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Supplementary Fig 1. Different diversity patterns between humans and Drosophila. (A) The folded synonymous and 
nonsynonymous SFS for humans (blue) and Drosophila (red). The expected SFS under the MLEs of the model 
parameters are shown in light colors. The x-axis is binned according to the minor allele frequency. Sites with minor 
allele frequency of 21-50 are combined into the last bin. (B,C) Boxplot of the distribution of nonsynonymous to 
synonymous polymorphism ratio (pN/pS) per gene, for humans (B) and Drosophila (C). Results are shown for three 
different overall expression levels and two levels of tissue specificity (see main text). Broadly expressed genes have 
τ < 0.4, tissue specific genes have τ > 0.6.  
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Supplementary Fig 2. Expression profiles for human and Drosophila genes. (A-F) Expression profiles for human 
genes. (G-L) Expression profiles for Drosophila genes. Each grey line represents a gene. For each gene, the tissue is 
ordered according to the expression level, i.e. expression level is plotted in decreasing order, beginning with the 
tissue with the largest expression level. Genes are classified into broadly expressed genes (A, B, C, G, H, I) and 
tissue-specific genes (D, E, F, J, K, L), and into low (A, D, G, J), intermediate (B, E, H, K), and highly (C, F, I, L) 
expressed genes (see Online Methods for definitions). The red line represents the average across genes.  
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Supplementary Fig 3. Demographic parameter estimation for 300 simulated data sets. True parameter values are 
shown as crosses, estimated parameters as points. (A) Simulations under the full model. (B) Simulations under the 
constrained model (see main text). Note that the demographic parameter estimates are biased due to background 
selection and linked selection. However, DFE parameter estimates are unbiased (see Figs. 3A,B).   
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Supplementary Fig 4. The proportion of new mutations for various ranges of 2Ne|s|. Proportions are computed from 
the estimated (A) gamma distribution, (B) mixture of gamma distribution with neutral point mass, and (C) log-
normal distribution. The grey bars indicate the proportions under the null hypothesis of the same distribution of 
2Ne|s| in both species (constrained model). Darker colors in (B) reflect the estimated proportions of neutral 
mutations.  
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Supplementary Fig 5. The proportion of new mutations for various ranges of |s|. (A) Using data filtered for genes 
that have orthologs in both species. (B) Using data after filtering out singletons. (C) Assuming the recent mutation 
rate estimates (see main text). (D) Using the recent mutation rate estimates and filtering out singletons. Proportions 
are computed from the estimated gamma distribution (left column), mixture of gamma distribution with neutral 
point mass (middle column), and log-normal distribution (right column). The grey bars indicate the proportions 
under the null hypothesis of the same distribution of |s| in both species (constrained model). Darker colors in the 
middle column reflect the estimated proportions of neutral mutations. 
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Supplementary Fig 6. The proportion of new mutations for various ranges of 2Ne|s|. (A) Using data filtered for genes 
that have orthologs in both species. (B) Using data after filtering out singletons. Proportions are computed from the 
estimated gamma distribution (left column), mixture of gamma distribution with neutral point mass (middle 
column), and log-normal distribution (right column). The grey bars indicate the proportions under the null 
hypothesis of the same distribution of 2Ne|s| in both species (constrained model). Darker colors in the middle column 
reflect the estimated proportions of neutral mutations.
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Supplementary Fig 7. Examining the possible effect of strong selection on synonymous mutations in Drosophila on 
estimates of the proportion of new nonsynonymous mutations for various ranges of 2Ne|s| and s. We generated a 
modified SFS that accounts for strong selection on synonymous sites. The modified SFS has 1/(1-0.22) times more 
SNPs than the observed synonymous SFS, and the same shape as the SFS from short introns (see Online Methods). 
Thus, it represents the truly neutral synonymous SFS when assuming that synonymous diversity is 22% smaller due 
to strong selection, and mutations in short introns are neutral1. Proportions of the DFE for nonsynonymous 
mutations are computed from the estimated (A) gamma distribution, (B) mixture of gamma distribution with neutral 
point mass, and (C) log-normal distribution. Darker colors in (B) reflect the estimated proportions of neutral 
mutations. Note that the estimated DFEs for nonsynonymous mutations change only slightly when using the 
modified SFS as a neutral standard than when using the plain synonymous SFS as a neutral standard.   
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Supplementary Fig 8. Robustness of the difference in expected selection coefficient between humans and 
Drosophila to the functional form of the DFE. (A) Estimated average selection coefficient in humans over 
Drosophila (E[s]Human/E[s]Drosophila), assuming different functional forms of the DFE. E[s] is consistently estimated to 
be more negative in humans than in Drosophila. The individually best fitting DFE refers to the Piganeau and Eyre-
Walker distribution in humans and the Gamma + Neutral distribution in Drosophila, and suggests E[s] is 93-fold 
more deleterious (i.e. negative) in humans than Drosophila. (B) Back-mutation models assumes that the distribution 
of the absolute value of s (effect size |s|) is the same between species. Therefore, back-mutation models predict that 
although E[s] might be different due to different proportions of beneficial mutations, the average effect size (E[|s|]) 
should be the same between species. Thus, in (B) we show estimated average effect sizes in humans over 
Drosophila (E[|s|]Human/E[|s|]Drosophila), assuming different functional forms of the DFE. Note that all examined DFEs 
in (B) contain beneficial mutations because this is a central feature of the back-mutation model. The average effect 
size E[|s|] is consistently estimated to be larger in humans than in Drosophila, in contradiction to the back-mutation 
model. The individually best fitting DFE refers to the Piganeau and Eyre-Walker distribution in humans and the 
shifted gamma distribution in Drosophila, and suggests E[|s|] is 86-fold larger in humans. In both (A) and (B), the 
null distribution in grey was calculated from forward simulations assuming the same gamma DFE in both species 
(see Online Methods). These simulations suggest it is unlikely to see E[s]Human/E[s]Drosophila values >2 assuming the 
same DFE between both species. Further, E[s]Human/E[s]Drosophila (or E[|s|]Human/E[|s|]Drosophila) from the empirical data 
is consistently >20 regardless of the function form of the DFE assumed.  
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Supplementary Fig 9. The effect of positive selection in Drosophila on the inference of the deleterious DFE. We 
assume that there is both positive and negative selection in Drosophila, but only negative selection in humans. For 
simulations with positive selection, 0.5% of new nonsynonymous mutations are positively selected with Nes=12. We 
estimated shape and scale parameters of a gamma DFE that only includes negative selection from 300 simulations of 
Drosophila (red, orange) data. Human results (blue) are the same as in Fig. 3 and are included only for comparative 
purposes. (A) Estimates from simulations under the alternative hypothesis (H1), i.e. assuming maximum likelihood 
gamma parameters in both species (dashed lines). Results show that indirect effects of positive selection (selective 
sweeps) do not bias our estimates in Drosophila (red), and that indirect plus direct effects (i.e. here positively 
selected nonsynonymous variants are included in the nonsynonymous SFS) of positive selection only slightly bias 
the estimates to lower shape parameters (orange). (B) Estimates from simulations under the null hypothesis (H0), i.e. 
assuming a single set of parameters of the deleterious gamma DFE in both species (dashed lines). Results show that, 
under H0, the indirect effects of positive selection do not bias our estimates in Drosophila (red), and that indirect 
plus direct effects of positive selection only slightly bias the estimates to lower shape and higher scale parameters 
(orange).  
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Supplementary Fig 10. The proportion of new mutations for various ranges of 2Ne|s| and s for humans, Mus 
musculus castaneus (mouse), Drosophila melanogaster, and Saccharomyces paradoxus (Yeast). Proportions are 
computed from the estimated (A) gamma distribution, (B) mixture of gamma distribution with neutral point mass, 
and (C) log-normal distribution. Darker colors in (B) reflect the estimated proportions of neutral mutations. 
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Supplementary Fig 11. Parameter estimates of the Lourenço et al. DFE in four species with increasing complexity: 
Saccharomyces paradoxus (yeast), Drosophila melanogaster (fruitfly), Mus musculus castaneus (mouse), and Homo 
sapiens (humans). ‘Scale’ refers to the scale parameter σ in Lourenço et al.2, and ‘Pleiotropy’ to the pleiotropy 
parameter m. Note that the scale parameter increases with increasing complexity, but the pleiotropy parameter does 
not. 
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Supplementary Fig 12. The effect of gene expression on estimated E[-s] under a gamma DFE, and on the estimated 
effective population size. (A) Average selection coefficient E[-s] is 50-80 fold smaller in Drosophila than in 
humans, independent of expression level or tissue specificity. (B) Estimated ancestral population size versus 
expression profiles. The ancestral population size was calculated from estimates of the synonymous population 
mutation rate θS for each category of genes, by fitting separate demographic models to the respective synonymous 
SFS, but assuming the same neutral mutation rate for each category (see Online Methods). Differences in the 
effective population size between expression categories can be the result of varying levels of linked selection (e.g. 
background selection, selective sweeps) on synonymous diversity.  
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Supplementary Fig 13. The effect of gene expression on parameter estimates of the Lourenço et al. DFE. (A) 
Estimated Lourenço et al. DFE parameters for genes with different gene expression profiles. Average selection 
coefficient (E[-s]) is 50-80 fold smaller in Drosophila than in humans, independent of expression level or tissue 
specificity. (B) The pleiotropy parameter of the Lourenço et al. DFE depends on the breadth of gene expression. 
Tissue-specific genes have a smaller pleiotropy parameter m than broadly expressed genes, suggesting less 
pleiotropy in tissue-specific genes. 
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Supplementary Fig 14. Estimating the proportions of mutations in different bins of |s| assuming a non-parametric 
discretized distribution as defined in Kim et al.3. The DFE assumes a uniform probability mass within each bin. 
Estimates using this DFE were shown to correctly approximate the general form of the underlying DFE even if the 
true DFE is multi-modal3. Errors bars denote 95% confidence intervals obtained from simulations where each entry 
of the nonsynonymous SFS is drawn from a Poisson distribution with the mean being that expected under the 
demographic and selection model.  
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Supplementary Table 1. Demographic parameter estimates. 

a Assuming phylogenetic mutation rate estimates 
b Assuming estimates of current mutation rate 
  

Filter 
Synonymous 

sequence 
length 

Species θS 
Time in 
units of 

2Ne,ancestral 

Ne,current/ 
Ne,ancestral 

Ne,ancestral
a Ne,Drosophila/ 

Ne,Humans
a Ne,ancestral

b Ne,Drosophila/ 
Ne,Humans

b 
Log- 

likelihood 

All 
5.86E+06 Humans 3,869 

(63.6) 
0.419 

(0.0269) 
2.33 

(0.0393) 6.60E+03 
422 

1.10E+04 
127 

-224.3 

4.74E+06 Drosophila 79,253 
(196) 

0.0919 
(0.00156) 

2.73 
(0.0187) 

2.79E+06 1.39E+06 -471.8 

No 
singletons 

5.86E+06 Humans 
3,625 
(102) 

0.610 
(0.0666) 

2.21 
(0.0544) 6.18E+03 

443 
1.03E+04 

133 
-185.7 

4.74E+06 Drosophila 77,883 
(225) 

0.122 
(0.00347) 

2.11 
(0.0292) 2.74E+06 1.37E+06 -318.4 

Only 
common 

genes 

3.37E+06 Humans 2,045 
(43.2) 

0.418 
(0.0321) 

2.49 
(0.0553) 6.08E+03 

445 
1.01E+04 

133 
-208.1 

2.95E+06 Drosophila 47,852 
(153) 

0.0958 
(0.00203) 

2.74 
(0.0222) 

2.70E+06 1.35E+06 -379.4 
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Supplementary Table 2. Testing the null hypothesis of the same gamma DFE in both humans and Drosophila. 
Various types of data filtering are considered, as well as a different set of mutation rate estimates that are based on 
estimates of the current mutation rate (see main text). The likelihood ratio test statistic Λ = –
2*log(LConstrained,max/LFull,max) tests the null hypothesis of no difference in shape and scale parameters between humans 
and Drosophila. 

  

GAMMA DFE 
	  

  Hypothesis Species Shape (α) Scale (β) E[|s|] Log -
likelihood 

Λ	   p-value 
H1/H0 

All Data 

Full model (H1) 

Humans 0.19 5.13E-02 4.88E-03 -248 

  	  	  Drosophila 0.35 3.77E-04 6.65E-05 -389 

Total       -637 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.25 2.87E-03 7.25E-04 -5737 10199 <1E-‐16	  

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.33 2504 407 -12919 24563 <1E-‐16	  

Only 
orthologous 

genes 

Full model (H1) 

Humans 0.25 4.36E-02 5.38E-03 -205 

  	  	  Drosophila 0.40 4.07E-04 8.19E-05 -285 

Total       -490 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.27 4.48E-03 1.22E-03 -4174 7369 <1E-‐16	  

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.38 2521 473 -6945 12911 <1E-‐16	  

No singletons 

Full model (H1) 

Humans 0.16 1.38E-01 1.10E-02 -181 

  	  	  Drosophila 0.33 6.01E-04 9.91E-05 -252 

Total       -433 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.22 1.63E-02 3.52E-03 -1546 2227 <1E-‐16	  

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.29 5514 797 -10156 19447 <1E-‐16	  

Using recent 
mutation rate 

estimates 

Full model (H1) 

Humans 0.19 3.08E-02 2.93E-03 -248 

  	  	  Drosophila 0.35 7.54E-04 1.33E-04 -389 

Total       -637 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.30 2.01E-03 5.97E-04 -2767 4260 <1E-‐16	  

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.33 2504 407 -12919 24563 <1E-‐16	  

No singletons 
& recent 

mutation rate 
estimates 

Full model (H1) 

Humans 0.16 8.29E-02 6.62E-03 -181 

  	  	  Drosophila 0.33 1.20E-03 1.98E-04 -252 

Total       -433 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  0.26 5.70E-03 1.51E-03 -893 921 <1E-‐16	  

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  0.29 5514 797 -10156 19447 <1E-‐16	  
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Supplementary Table 3. Testing the null hypothesis of the same log-normal DFE in both humans and Drosophila. 
Various types of data filtering are considered, as well as a different set of mutation rate estimates that are based on 
estimates of the current mutation rate (see Online Methods). The likelihood ratio test statistic Λ = –
2*log(LConstrained,max/LFull,max) tests the null hypothesis of no difference in the two parameters of the log-normal 
distribution (mean and SD) between humans and Drosophila. 

 
  

LOGNORMAL DFE 
 

  
Hypothesis Species Mean SD Median 

(|s|) 
Log -

likelihood Λ p-value 
H1/H0 

All Data 

Full model (H1) 

Humans -7.24 4.58 3.58E-04 -282 

    Drosophila -9.61 4.01 3.36E-05 -649 

Total       -930 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -8.91 4.71 6.73E-05 -2841 3822 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  5.91 4.25 183 -13259 24658 <1E-16 

Only ortholog 
genes 

Full model (H1) 

Humans -6.43 4.02 8.05E-04 -226 

    Drosophila -9.10 3.79 5.57E-05 -426 

Total       -652 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -8.17 4.61 1.41E-04 -2262 3220 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  6.40 3.99 302 -7131 12959 <1E-16 

No singletons 

Full model (H1) 

Humans -6.79 5.94 5.62E-04 -181 

    Drosophila -8.67 4.77 8.54E-05 -261 

Total       -442 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -7.52 5.78 2.70E-04 -787 690 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  7.09 5.30 602 -10174 19466 <1E-16 

Using recent 
mutation rate 

estimates 

Full model (H1) 

Humans -7.75 4.58 2.15E-04 -282 

    Drosophila -8.91 4.01 6.72E-05 -649 

Total       -930 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -8.60 4.32 9.17E-05 -1448 1035 <1E-16 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  5.91 4.25 183 -2841 3822 <1E-16 

No singletons 
& recent 

mutation rate 
estimates 

Full model (H1) 

Humans -7.30 5.94 3.37E-04 -181 

    Drosophila -7.98 4.77 1.71E-04 -261 

Total       -442 

Constrained model (H0): 
DFE(s)Humans=DFE(s)Drosophila 

  -7.72 5.00 2.21E-04 -472 61 
4.82947

E-14 

Constrained model (H0): 
DFE(Nes)Humans=DFE(Nes)Drosophila 

  7.09 5.30 602 -10174 19466 <1E-16 
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Supplementary Table 4. Maximum likelihood parameter estimates and log-likelihoods for alternative DFE functions. 
The last column shows the difference in the Akaike Information Criterion (AIC) between the relevant DFE model and 
the gamma DFE.  

Species DFE Parameter 1 Parameter 2 Parameter 3 Parameter 4 Log - 
likelihood AICModel 

AICModel-
AICGammaDFE 

H
um

an
s 

Gamma shape=0.19 scale=0.051   -248 500 0 

Lognormal mean=-7.24 SD=4.58   -282 567 67 

Gamma+Neutral shape=0.79 scale=0.0062 pneutral=0.304  -223 452 -48 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.31 scale=0.014 shift=0.81  -238 481 -19 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.74 scale=0.015 Ne,long-term=4760  -220 445 -55 

Lourenço et al. 
(2011), eq.8 

z=0.0092 n=0.74 m=0.63 sigma=0.083 -228 463 -37 

Lourenço et al. 
(2011), eq.15 

m=0.63 sigma=0.091 Ne,long-term=2100  -225 457 -43 

D
. m

el
an

og
as

te
r 

Gamma shape=0.35 scale=3.8E-04   -389 782 0 

Lognormal mean=-9.6 SD=4.0   -649 1302 519 

Gamma+Neutral shape=0.38 scale=0.00032 pneutral=0.011  -384 775 -7.5 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.36 scale=0.00036 shift=0.027  -388 782 -0.7 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.35 scale=0.00038 
Ne,long-term= 
5.2E+19 

 -389 784 2.2 

Lourenço et al. 
(2011), eq.8 

z=0.00035 n=14632 m=0.70 sigma=0.014 -389 787 4.6 

Lourenço et al. 
(2011), eq.15 

m=0.71 sigma=0.014 Ne=8.4e7  -390 785 3.0 

S.
 p

ar
ad

ox
us

 

Gamma shape=0.22 scale=3.7E-04   -11.6 27.3 0 

Lognormal mean=-10.5 SD=6.0   -11.6 27.3 0 

Gamma+Neutral shape=1.1 scale=5.5E-6 pneutral=0.15  -11.6 29.2 1.9 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=0.24 scale=0.00025 shift=0.086  -11.6 29.2 1.9 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.56 scale=1.00 Ne,long-term=43000  -85.3 177 149 

Lourenço et al. 
(2011), eq.8 

z=0.00068 n=5.8 m=76 sigma=0.00014 -13.2 34.5 7.2 

Lourenço et al. 
(2011), eq.15 

m=0.53 sigma=0.0095 Ne=7.3E6  -11.6 29.2 1.9 

M
. m

us
cu

lu
s 

ca
st

an
eu

s 

Gamma shape=0.22 scale=0.016   -19.0 42.0 0 

Lognormal mean=-6.8 SD=6.2   -19.0 42.0 0 

Gamma+Neutral shape=0.79 scale=0.00036 pneutral=0.14  -19.0 43.9 1.9 

Martin and 
Lenormand (2006), 

eq. 5 (shifted gamma) 
shape=1.2 scale=0.00010 shift=8.0  -18.9 43.9 1.9 

Piganeau and Eyre-
Walker (2003), eq. 7 

shape=0.31 scale=0.0022 
Ne,long-term= 

194000 
 -19.0 44.0 2.0 

Lourenço et al. 
(2011), eq.8 

z=0.0040 n=4.3 m=1.3 sigma=0.012 -18.9 45.9 3.9 

Lourenço et al. 
(2011), eq.15 

m=0.44 sigma=0.088 Ne=1.98E7  -19.0 44.0 2.0 
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Supplementary Table 5. Likelihood ratio (LR) test statistics for all pairwise species comparisons. The LR test statistic 
tests the null hypothesis of the same DFE in both species, either on scale of s or Nes. It assumes that the true DFE is 
gamma distributed. A star indicates rejection of the null hypothesis at a 1% significance level, based on the 
simulation-derived null distribution shown in Fig. 3C. 

  

Null	  hypothesis	   Species	  pair	   Human	   Mouse	   Drosophila	   Yeast	  

DFE(s)Species	  'A'	  =	  
DFE(s)Species	  'B'	  

Human	   0	   	  	   	  	   	  	  
Mouse	   0.11	   0	   	  	   	  	  
Drosophila	   10199*	   11	   0	   	  	  
Yeast	   58*	   17	   103*	   0	  

DFE(Nes)Species	  'A'	  =	  
DFE(Nes)Species	  'B'	  

Human	   0	   	  	   	  	   	  	  
Mouse	   58*	   0	   	  	   	  	  
Drosophila	   24563*	   20	   0	   	  	  
Yeast	   43*	   3.1	   98*	   0	  
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Supplementary Note 1 
 
Robustness of DFE inference to possible confounding factors 
 We inferred the shape (α) and scale (β) parameters of a gamma-distributed DFE conditional 
on the estimated demographic parameters in each species (Supplementary Table 2; see Online 
Methods). We first fit a null model where the shape and scale parameters were constrained to 
be the same in both species (i.e., αH = αD and βH = βD), where H denotes human and D denotes 
Drosophila. This corresponds to a model where the DFE of s is the same in both species. 
Importantly, although the DFE is constrained to be the same, we condition on the inferred 
demographic model for each species when estimating the DFE. As such, this approach 
appropriately controls for the differences in population size between species. Further, by fitting a 
size change model, we also aim to control for any bias of the DFE parameter estimates caused 
by background selection, as suggested by Messer and Petrov4 and by theoretical work5. We 
next estimated parameters in a full model where each species was allowed to have its own DFE 
(i.e., αH ≠ αD and βH ≠βD). Because the constrained model uses a subset of the parameters of 
the full model, the models are nested and we can compare the fit of the two models to our data 
using a likelihood ratio test (LRT), where the test statistic (Λ) is asymptotically chi-square 
distributed with two degrees of freedom. We find that Λ > 920 (p < 10-16), even after employing 
various data quality filters, or using alternate mutation rate estimates (Supplementary Table 2). 
Similarly large Λ values are found when assuming a log-normal instead of a gamma distributed 
DFE (Supplementary Table 3). Individually, the gamma distribution fits better than the log-
normal distribution in both species (Supplementary Table 2, Supplementary Table 3).  

The results based on both gamma and log-normal DFEs suggest that mutations are on 
average about 80 fold more deleterious in humans than in Drosophila. However, due to the long 
tail of the gamma distribution, the scale parameter is difficult to estimate and potentially 
sensitive to the actual functional form of the DFE. Therefore, we tested the robustness of our 
findings by examining a range of alternative functional forms of the DFE. We tested the 
following additional distributions: 1) gamma + neutral point mass, 2) a DFE based on eq. 7 in 
Piganeau and Eyre-Walker6, 3) a DFE based on eq. 8 in Lourenco et al.2 4) a DFE based on eq. 
15 in Lourenco et al.2 and 5) a DFE based on eq. 5 in Martin and Lenormand7. For all tested 
cases, the average selection coefficient is at least 22 times more deleterious in humans than in 
Drosophila (Supplementary Fig. 8). Simulations under a null model suggest only an at most 1.5 
fold difference at the 99% confidence level due to uncertainty in estimated parameters. In other 
words, we observe more deleterious mutations in humans than in Drosophila for all of the 
different functional forms of the DFE assumed during the inference. In addition to these 
distributions, we also tested a nonparametric discretized distribution to infer the properties of the 
DFE in humans and Drosophila (Supplementary Fig. 14). The distribution assumes four 
mutational effect classes, and each class is modeled as a uniform distribution. The classes are 
placed consecutive to each other, with the following boundaries on s: [0, -1E-5), [-1E-5, -1E-4), 
[-1E-4, -1E-3), [-1E-3, -1]. The probabilities of a mutation falling into each class are the four 
estimated parameters of the DFE. This and similar nonparametric distributions were shown to 
correctly approximate the general form of the underlying DFE even if the true DFE is multi-
modal3,8. We found that humans have four-fold fewer mutations with |s| < 10-5, but almost three-
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fold more mutations with |s| > 10-3 than Drosophila, again indicating a larger proportion of 
strongly deleterious mutations in humans than in Drosophila (Supplementary Fig. 14).  
In conclusion, these results indicate that a model with distinct gamma DFEs in humans and 
Drosophila fits the data significantly better than a model with the same DFE in both species (p < 
10-16). Further, mutations are estimated to be more deleterious in humans than in Drosophila, 
and this result is highly robust to the assumed functional form of the DFE. 
 Several factors could lead us to falsely reject the null hypothesis of the same DFE in both 
species. First, the Poisson Random Field approach for calculating the likelihood assumes that 
allele frequencies at different SNPs are independent. Violations of this assumption can lead to 
LRTs being too liberal9,10. Second, our inferences do not incorporate uncertainty in the 
demographic parameter estimates. Uncertainty in the demographic parameters might further 
broaden the distribution of Λ. Third, we numerically optimize the likelihood, which might result in 
finding suboptimal solutions to the true maximum likelihood estimate. Finally, the Poisson 
Random Field approach assumes that there is no interference between selected sites, or 
between selected and neutral sites. However, background selection, selective sweeps, and 
interference between selected sites can bias estimates of demographic parameters11 and could 
lead to biased estimates of DFE parameters.  

To test if these four factors in combination lead to false-rejection of the null hypothesis, we 
performed forward simulations under the Wright-Fisher model including realistic levels of 
background selection and linkage disequilibrium. We assumed the estimated demographic 
models (Supplementary Table 1) and the shape and scale estimates of both the full model and 
the constrained model (Supplementary Table 2, All Data). We then performed our inference 
procedure on each simulated dataset and tabulated the distribution of Λ. Our forward 
simulations assumed a spatial distribution of selected elements that reflects the empirical 
distribution of coding and conserved non-coding (CNC) sequence in the genome of humans and 
Drosophila. We further simulated under realistic maps of recombination rate across the two 
genomes (see Online Methods). Mutations in CNC regions are assumed to be selected with 
gamma distributed selection coefficients for humans12 and Drosophila13. The simulations 
resulted in considerable amounts of background selection, with average reduction in neutral 
diversity of 10% in humans and 12% in Drosophila. However, when we estimated the DFE from 
the simulations of the full model, the estimates were unbiased (Fig. 3A). This suggests that the 
size change model fit to synonymous polymorphisms successfully controls for the effects of 
background selection (Supplementary Fig. 3, see also10). As expected, the null distribution of Λ 
derived from simulations under the constrained model is broader than the chi-square distribution 
with two degrees of freedom (Fig. 3C). However, all of the 300 Λ values that we simulated were 
smaller than 34, suggesting the probability of seeing a Λ value bigger than 920 is substantially 
less than 0.33% under the null.  

Since selective sweeps were suggested to be a major determinant of genetic diversity in 
Drosophila14, we also examined the effect of recurrent selective sweeps on our inference. As 
estimated by Keightley et al.15, we modified the DFE used to simulate the data such that 0.5% of 
new nonsynonymous mutations were beneficial with Nes=12. Note that although the proportion 
of beneficial mutations seems small, it is in line with MacDonald-Kreitman table based estimates 
that 50% of amino acid substitutions are positively selected15. We then inferred the demography 
using synonymous sites and then, conditional on the demographic parameter estimates, 
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inferred the DFE on nonsynonymous mutations. Importantly, to mimic the inference done on the 
empirical data, the DFE that we fit to the new nonsynonymous mutations was a gamma 
distribution that only included deleterious mutations. We did the inference of the DFE of 
nonsynonymous mutations in two ways. First, we removed all the beneficial segregating 
nonsynonymous variants from the simulated data. This scenario examines the indirect effects of 
positive selection on segregating deleterious mutations (i.e. the effect of linkage of a deleterious 
mutation to a positively selected one). In line with other studies16, we found that selective 
sweeps, similar to background selection, do not significantly bias our DFE estimates when 
correcting for the effect of demography using the observed SFS at neutral sites (Supplementary 
Fig. 9). Second, we repeated our inference of the DFE of nonsynonymous mutations leaving the 
segregating beneficial variants in the simulated SFS. Biologically, this scenario allows for some 
segregating nonsynonymous polymorphisms to be under positive selection. We then fit a 
gamma DFE that included only deleterious mutations. Here, the presence of beneficial 
nonsynonymous polymorphisms in the SFS slightly biases estimates due to model 
misspecification. However, this bias is only small and cannot explain the difference in estimates 
that we observe between Drosophila and humans (Supplementary Fig. 9).  

Another potential confounder of our inference is strong selection on synonymous sites. A 
recent study suggested that selection on synonymous sites in Drosophila could be strong, and 
that synonymous diversity is reduced by 22% due to this effect of strong selection1. This study is 
based on comparing patterns of genetic diversity between synonymous sites and short introns. 
Other studies suggested that the positions 8-30 of short introns (<=65bp) can be used as a 
neutral reference that is free of the influence of weak or strong selection17,18. However, 
differences in the mutation rate between synonymous and intronic sites make direct use of the 
intronic SFS as neutral standard difficult18. Therefore, to test the proposed effect of strong 
selection on synonymous sites, we generated a truly neutral synonymous SFS, assuming that 
the study of Lawrie et al.1 is correct and 22% of synonymous diversity is missing due to strong 
selection. We generate this new neutral synonymous SFS by 1) estimating the shape (i.e. the 
proportional SFS, or the proportions of SNPs at each frequency bin) of the SFS from data from 
short introns according to the definition in Parsch et al.17, and 2) setting the total synonymous 
SNP count to a factor of 1/(1-0.22) larger than what is observed for synonymous sites in the 
data. We use this new synonymous SFS as neutral standard for estimating synonymous 𝜃!, 
demographic parameters, and effective population size. We then use this new estimate of Ne 
and 𝜃!  to infer the distribution of s on nonsynonymous mutations from the estimates of 2 Nes. 
We see no qualitative difference in the estimated proportions of mutations in different ‘s’ or ‘Nes’ 
bins compared to the results using plain synonymous sites as neutral reference (Supplementary 
Fig. 7). In particular, the difference in the DFE we observe between humans and Drosophila is 
robust to which neutral standard is used.  

In summary, a combination of confounding factors of linkage, uncertainty in demographic 
parameters, background selection, selective sweeps, interference, selection on synonymous 
sites, and poor numerical optimization cannot account for our findings of different DFEs 
between human and Drosophila.  
 Another concern is that the observed differences in the DFE between species could be 
solely due to genes that are specific to one species that might be under more or less constraint 
than genes that are common to both species. Further, studies of the rate of protein sequence 
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evolution suggest that levels of evolutionary constraint, and therefore the DFE, strongly depend 
on expression level and tissue specificity of the genes19–21. Thus, we investigated how these 
factors affect our results. 
 To find orthologous genes between humans and Drosophila, we integrate 10 different tools 
for predicting orthologous gene relationship by using the DIOPT diseases and traits query tool 
(DIOPT-DIST; http://www.flyrnai.org/diopt-dist). We identify a highly confident set of orthologous 
genes by requiring the orthologous relationship to be supported by at least 4 different prediction 
tools, resulting in retaining about half of the genes in both humans (7356/14245) and Drosophila 
(5827/12304). Inferences based on this set of genes were similar to those described above, and 
revealed a significant difference in the DFE between humans and Drosophila (Λ = 7,369, p < 10-

16; see Supplementary Table 2, Supplementary Table 3, Supplementary Fig. 5A, Supplementary 
Fig. 6A).  
 To investigate how differences in gene expression could affect our results, we classify 
genes into sets with different gene expression profiles (Supplementary Fig. 2; see Online 
Methods). We use two recent gene expression datasets from humans22 and Drosophila23 that 
provide mRNA expression level estimates in 27 and 29 different tissues, respectively. We 
computed average expression level, and τ as a measure of tissue specificity for each gene. We 
further classified genes as low, medium, or highly expressed, and tissue specific (τ > 0.6) or 
broadly expressed (τ < 0.4). We found differences in the nonsynonymous over synonymous 
polymorphism ratio for genes with different expression profiles in both species, suggesting 
differences in constraint, and thus the DFE, between genes (Supplementary Fig. 1). However, 
fitting a gamma DFE to each set of genes using our method, we still find that the average 
selection coefficient E[s] is about 50-80 fold more negative for humans than for Drosophila, 
regardless of the overall expression level or tissue specificity of the genes (Supplementary Fig. 
12A). In summary, different sets of genes have very different DFEs. However, this effect cannot 
explain our findings that selection coefficients are more deleterious in humans than in 
Drosophila.  
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Supplementary Note 2 
 
Theoretical models of DFE evolution 
The factors that drive differences in the DFE between humans and Drosophila are unclear. As 
discussed in the main text, several theoretical models make predictions regarding the factors 
that are influencing the evolution of the DFE, but they have not been tested with population 
genetic data from natural populations. These four categories of models lead to contrasting 
predictions regarding DFE differences between Drosophila and humans. Here we describe the 
assumptions and the predictions of the four models that we use to discriminate among them. 
Protein stability models 
The basic idea behind protein stability models is that much of the selection pressure on coding 
regions involves maintaining thermodynamic stability of the proteins19,20,24. Fitness of a protein is 
a concave function of “protein folding stability”, the difference in free energy between the folded 
and the unfolded protein state. The shape of the function is defined by the fraction of proteins 
that fold at equilibrium24, the cytotoxic effects of protein misfolding25, or the effect of enzyme 
stability on metabolic flux25. The distribution of Nes values that is generated by such a one-
dimensional fitness-phenotype relationship was shown to be gamma distributed25 and 
independent of the effective population size (Ne) when at equilibrium24. Thus, this model predicts 
that Nes is the same across taxa. Since the effective population size (Ne) in Drosophila is 
estimated to be 130-420 times larger in humans, this model predicts that |s| must be at least 
130 times smaller in Drosophila. We observe a factor of less than 100 (Supplementary Fig. 8). 
The discrepancy is even more extreme in a comparison of humans with mouse, where 
complexity might be considered more comparable. Here, effective population size is estimated 
to be about 43 times larger than in humans, thus |s| must be 43 times smaller in mouse. We 
estimate a factor of only 2.8 (Fig. 4A), inconsistent with the protein stability prediction.  
 Note that a major assumption made by protein stability models is equimutability26, meaning 
that the effect size distribution of a mutation on protein stability (ΔΔG) is independent of the 
stability of the wild-type (ΔG). This assumption has been verified experimentally and with 
simulations27–29, however, some authors propose a negative correlation between ΔΔG and 
ΔG25,30. Another key assumption is constant population size. Long-term fluctuating population 
size was shown to have an effect on the DFE from protein stability models when averaged over 
time24. Further studies on the relevance of such deviations from model assumptions for the 
expected DFE under protein stability models are warranted. 
Back-mutation models 
Back-mutations restore the ancestral state after a previous mutation has occurred. For example, 
after an A to G mutation has fixed in a population, a new G to A mutation would be referred to 
as a back-mutation. Back-mutation models rest on the assumption that if there is a category of 
slightly deleterious mutations that fix in the population, then there should also be a category of 
slightly advantageous back-mutations, i.e. mutations back to the ancestral state31. These 
models usually make two assumptions31–34: 1) the back-mutation has the same absolute value 
of selection coefficient as the forward-mutation, but with opposite sign, and 2) there is no 
epistasis, i.e. the selection coefficient of a mutation is independent of the genetic background. 
Back-mutations models predict that in small populations, the proportion of slightly beneficial 
mutations is greater than in large populations, because more slightly deleterious mutations can 
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become fixed in small populations, leading to more opportunities for new beneficial back 
mutations. However, this mechanism is slow, since it relies on the occurrence of new mutations 
and their fixation. Thus, this model predicts that long-term effective population size (Ne,long-term) is 
a key factor determining the DFE.  

Piganeau and Eyre-Walker6, eq. 7, derived a formula for the equilibrium DFE as a function 
of population size (see also eq. 6 in Rice et al.34). To test predictions of the back-mutation 
model, we use the formula of Piganeau and Eyre-Walker with our Poisson Random Field 
method by assuming gamma distributed effect sizes (i.e., |s| ~ Γ(α, β)). Importantly, because the 
back-mutation model does not make any prediction about how this effect size distribution (the 
distribution of |s|) differs between species, we assume that under the null model it is the same 
between species, and all the differences in the DFE we see between species are due to 
different proportions of beneficial vs. deleterious mutations. Thus, we can test the back-mutation 
model by testing for differences in the effect size distribution between species, for example by 
testing for differences in E[|s|]. 
Mutational robustness models 
Mutational robustness models postulate that more robust organisms have, on average, less 
deleterious mutations35. There are several mechanisms that could lead to increased or 
decreased levels of robustness. Kimura was one of the first to suggest that more complex 
organisms have a higher level of physiological homeostasis than less complex organisms, 
which should lead to a larger proportion of neutral mutations and thus more robustness36. Later 
theoretical work and computer simulations supported this idea by showing that robustness 
emerges directly as a property of complex metabolic and regulatory networks, and that more 
highly connected networks have higher robustness37–40. In other studies, robustness is not an 
intrinsic property of the system, but evolves directly under natural selection. For example, two-
locus models have been developed where mutations at the first (modifier) locus reduce the 
deleterious selection coefficient of mutations at the second locus41. Modifier mutations fix 
because they reduce the mutational load of the robust lineages. A specific example of such 
modifier mutations is mutations that increase the expression level of heat shock proteins. Heat 
shock proteins aid in correct folding and enhance stability of proteins. They allow mutated 
proteins to retain their correct function and thus reduce the deleterious effect of the mutation42. 
In the context of Fisher’s Geometrical Model (see the next model description), evolution of 
robustness is modeled by allowing modifier mutations to affect the flatness of the fitness 
function, such that the same mutation has a smaller effect on fitness in a more robust organisms 
than in less robust ones43. In such models, smaller populations tend to evolve higher levels of 
robustness44, and this tendency is increased by higher phenotypic complexity and more positive 
epistasis43.  
 Irrespective of which factor is driving the evolution of robustness, these models predict 
greater mutational robustness in humans than in Drosophila, because humans are more 
complex and have a smaller effective population size compared to Drosophila. Further, 
robustness models predict that less pleiotropic mutations are more deleterious, since the 
smaller effective complexity of such mutations impedes the evolution of robustness. 
Fisher’s Geometrical Model (FGM) 
In the final model, FGM, phenotypes are represented as points in a multidimensional space, and 
fitness is a decreasing function of the distance to the optimal phenotype35. The dimensionality of 
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the phenotype space is termed “complexity”. Mutations are represented as random vectors that 
change the current multivariate phenotype to a random new phenotype with a new fitness value. 
Recent studies have increased the realism of FGM, for example by relaxing the assumption that 
every mutation affects every phenotype (restricted pleiotropy29–31), or accounting for correlations 
in the fitness function7,46. Explicit solutions for the shape of the DFE have been derived under 
the assumption that both the fitness function and the mutational distribution are Gaussian 
functions35,45,2,7.  

Here, we test three predictions of FGM (see also Fig. 1): 1) More complex organisms have 
more deleterious mutations, since mutations are more likely to disrupt something important in a 
complex organism than in a simple one47 (see Supplementary Note 3 for assumptions that go 
into this prediction). 2) Smaller populations have a larger proportion of beneficial mutations due 
to increased fixation of deleterious mutations in smaller populations (drift load30). 3) Less 
pleiotropic mutations have a greater variance in fitness effects, i.e. selection coefficients tend to 
be either close to neutral or very deleterious7.  
 The first prediction suggests that humans have more deleterious mutations than Drosophila, 
since humans likely have higher complexity (larger number of genes, proteins and protein-
protein interactions48, and cell types49). Stronger stabilizing selection and larger effect sizes of 
mutations in humans than in Drosophila could also contribute to more deleterious mutations 
under FGM, but seem less parsimonious as an explanation7.  
 The second prediction suggests that because of their smaller effective population size, 
humans contain more slightly beneficial mutations than Drosophila. We tested this prediction by 
fitting a distribution that is based on FGM as derived by Lourenço et al.2. Similar to the back-
mutation model of Piganeau and Eyre-Walker6, in this model a smaller long-term effective 
population size parameter (Ne,long-term) leads to fixation of slightly deleterious mutations due to 
less effective selection. This increases the distance of the population to the optimum in FGM 
and thus to an increase of the proportion of slightly beneficial compensatory mutations at 
equilibrium. Note that the long-term effective population size, and therefore effectiveness of 
selection, could be reduced by recurrent selective sweeps as well as background selection. This 
would, however, not affect the prediction under FGM that species with strongly different 
effective population sizes, as estimated from neutral diversity, reside at different distances to the 
optimum and thus have different proportions of beneficial mutations.  
 The last prediction of FGM is related to the pleiotropy of mutations, i.e. the effective number 
of fitness-related phenotypes that are affected by a mutation32,33. Pleiotropy changes the “total 
effect” of a mutation on the phenotypes, which is the length of the random mutational vector in 
the phenotype space of FGM. The total effect can be shown to follow a generalized chi-
distribution, where the degrees of freedom are equal to the pleiotropy2. Thus, most mutations 
with large pleiotropy have intermediate effects on phenotype and therefore a smaller variation in 
s than mutations with little pleiotropy. In fact, the coefficient of variation of selection coefficients 
CV(s) is inversely related to the pleiotropy of mutations7. Since pleiotropy is difficult to measure 
directly in higher organisms, we use tissue specificity of gene expression as a proxy for 
pleiotropy. Mutations in genes that are expressed in more tissues would be assumed to have 
more pleiotropic effects than mutations in genes expressed in fewer tissues. Pleiotropy can be 
estimated by fitting the DFE formula of Lourenço et al.2, eq. 15, to the data using the Poisson 
Random Fields approach (see Online Methods). Equation 15 of Lourenço et al. is derived from 
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FGM, assuming a Gaussian fitness function. It contains an explicit pleiotropy parameter (m) that 
is defined as the number of selected traits affected by a mutation and that is smaller than the 
total number of selected traits (complexity) n. It considers a haploid population of effective size 
Ne that is under selection-mutation-drift equilibrium. A non-equilibrium version of the DFE under 
this model was derived as well (eq. 8 of Lourenço et al.2) that can be used to test for deviations 
from equilibrium conditions. 
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Supplementary Note 3 
 
Model choice procedure 
Here we present in short the logic of the model choice procedure that we applied to discriminate 
between the five evolutionary models of Fig. 1 based on our data. The five models make distinct 
predictions on how the DFE differs between species with different population size and/or 
complexity. Due to the higher quality and sample size of data from humans and Drosophila, we 
first use those two species to discriminate among the models. However, we then add estimates 
of the average selection coefficient from additional data from mice and yeast to support our 
model choice in a larger phylogenetic context. Note, however, that more subtle differences in 
the shape of the DFE or in the amount of beneficial mutations between species cannot be 
tested with those datasets (i.e. fitting different functional forms of the DFE result in the same 
likelihood, see Supplementary Table 4). 
 The first step of our model choice procedure is to show conclusively that the null assumption 
of the same distribution of s in both species is violated. We develop a likelihood ratio test and 
use extensive forward simulations to derive the null distribution of the test statistic and show 
robustness to a multitude of factors (see Online Methods and Supplementary Note 1). The 
same approach can be extended to test the distribution of Nes. These two tests allow evaluation 
of the functional importance model and the protein-folding model, respectively. Similarly, we test 
for differences in E[|s|], the average absolute selection coefficient. The back-mutation model is 
inconsistent with large differences in E[|s|] between species because the model predicts that the 
distribution of |s| is the same between species. Thus, this pattern can be used to test the back-
mutation model. Using different functional forms of the DFE to estimate E[|s|], we show that any 
established difference is not sensitive to the specific functional form of the DFE (Supplementary 
Fig. 8A).  
 After establishing differences in the distribution of s and |s|, the direction of the difference in 
E[s] between species discriminates between robustness models and FGM: robustness models 
predict a less deleterious DFE in the more complex organism (less negative E[s]), whereas 
FGM predicts a more deleterious DFE in the more complex organism (more negative E[s]). 
Using different functional forms of the DFE to estimate E[s], we show that any established 
difference is not sensitive to the specific functional form of the DFE (Supplementary Fig. 8B). 
Using data from mice and yeast we show that the trend observed in humans and Drosophila 
can be replicated in different datasets in a wider phylogenetic context (Fig. 4A). Finally, we use 
more subtle predictions of the influence of population size and pleiotropy on the shape of the 
DFE to further validate FGM. In particular, these include predictions about how population size 
affects the proportion of beneficial mutations, and how pleiotropy affects the variation in s (see 
Supplementary Note 2).  
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Supplementary Note 4 
 
The influence of complexity and pleiotropy on the average selection coefficient in FGM 
Here we discuss how complexity and pleiotropy can influence the DFE under FGM. First, we 
define a few key variables. Let n be the total complexity of the organism, or the number of 
independent and evolvable phenotypes an organism exposes to natural selection. A somewhat 
related quantity, ne, is the effective number of traits exposed to selection after accounting for 
mutational and selective correlations7. Lastly, mutational pleiotropy, m, refers to the number of 
traits affected by a particular mutation.  
 Under a simple model of universal pleiotropy, mutations are assumed to affect all 
phenotypic axes similarly and have no preferred direction. In this model, n=ne=m. Additionally, 
the average selection coefficient E[s] is predicted to be negative, and becomes more negative 
with increasing phenotypic complexity n and thus increasing pleiotropy m35. Hence, one would 
predict that the DFE becomes more deleterious in more complex organisms.  
 However, recent high-throughput methods and quantitative genomics approaches seem to 
reject the concept of universal pleiotropy (reviewed in Wagner and Zhang50). They suggest that 
most mutations only affect a small number of phenotypes (restricted or partial pleiotropy). 
Furthermore, estimates of the effective number of traits ne arrive at unrealistically small values7. 
Lourenco et al.2 suggest that the low estimates of ne are more likely reflecting mutational 
pleiotropy m than the total complexity of the organism (n). Again, the low estimates of 
mutational pleiotropy suggest that most mutations effectively change only a small number of 
phenotypes2.  
 Given that universal pleiotropy is unlikely, we would like to know how E[s] depends on the 
total complexity of the organism under models that relax this assumption. However, different 
formulations of FGM come to different conclusions about the dependency of E[s] on n, ne, and 
m. In the model of Martin and Lenormand7 (eq. 1) and Chevin et al45 (eq. 3c), for a given 
strength of selectional and mutational correlations (ρ! and ρ!), E[s] is negatively related to n. 
Thus, their prediction is matching the prediction of the classical formulation of FGM. Note that 
E[s] is independent of the distance to the optimum7, therefore this model does not rely on any 
assumptions about the degree of maladaptation.  
 Importantly, however, the dependence of ne on n is more complex. Specifically, n! =

!
!!!(!!

!!!!
! )

!→! !
!!
!!!!

! , where ρ! and ρ! measure the strength of selective and mutational 

correlations averaged over all traits (eq. 8 in Martin and Lenormand7). Thus, Martin and 
Lenormand find that as n increases indefinitely, ne reaches a limiting value that depends only on 
phenotypic correlations, but is independent of complexity n. It is possible then, under the 
assumption that complexity n is generally large in most species, that organisms with increasing 
complexity (increasing n) may not show an increasing ne, as supported by their empirical 
studies.  
 In Lourenco et al2, E[s] does not depend on n (see eq. A3 in Lourenco et al.2). Instead, here, 
the DFE depends on the pleiotropy parameter m and the scale parameter σ. However, there are 
some similarities between the Martin and Lenormand and the Lourenco models. Both models 
lead to similar predictions regarding the shape of the DFE (a gamma distribution at the 
optimum) and thus can be shown to have equivalent parameters. The scale parameter of 
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Lourenco, σ, corresponds to the effective scale parameter λe (σ = sqrt(λe/2) ) of Martin and 
Lenormand7 and Chevin et al.45. The effective complexity, ne, of Martin and Lenormand 
corresponds to the pleiotropy parameter of Lourenco et al. (m = ne). In the Lourenco model, the 
average selection coefficient E[s] is a product of the scale and pleiotropy parameters (E[s] = - m 
σ2 = - 1/2 ne λe). However, whereas the scale parameter (λe) increases with total complexity n 
under the model of Martin and Lenormand (see Appendix 2 in Martin and Lenormand7), the 
scale parameter in Lourenco et al. (σ) is fixed and does not depend on other parameters of the 
model (eq. 2 in Lourenco et al.2).  
 The independence of E[s] from n under the model of Lourenco et al. is therefore a result of 
the assumption that the scaling parameter σ is considered fixed and does not depend on n in 
their formulation. Thus, by design, rather than biology, their model does not include such a 
relationship. However, biologically, it seems unrealistic that when total complexity is increased 
(i.e. there is an evolutionary increase in the total number of selected phenotypes, or in other 
words, n increases), mutations would not also affect these new phenotypes. If more phenotypes 
are affected on average per mutation, this increases the length of the mutational vector, even if 
this happens in a strongly correlated manner and thus keeping pleiotropy in the sense of 
'effective dimensionality' ne low.  
 Furthermore, experimental data seem to contradict the assumption of constant σ and 
suggest that mutations that affect more phenotypes also show a larger effect on each individual 
phenotype51,52. Thus, constancy of the scaling parameter σ as defined by Lourenco et al. (the 
standard deviation in effect size per trait) is not supported by experimental data.  
 Finally, our results also suggest that the scaling parameter σ increases with increasing 
complexity of the organism, whereas the pleiotropy parameter m does not show such a trend 
(Supplementary Fig. 11). In agreement with experimental data, our results also support a model 
where σ (or λe) is not constant, but increases with increasing complexity. Thus, the increase in 
deleteriousness with increasing complexity of the organism shown in our work and in 
experimental data from Martin and Lenormand7 is in line with the prediction of FGM.  
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