibration method: repeated cross-validation
Cross-validation folds: 10
Cross-validation repeated times: 10
Model type: lasso
glmnet model alpha: 1
glmnet model lambda: 0.01952497
glmnet model penalty factor: not specified
Calibration time point: 3285
Number of groups formed for calibration: 5
##
High-Dimensional Cox Model Calibration Object
Random seed: 42
Calibration method: repeated cross-validation
Cross-validation folds: 10
Cross-validation repeated times: 10
Model type: enet
glmnet model alpha: 0.1
glmnet model lambda: 0.1117291
glmnet model penalty factor: not specified
Calibration time point: 3285
Number of groups formed for calibration: 5

summary(cmp.cal)

Model type: lasso
Calibration Summary Table
Predicted Observed Lower 95% Upper 95%
1 0.5963343 0.4754581 0.4022602 0.5619756
2 0.7004063 0.6891303 0.5691624 0.8343848
3 0.7516920 0.8162030 0.7698701 0.8653244
4 0.7888483 0.7929648 0.6943699 0.9055595
5 0.8283105 0.9006215 0.8684128 0.9340248
##
Model type: enet
Calibration Summary Table
Predicted Observed Lower 95% Upper 95%
1 0.6120541 0.4887871 0.4163319 0.5738520
2 0.7070683 0.6854374 0.5795487 0.8106730
3 0.7522133 0.8251830 0.7787630 0.8743700
4 0.7848643 0.7877938 0.6880305 0.9020225
5 0.8181001 0.9109381 0.8788793 0.9441664

17

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Predicted Survival Probability

O
bs

er
ve

d
S

ur
vi

va
l P

ro
ba

bi
lit

y

Model
enet

lasso

Figure 9: Model comparison results for lasso and elastic-net by calibration

plot(cmp.cal, xlim = c(0.3, 1), ylim = c(0.3, 1))

The summary output and the plot gave the calibration results for each model type we want to
compare. Lasso and elastic-net have comparable performance in this case, since their predicted
overall survival probabilities are both close to the observed survival probabilities in a similar
degree.

7 Prediction on New Data

To predict the overall survival probability on certain time points for new samples with the
established models, simply use predict() on the model objects and the new data.

As an example, we will use the samples numbered from 101 to 105 in the smart dataset as the
new samples, and predict their overall survival probability from one year to ten years:

predict(aenetfit, x, y, newx = x[101:105,], pred.at = 1:10 * 365)

18

365 730 1095 1460 1825 2190 2555
[1,] 0.9476831 0.9203352 0.8883491 0.8572830 0.8171430 0.7841366 0.7430376
[2,] 0.9714625 0.9562557 0.9382028 0.9203799 0.8969040 0.8771987 0.8521190
[3,] 0.9786224 0.9671660 0.9535052 0.9399529 0.9220000 0.9068385 0.8874163
[4,] 0.8971762 0.8456666 0.7873705 0.7327622 0.6651361 0.6120032 0.5489623
[5,] 0.9736111 0.9595251 0.9427806 0.9262253 0.9043816 0.8860127 0.8625882
2920 3285 3650
[1,] 0.7047801 0.6547589 0.6547589
[2,] 0.8281917 0.7959836 0.7959836
[3,] 0.8687509 0.8434080 0.8434080
[4,] 0.4933861 0.4252340 0.4252340
[5,] 0.8401909 0.8099641 0.8099641

8 Customize Color Palette

The hdnom package has 4 unique built-in color palettes available for all above plots, inspired by
the colors commonly used by scientific journals. Users can use the col.pal argument to select
the color palette. Possible values for this argument are listed in the table below:

Value Color Palette Related Journals

"JCO" Journal of Clinical Oncology
"Lancet" Lancet journals, such as Lancet Oncology
"NPG" NPG journals, such as Nature Reviews Cancer
"AAAS" AAAS Journals, such as Science

By default, hdnom will use the JCO color palette (col.pal = "JCO").

References

Harrell, Frank. 2015. Regression Modeling Strategies: With Applications to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis.

Steyerberg, Ewout W. 2008. Clinical Prediction Models: A Practical Approach to Development,
Validation, and Updating. Springer Science & Business Media.

19

	Introduction
	Build Survival Models
	Nomogram Plotting
	Model Validation
	Internal Validation
	External Validation

	Model Calibration
	Internal Calibration
	External Calibration
	Kaplan-Meier Analysis for Risk Groups
	Log-Rank Test for Risk Groups

	Model Comparison
	Model Comparison by Validation
	Model Comparison by Calibration

	Prediction on New Data
	Customize Color Palette
	References

