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Supplemental Information 

 
 Methods 

 
Participants 
Twenty-three volunteers (11 females, mean age 22.3 years old, ranging from 18 to 31 
years) participated in the experiment. All subjects were right handed, had normal or 
corrected-to-normal vision, and were compensated $75 for participating. 
 
Stimuli  
Eight color images of insects were used in the experiment (Figure 1b). The insect 
images consisted of one body with different combinations of three features: legs, mouth, 
and antennae. There were two versions of each feature (thick and thin legs, thick and 
thin antennae, and shovel or pincer mouth). The eight insect images included all 
possible combinations of the three features. The stimuli were sized to 300 x 300 pixels.  
 
Task procedures 
After an initial screening and consent in accordance with the University of Texas 
Institutional Review Board, participants were instructed on the classification learning 
tasks. Participants then performed the tasks in the MRI scanner by viewing visual 
stimuli back-projected onto a screen through a mirror attached onto the head coil. Foam 
pads were used to minimize head motion. Stimulus presentation and timing was 
performed using custom scripts written in Matlab (Mathworks) and Psychtoolbox 
(www.psychtoolbox.org) on an Apple Mac Pro computer running OS X 10.7. 
 
Participants were instructed to learn how to classify the insects based on the 
combination of the insects’ features. They were instructed to learn by using the 
feedback displayed on each trial. As part of the initial instructions, participants were 
made aware of the three features and the two different values of each feature. Before 
beginning each classification problem, additional instructions that described the cover 
story for the current task and which buttons to press for the two insect classes were 
presented to the participants. One example of this instruction text is as follows: “Each 
insect prefers either Warm or Cold temperatures. The temperature that each insect 
prefers depends on one or more of its features. On each trial, you will be shown an 
insect and you will make a response as to that insect’s preferred temperature. Press the 
1 button under your index finger for Warm temperatures or the 2 button under your 
middle finger for Cold temperatures.” The other two cover stories involved classifying 
insects into those that live in the Eastern vs. Western hemisphere and those that live in 
an Urban vs. Rural environment. The cover stories were randomly paired with the 
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familiarization task and the two learning tasks for each participant. After the instruction 
screen, the four fMRI scanning runs (described below) for that task commenced, with no 
further task instructions. After all four scanning runs for a task finished, the next task 
began with the corresponding cover story description. Importantly, the rules that defined 
the classification problems were not included in any of the instructions; rather, 
participants had to learn these rules through trial and error. 
 
Participants first performed a familiarization task, in which they were presented with and 
learned class association responses to each of the insect stimuli. This task had the 
same format as the classification learning tasks, but was structured such that all insect 
features had to be attended in order to respond correctly. The familiarization task was 
included to familiarize participants with the insect stimuli and task procedures to 
eliminate any neural activation due to stimulus and task novelty during the learning 
tasks. Data from the familiarization task was not considered for analysis. In contrast to 
the familiarization task, the type 1 and type 2 learning tasks were structured such that 
perfect performance required attending only to a subset of feature dimensions. For the 
type 1 task, class associations were defined by a rule depending on the value of one 
dimension. For the type 2 task, class associations were defined by an XOR logical rule 
that depended on the value of the two dimensions that were not relevant in the type 1 
task (Fig. 1b). As such, different dimensions were relevant to the two tasks and 
successfully learning the classification tasks required a shift in attention to attend to 
dimensions most relevant for the current task. The binary values of the eight insect 
stimuli along with the class association for the type 1 and type 2 tasks are depicted in 
Table S1. The stimulus features were randomly mapped onto the dimensions for each 
participant. These feature-to-dimension mappings were fixed across the different 
classification learning tasks within a participant. After the familiarization task, 
participants learned the type 1 and 2 tasks in sequential order. The learning order of the 
type 1 and 2 tasks was counterbalanced across participants. 
 

 
 feature dimension Class 

stimulus 1 2 3 type 1 type 2 
1 0 0 0 A C 
2 0 0 1 A D 
3 0 1 0 A D 
4 0 1 1 A C 
5 1 0 0 B C 
6 1 0 1 B D 
7 1 1 0 B D 
8 1 1 1 B C 

 
Table S1: Stimulus features and class associations. Each of the eight stimuli are represented by the 
binary values of the three feature dimensions and their class associations for the type 1 and type 2 
classification tasks. 
 



 3 

 
The classification tasks consisted of learning trials (Fig. 1a) during which an insect 
image was presented for 3.5s. During stimulus presentation, participants were 
instructed to respond to the insect’s class by pressing one of two buttons on an fMRI-
compatible button box. Insect images subtended 7.3° × 7.3° of visual space. The 
stimulus presentation period was followed by a 0.5-4.5s fixation. A feedback screen 
consisting of the insect image, text of whether the response was correct or incorrect, 
and the correct class was shown for 2s followed by a 4-8s fixation. The timing of the 
stimulus and feedback phases of the learning trials was jittered to optimize general 
linear modeling estimation of the fMRI data. Within one functional run, each of the eight 
insect images was presented in four learning trials. The order of the learning trials was 
pseudo randomized in blocks of sixteen trials such that the eight stimuli were each 
presented twice. One functional run was 194s in duration. Each of the learning 
problems included four functional runs for a total of sixteen repetitions for each insect 
stimulus. The entire experiment lasted approximately 65 minutes. 
 
Behavioral analysis 
Learning performance during the classification tasks was analyzed using a bounded 
logistic regression with random effects of repetition, order, and task (Fig. 1c). This 
analysis was performed using lme4 (version 1.1-12) and psyphy (version 0.1-9) 
packages in R (version 3.2.5). Participant-specific learning curves were also extracted 
for each task by calculating the average accuracy across blocks of sixteen learning 
trials. These learning curves were used for the computational learning model analysis. 
 
Computational learning modeling 
Participant behavior was modeled with an established mathematical learning model, 
SUSTAIN (1). SUSTAIN is a network-based learning model (Fig. 2a) that classifies 
incoming stimuli by comparing to memory-based knowledge representations of 
previously experienced stimuli. Sensory stimuli are encoded by SUSTAIN into 
perceptual representations based on the value of the stimulus features. The values of 
these features are biased according to attention weights operationalized as receptive 
fields on each feature dimension. During the course of learning, these attention weight 
receptive fields are tuned to give more weight to diagnostic features. SUSTAIN 
represents knowledge as clusters of stimulus features and class associations that are 
built and tuned over the course of learning. New clusters are recruited and existing 
clusters updated according to the current learning goals. The formulization of SUSTAIN 
is provided in the supplemental information. 
 
To characterize the latent attention-biased representations participants formed during 
learning, we fit SUSTAIN to each participant’s learning performance. First, SUSTAIN 
was initialized with no clusters and equivalent attention weights across the stimulus 
dimensions. Then, stimuli were presented to SUSTAIN in the same order as what the 
participants experienced and model parameters were optimized to predict each 
participant’s learning performance in the familiarization task and two learning tasks 
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through a maximum likelihood genetic algorithm optimization method (2). In the fitting 
procedure, the model state from the end of the familiarization task (in which attention to 
features was equivalent) was used as the initial state for the first learning task, and the 
model state at the end of the first learning task was used as the initial state for the 
second learning task. In doing so, parameters were optimized to account for learning in 
the familiarization task and both learning tasks with the assumption that attention 
weights and knowledge clusters learned from the familiarization task carried over to 
influence learning in the first task; and similarly, model state from the first task carried 
over and influenced early learning in the second task. The optimized parameters were 
then used to extract measures of dimensional attention weights and latent 
representations of the stimuli during the second half of learning in the two tasks. 
Specifically, for each participant, the model parameters were fixed to the optimized 
values and the model was presented with the trial order experienced by the participant. 
After the model was presented with the first half of trials, the value of the dimensional 
attention weights, λi, were extracted for each participant (Fig. 2b). Latent model 
representations were also extracted for each stimulus. We did this by presenting the 
model with each stimulus and saving out vectors of cluster activations, Hact

i (see below 
for model formalism). The pairwise similarities of these cluster activation vectors were 
then calculated with Pearson correlation. The resulting similarity matrices served as the 
model-based prediction of attention-biased representations (Fig. 2c) used in the 
multivariate fMRI pattern analysis (Fig. 3). 
 
Computational modeling methods 
The following sections describe SUSTAIN’s formalism, how the model learns, and how 
the model was fit to each participant’s learning behavior. 

 
Perceptual encoding. An input stimulus is presented to SUSTAIN as a pattern of 
activation on input units that code for the different stimulus features and possible values 
that these features can take. For each stimulus feature, i (e.g., a beetle’s legs), with k 
possible values (two in the present experiment; e.g., thick or thin legs), there are k input 
units. Input units are set to one if the unit represents the feature value or zero otherwise. 
The entire stimulus is represented by 

€ 

I posik , with i indicating the stimulus feature and k 
indicating the value for feature i. “pos” indicates that the stimulus is represented as a 
point in a multidimensional space. The distance µij between the ith stimulus feature and 
cluster j’s position along the ith feature is 
 

€ 

µij =1/2 | I posik
k=1

vi

∑ −H j
posik |        (1) 

 
wherein vi is the number of possible values that the ith stimulus feature can take and 

€ 

H j
posik  is cluster j’s position on the ith feature for value k. Distance µij is always between 

0 and 1, inclusive. 
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Response selection. After perceptual encoding, each cluster is activated based on the 
similarity of the cluster to the input stimulus. Cluster activation is given by: 
 

€ 

H j
act =

(λi)
γ e−λiµ ij

i=1

na

∑

(λi)
γ

i=1

na

∑
         (2) 

 
wherein 

€ 

H j
act  is cluster j’s activation, na is the number of stimulus features, 

€ 

λi  is the 
attention weight receptive field tuning for feature i, and γ is the attentional parameter 
(constrained to be non-negative). Clusters compete to respond to an input stimulus 
through mutual inhibition. The final output of each cluster j is given by: 
 

€ 

H j
out =

(H j
act )β

(H j
act )β

i=1

nc

∑
H j

act          (3) 

 
wherein nc is the current number of clusters and b is a lateral inhibition parameter 
(constrained to be non-negative) that controls the level of cluster competition. The 
cluster that wins the competition, Hm, passes its output to the k output units of the 
unknown feature dimension z: 
 

€ 

Czk
out = wm,zkHm

out          (4) 
 
wherein is the output of the unit representing the kth feature value of the zth feature, 
and wm,zk is the weight from the winning cluster, Hm, to the output unit Czk. In the current 
simulations, the class label is the only unknown feature dimension. Thus, equation 4 is 
calculated for each of the two values of the class label. Finally, the probability of making 
a response k for a queried dimension, z, on a given trial is: 
 

€ 

P(k) =
e(dCzk

out )

e(dCzk
out )

j=1

vz

∑
         (5) 

 
Cluster recruitment. In the current study, SUSTAIN was initialized with zero clusters. 
During learning, clusters are recruited in response to a combination of the order of the 
stimuli presented in the participant-specific trial orders and the error feedback received 
on each trial. In the current study, SUSTAIN was presented with trial orders from the 
familiarization task followed by the two learning tasks. We included a cluster recruitment 
parameter, t (constrained to be between 0 and 1), that probabilistically determines 
whether an error will lead to new cluster recruitment. If SUSTAIN makes a prediction 

! 

C
zk

out
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error, and t exceeds q, wherein q is a randomly generated value between 0 and 1, a 
new cluster is recruited. Otherwise, the winning cluster from the cluster competition is 
updated to reflect current stimulus features and class label according to the learning 
rules explained next. 
 
Learning. SUSTAIN’s learning rules determine how clusters are updated during 
learning. Only the winning clusters are updated. If a new cluster is recruited on a trial, it 
is considered the winning cluster. Otherwise, the cluster that is most similar to the 
current stimulus will be the winner. The winning cluster Hm, is adjusted by: 
 

€ 

ΔHm
posik =η(I posik −Hm

posik )        (6) 
 
wherein h is the learning rate parameter. The result of the updating is that the winning 
cluster moves toward the current stimulus. Over the course of learning, each cluster will 
tend toward the center of its members. Attention weight receptive field tunings for the 
different feature dimensions are updated according to: 
 

€ 

Δλi =ηe−λiµ im (1− λiµim )         (7) 
 
wherein m indexes the winning cluster.  
 
The weights from the winning cluster to the output units are adjusted by a one layer 
delta learning rule. 
 

€ 

Δwm,zk =η(tzk −Czk
out )Hm

out         (8) 
 
Simulations. For the current study, stimuli were presented to SUSTAIN using the same 
trial order as the participants. To reflect the carryover of the previous learning task on 
the current learning task, the attention weight receptive field tunings and clusters were 
not reinitialized between tasks. Rather, model fits were such that a single set of 
parameters were optimized to describe behavior on both learning tasks. This 
methodology takes into account each participant’s learning experience and allows us to 
quantify how the first task influenced learning on the second task. Thus, task order 
effects are considered a natural consequence of our model fitting approach. The free 
parameters, g, b, h, d, and th, were fit to each participant’s learning curve using a 
maximum likelihood genetic algorithm optimization technique(2). Obtained mean 
parameter values and 95% confidence intervals were: g = 3.286 ± 2.064, b = 4.626 ± 
0.220, h = 0.308 ± 0.145, d = 20.293 ± 5.724, th = 0.112 ± 0.039. 
 
MRI data acquisition 
Whole-brain imaging data were acquired on a 3.0T Siemens Skyra system at the 
University of Texas at Austin Imaging Research Center. A high-resolution T1-weighted 
MPRAGE structural volume (TR = 1.9s, TE = 2.43ms, flip angle = 9°, FOV = 256mm, 
matrix = 256x256, voxel dimensions = 1mm isotropic) was acquired for coregistration 
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and parcellation. Two oblique coronal T2-weighted structural images were acquired 
perpendicular to the main axis of the hippocampus (TR = 13,150ms, TE = 82ms, matrix 
= 384x384, 0.4x0.4mm in-plane resolution, 1.5mm thru-plane resolution, 60 slices, no 
gap). These images were coregistered and averaged to generate a mean coronal image 
for each participant that was used to localize peak voxels from the model-based RSA 
results to hippocampal subfields. High-resolution functional images were acquired using 
a T2*-weighted multiband accelerated EPI pulse sequence (TR = 2s, TE = 31ms, flip 
angle = 73°, FOV = 220mm, matrix = 128x128, slice thickness = 1.7mm, number of 
slices = 72, multiband factor = 3) allowing for whole brain coverage with 1.7mm isotropic 
voxels. 
 
MRI data preprocessing and statistical analysis 
MRI data were preprocessed and analyzed using FSL 6.0 (3) and custom Python 
routines. Functional images were realigned to the first volume of the seventh functional 
run to correct for motion, spatially smoothed using a 3mm full-width-half-maximum 
Gaussian kernel, high-pass filtered (128s), and detrended to remove linear trends within 
each run. Functional images were registered to the MPRAGE structural volume using 
Advanced Normalization Tools, version 1.9 (4). All analyses were performed in the 
native space of each participant. 
 
Hippocampus region of interest 
The hippocampus was delineated by hand on the 1mm Montreal Neurological Institute 
(MNI) template brain and reverse-normalized to each participant’s functional space 
using ANTS. Specifically, a nonlinear transformation was calculated from the MNI 
template brain to each participant’s T1-weighted MPRAGE volume. This warp was then 
concatenated with the MPRAGE to functional space transformation calculated using 
ANTS. Finally, the concatenated transformation was applied to the anatomical 
hippocampus ROI to move the ROI into each participant’s functional space. 
 
Model-based representational similarity analysis 
The goal of the similarity analysis was to assess the extent that attention processes bias 
neural representations of individual stimuli during the different learning tasks. In contrast 
to classification techniques that are used to decode activation patterns associated with 
relatively small number of stimulus classes or conditions, pattern similarity methods 
allow one to evaluate activation patterns at the level of single events or stimuli (5, 6). In 
the current study, we used pattern similarity methods to evaluate the similarity between 
neural patterns for each of the insect stimuli under the different learning contexts. 
 
Pattern similarity analyses were implemented using PyMVPA (7) and custom Python 
routines and were conducted on preprocessed and spatially smoothed functional data. 
The decision to perform multivariate analyses on spatially smoothed data is consistent 
with recent studies employing MVPA (8, 9) and demonstrations that smoothing does not 
result in information loss (10, 11). First, whole brain activation patterns for each stimulus 
within each run were estimated using an event-specific univariate general linear model 
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(GLM) approach (12, 13). In contrast to the classification approach that leverages the 
variance in neural patterns to learn voxel weights that best discriminate conditions, 
pattern similarity analyses require stable estimates of neural representations for the 
conditions of interest. In the current study, the condition of interest was at the level of 
specific stimuli. Thus, we took a GLM approach to model stable estimates of neural 
patterns for each of the eight insect stimuli. For each classification task run, a GLM with 
separate regressors for stimulus presentation of the eight insect stimuli, modeled as 
3.5s boxcar convolved with a canonical hemodynamic response function (HRF), was 
conducted to extract voxelwise parameter estimates to each of the stimuli. Additionally, 
stimulus-specific regressors for the feedback period of the learning trials (2s boxcar) 
and responses (impulse function at the time of response), as well as six motion 
parameters were included in the GLM. Since the majority of participants had reached 
asymptotic performance by the end of the second run, we focused on learned 
representations present in the latter half of learning. Thus, a second level GLM analysis 
was conducted to average the stimulus-specific parameter estimates from the third and 
fourth runs of the two classification tasks. This procedure resulted in, for each 
participant, whole brain activation patterns during the later stages of learning for each of 
the eight stimuli in both classification tasks.  
 
We compared neural measures of stimulus representation during learning to model 
predictions with a searchlight method (14). Using a searchlight sphere with a radius of 3 
voxels, we extracted a vector of activation values across all voxels within a searchlight 
sphere for each of the eight stimuli. The pairwise similarities between these activation 
vectors were calculated with Pearson correlation. The resulting similarity matrices 
captured the similarity structure among the neural representations of the stimuli during 
learning. We then tested whether or not the neural representations were consistent with 
model-based predictions of stimulus representations by calculating the Spearman 
correlation between the values in the upper triangles of the neural and model similarity 
matrices. A reshuffling randomization test was performed on the resulting correlation 
coefficient. For each iteration of the randomization test, the rows of the model similarity 
matrix were randomly shuffled and the Spearman correlation between the shuffled 
model and neural similarity matrices was calculated. This procedure was repeated 1000 
times to create a null distribution. Finally, a test statistic defined as the probability that 
the correlation coefficient between the actual model and neural similarity matrices was 
larger than the null distribution was calculated. This entire procedure was performed for 
each searchlight sphere location resulting in statistical maps that characterized the 
consistency between attention-biased model predictions (i.e., attention weighting 
hypothesis) and neural measures of learned stimulus representations for each 
participant in both tasks. A second analysis using the same methods was also 
performed that compared the neural measures of stimulus representations to similarity 
predictions based only on class associations (i.e., associative mapping hypothesis). 
Specifically, matrices representing whether or not pairs of stimuli were in the same class 
were constructed and evaluated for consistency with neural similarity matrices in the 
same manner as the model similarity matrices (Fig. 3). In separate analyses, the 
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searchlight method was applied to activation patterns present only in the hippocampus 
ROI. 
 
Group-level analyses were performed on the statistical maps calculated with the pattern 
similarity searchlight procedure. Each participant’s p-maps were transformed to z-
scores and normalized to MNI space using ANTS. We then performed a one-sample 
randomization test on the correspondence between attention weighting and neural 
similarity with voxelwise nonparametric permutation testing (5000 permutations) 
performed using FSL Randomise (15). To evaluate our hypothesis that the 
hippocampus builds representations consistent with attentional strategies, we 
performed a small volume cluster correction analysis restricted only to the 
hippocampus. Specifically, the resulting statistical maps from the hippocampal ROI (Fig. 
4a) were voxelwise thresholded at p = 0.005 and cluster corrected at p = 0.05 which 
corresponded to a cluster extent threshold of greater than 149 voxels as determined by 
AFNI 3dClustSim using the acf option, second-nearest neighbor clustering, and 2-sided 
thresholding. The version of 3dClustSim used was compiled on 1/21/2106 and included 
fixes for the recently discovered errors of failing to account for edge effects in 
simulations involving small regions and improperly accounting for spatial autocorrelation 
in smoothness estimates. 
 
A control analysis was conducted to interrogate the response magnitude across the 
learning tasks in the left anterior hippocampus region identified in the model-based RSA 
results (Fig. 4). Specifically, the average signal from the trial-by-trial betaseries within a 
region defined by the hippocampus cluster was extracted from the stimulus presentation 
phase of each trial for each participant. Response magnitude differences between the 
two tasks were evaluated with Wilcoxon signed rank tests and revealed no significant 
differences between task across the full experiment (Z = 0.091, p = 0.927), nor the early 
and late phases (early: Z = 0.183, p = 0.855; late: Z = 0.365, p = 0.715). There were 
also no significant differences in response amplitude across the early and late phases 
within the tasks (type 1: Z = 0.395, p = 0.693; type 2: Z = 0.760, p = 0.447). These null 
findings suggest the task-related differences in neural activity were not due to 
differences in overall engagement of the hippocampus, but at the level of neural 
representations. 
 
As an additional control analysis, we contrasted the model-based RSA results with a 
separate analysis employing a standard RSA approach (6, e.g., 9) wherein neural 
similarity is simply predicted to follow class association. This standard RSA approach 
was operationalized as a similarity matrix where pairs of stimuli in the same class had 
maximum similarity and pairs in different classes had minimum similarity. No HPC 
regions were consistent with simple class association, and the left anterior HPC cluster 
revealed in the model-based RSA remained significant when the model-based and 
standard RSA results were directly contrasted. These findings suggest that HPC 
dynamically codes for attention-weighted conceptual representations that are optimized 
for current learning goals. 
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Neurally-derived attention weights  
To visualize attentional tuning in the hippocampus region identified in the model-based 
RSA, we estimated attention weights from stimulus-specific neural representations. It is 
important to note that this analysis is not independent of the RSA findings. To be clear, 
we are not presenting it as additional evidence, but as a method for visually 
representing the conceptual coding in the hippocampal activation patterns identified by 
the RSA. Neurally-derived attention weights (λn) were estimated by first extracting the 
stimulus-specific neural representations from the left anterior hippocampal region from 
the late phase of learning in both tasks for each participant. These neural 
representations were extracted from the trial-by-trial betaseries used for the model-
based RSA. For each of the three stimulus feature dimensions, the average pairwise 
similarity between stimuli that shared the same value on the feature (e.g., both had thick 
legs or both had thin legs) was divided by the average similarity between stimuli that did 
not share the same value (e.g., one had thick legs, the other thin legs). This ratio served 
as a neural estimate of the attention weight for that feature. Pairwise similarity was 
calculated as the exponential of the negative Euclidean distance between stimulus 
representations. For each participant, neurally-derived attention weights were estimated 
for each feature dimension in the two learning tasks separately. These attention weights 
were normalized for each task to sum to 1 (λn mean and 95% confidence intervals for 
type 1: [0.409 ± 0.062, 0.289 ± 0.040, 0.302 ± 0.25]; and type 2: [0.277 ± 0.035, 0.322 ± 
0.043, 0.402 ± 0.059]). Finally, the attention weights for the two tasks were averaged 
across participants and projected into stimulus feature space (as defined in Table 3) to 
demonstrate how attentional tuning changed across tasks (Fig. 4b).  
 
Functional connectivity analysis 
The goal of the functional connectivity analysis was to evaluate the functional coupling 
between the hippocampal region showing attention-biased representations (Fig. 4) and 
the rest of the brain. In particular, we were interested in investigating how connectivity 
with the hippocampus is mediated by early versus late learning. We investigated 
connectivity with a psychophysiological interaction (PPI) analysis (16). Seed time 
courses from the left anterior hippocampal region identified in the pattern similarity 
analysis were extracted for each participant by averaging mean BOLD signal across the 
region separately for each time point. These seed time courses were then entered into a 
voxelwise GLM analysis of the functional data across the whole brain. A second level 
GLM analysis was conducted to contrast voxel time course connectivity with the 
hippocampal seed region time course in early versus late learning. Specifically, 
separately for the two tasks, first level parameter estimates from the first two functional 
runs were labeled as early learning and contrasted with parameter estimates from the 
last two functional runs. The resulting contrast images were normalized to MNI space 
using ANTS and submitted to a group analysis using FSL Randomise nonparametric 
randomization tests (5000 repetitions). The resulting statistic maps (Fig. 4c) were 
voxelwise thresholded at p < 0.005 and cluster corrected at p < 0.05 with a cluster 



 11 

extent threshold of 791 voxels as determined by 3dClustStim using the acf option, 
second-nearest neighbor clustering, and 2-sided thresholding (Table S2). 
 
 
anatomical region peak z-value extent (voxels) peak location 
  bilateral medial prefrontal cortex 4.34 2836 10, 43, -6 
  right inferior lateral occipital cortex 4.44 2386 35, -82, -11 
  right frontopolar cortex 4.12 1806 36, 57, -10 
  right dorsolateral prefrontal cortex 6.00 1155 58, -13, 48 
 
Table S2: Results of functional connectivity analysis. Clusters that survived statistical thresholding are 
described according to their corresponding anatomical region, peak z-value in the group-level statistical 
maps, cluster extent in voxels, and the location of the peak z-value in MNI coordinates.  
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