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1 Supplementary Videos

1.1 S1: High-speed dynamics of paperfuge

Video of paperfuge (R
d

= 50 mm) spun with hands recorded at 6000 frames per second. Application
of force on the handles unwinds the strings, resulting in rotation of the central disc. The strings
pass through a completely unwound state (parallel strings) and start to rewind, ultimately forming
super-coiled structures.

1.2 S2: Measuring rotational speed (rpm)

Measuring the time-varying rotational speed (�) of paperfuge (R
d

= 50 mm) using image analysis.

1.3 S3: Twisting torque conditions

Video highlighting the di↵erent observations during the dynamics of a paperfuge, used for con-
structing an empirical function for the twisting torque (⌧

Twist

(�)).

1.4 S4: Comparison of experiment and theory

Video comparing the experimental force (F ) and rotational speed � with our model. Experiments
were conducted on a paperfuge with one end connected to a stationary force transducer, and the
other connected to a handle (pulled by hand) mounted on a track to constrain the displacement in
one axis.

1.5 S5: Separation of plasma from whole blood using paperfuge

Video showing step-by-step process to use the paperfuge as a centrifugation device, for conducting
hematocrit analysis on human blood.
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2 Supplementary Text

2.1 Buzzer Whirligig History

Gus W. Van Beek called the buzzer ‘a universal toy through time and space’ [34]. Archaeological
excavations have revealed a large diversity of buzzer toys from ancient civilizations, from Indus
valley to Native American cultures, across diverse time periods (Fig. 1 [A-H]). The geographical
spread of these finds are global, with toys found in Israel, Lebanon, Greece, Egypt, Pakistan,
India, USA, Brazil, Venezuela, Japan and China. In each of these places, the buzzer is called
by onomatopoeic words that describe the sound the toy makes in local languages and dialects:
whirligig, bull-roarer, buzz-bone, inyx, buzz, run-run, bum-bun, punggi-punggi, gurrifio, rumbador,
furkalka, zun-zun, and zumbado. The oldest buzzer toys date back more than 5000 years to the
Early Bronze Age (3300 BC) [34], making the buzzer toy an invention as old as the potter’s
wheel [35].

Disease Parasite Reference

Malaria Plasmodium falciparum [44, 45, 46, 47, 48]
West African tick-borne relapsing
fever

Spirochetes [49]

Bancroftian filariasis Microfilaremia [50, 51]
Leptospirosis Leptospira [52]
African trypanosomiasis Trypanosoma brucei (T.b.) gambi-

ense , T.b. rhodesiense
[53, 54]

Babesiosis Babesia piroplasms [55]
Pneumococcal disease Pneumococcemia [56]
American visceral leishmaniasis Leishmania chagasi [57]
Trichomonas,vaginalis infection Trichomonas vaginalis [58]

Table 1: List of human infectious diseases and their parasites that have been diagnosed succesfully
using a QBC analysis.
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Figure 1: Antique buzzer toys. A) Pottery buzzers from Karanis, Egypt (2C-4C A.D.) Image
from [36]. B) Lead alloy buzzer dating from the post-medieval period (1600-1800 A.D.). Image from
[37]. C) Plate showing 17 Tell Jemmeh disks ranging from Late Bronze (1400-1200 B.C.) to Early
Hellenistic (332-167 B.C.) ages. Image from [34]. D) Lead whirligigs with saw-tooth edges. Image
from R. Dee and J. Winter [38]. E) Viking buzz-bone. Image source Swedish History Museum [39].
F) Stone Gorgets (buzz-buttons) from the Fource Maline Culture, a Native American culture from
300 BC-800 AD. Image source H. Rowe [40]. G) Eskimo buzz toy (1892). Image source [41]. H)
A Caribou bone tied to a raw-hide, used as a charm. Image source [42]. I) A traditional button
whirligig from Ukraine called ‘furkalka’. Image from Enic [43].
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Figure 2: Paperfuge Materials. A) Materials used to construct a fully-functional paperfuge:
paper-discs, wooden dowels (handles), string, capillaries, straws (capillary holders) and plastic
shims. B) Constructed paperfuge showing flat form-factor, that easily fits in a pocket and can be
carried in the field easily. C) To operate the paperfuge, the user utilizes the handles to gently and
rhythmically pull on the strings.
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A Force
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High-speed
 cameras

Paperfuge

Figure 3: High-Speed Setup An experimental setup was constructed to measure the rotational
speed, instantaneous force and string-coiling dynamics. A simple track was made to ensure that
the hand-pulling movement was confined in one plane.
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3 Supplementary Discussion: Theory Overview

We begin the paperfuge theoretical model, aiming to achieve predictive power over both frequency
(f

0

) and amplitude (�̇
max

) of the system. After correctly characterizing both amplitude and fre-
quency of our oscillator, we will be able to explore the landscape of paperfuge parameters and input
forces to optimize both the rotational speed (�̇) and the corresponding relative centrifugal forces
(RCF).

It is important to note that Schlichting and Suhr [59] take a step towards this goal in their paper, by
proposing a model to describe the physical properties of the buzzer toy. Although they claim to have
good agreement between experimental data and theory, their model lacks the predictive power that
we seek over frequency and amplitude. The predictive power is crucial for creating scaling curves
that characterize the scaling of �̇

max

as a function of the system parameters such as R
d

, R
s

, L etc.
The model presented by Schlichting and Suhr has two limitations: they drive the buzzer system at
a known frequency, not allowing it to be determined by the system (system’s resonant frequency),
and they do not impose geometric constraints and boundary forces that naturally occur due to
string coiling.

In this paper, we create a model for paperfuge that achieves this predictive power and harnesses it
to optimize the paperfuge system. To do this, we tackle two sub-problems: 1. Achieve a high level
of accuracy in our descriptive model (Section 3.1) 2. Generalize the input force (F ) to create a
predictive model (Section 3.6). In both sections, we continue to show the theoretical model results
by comparing against experimental data, obtained using our high-speed setup.

3.1 Theoretical Model (Descriptive)

Modeling the paperfuge requires accounting for the main energies at play. We can identify the main
energy components as:

• E
Input

: energy of human input

• E
Drag

: energy of air resisting motion

• E
Twist

: energy of the string twisting and compressing, resisting motion

• E
KE

: kinetic energy of the wheel

The human input serves as a source of energy while air drag and string twisting are dissipative
in nature. Typically, energy is transferred from human input to kinetic energy of the wheel. It is
then dissipated into air drag and string twisting energy, bringing the wheel to a stop. We begin by
writing the Lagrangian for this system as:

L = T � V

= E
KE

(�̇)�
⇣
E

Drag

(�̇) + E
Twist

(�) + E
Input

(�)
⌘ (1)
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We can di↵erentiate both sides, to obtain the governing equation of motion as follows:

@

@�
L =

d

dt

@

@�̇
L (2)

� @

@�
E

Twist

� @

@�
E

Input

=
d

dt

@

@�̇
E

KE

� d

dt

@

@�̇
E

Drag

(3)

We can immediately substitute for kinetic energy E
KE

= 1

2

I�̇2, and re-arrange to obtain:

I�̈ =
d

dt

@

@�̇
E

Drag

� @

@�
E

Twist

� @

@�
E

Input

. (4)

We can re-write Eq. 4 in terms of the governing torques:

I�̈ = ⌧
Input

(�) + ⌧
Drag

(�̇) + ⌧
Twist

(�), (5)

where I is the inertial moment of the disc, �̈ is the angular acceleration, and ⌧
Input

, ⌧
Drag

, ⌧
Twist

are the input, air-drag and string-twisting contributions to the torque, respectively.

In the next few sections, we will define each of the torques based on the geometric parameters, as
well as experimental observations.

We note that to create an accurate descriptive model, we explore di↵erent frictional assumptions
(no-slip, slip and transition conditions) between the strings. We rigorously verify each assumption
by comparing with experiments and establish the slip condition as the optimum choice for modeling
the paperfuge.

The frictional assumptions that we explore pertain to how the string coils. In the extreme case
where the surface of the string has no friction, the strings will slip against themselves until the
twisting region achieves “uniform coiling”. If some coiling region was more dense than another, the
string would simply slip to alleviate this non-uniformity. We call this the “slip assumption” which
we discuss in Section 3.2.1. In the other extreme, the strings would follow a no-slip condition where,
once they touch, they do not slide against each other. We call this the “no-slip assumption” and
discuss it in Section 3.2.2. Next we construct a method for transitioning between the two assump-
tions (Section 3.2.3). This transition is parameterized by a single variable. In Section 3.3, we use
this variable along with video analysis to make a decision between the two frictional assumptions.
We then discuss the twisting force in Section 3.4.

3.2 Input torque (⌧Input)

A human hand provides a periodic input force to the system, F (t). How is this translational force
transferred to the rotational motion of the wheel?

We assume that the tension in the string is constant and that the string is massless and inextensible.
With these two assumptions, a torque balance about the twisting region results in ✓

h

= ✓
w

= ✓,
where ✓ is the angle from horizontal formed by the string at either the handle or the disc end as
shown in Fig. 4A.

We begin by applying a torque balance on the disc by the strings. Only the force component in
the plane of the disc (T sin ✓) contributes to a torque (Fig. 4A). The T cos ✓ component cancels out
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due to symmetry. Since there are four strings connected to the wheel (two on either side), we can
write the torque on the disc as:

⌧
Input

= � sgn(�)4R
s

T sin ✓, (6)

where R
s

is the radius of the string, T is the tension in the string and sgn(�) is the sign function
defined as,

sgn(�) =

8
><

>:

1 if � > 0

0 if � = 0

�1 if � < 0

(7)

We can re-write T in terms of the applied force, F , as 2T cos ✓ = F . We can, then, substitute for
T in Eq. 6 to obtain:

⌧
Input

= � sgn(�)2R
s

F tan ✓. (8)

To find ⌧
Input

(�), we must find a relation between ✓ and �. In the following sections, we apply the
slip, no-slip, and transition conditions to find various relations between ✓ and �.

3.2.1 Slip condition

In this slip condition, we allow the string to coil as if there is no friction. We will later show that this
turns out to be the best assumption, as empirically we observe that the string twisting is relatively
uniform in our experiments. Using geometry of the system, we can find the relationship between ✓
and �. We divide the twisting section (L) into three parts (l

1

, l
2

, l
3

) and can be seen in Fig. 4B. The
first (l

1

) and last (l
3

) sections can be evaluated through simple geometry (Fig. 4B). The middle
twisting region (l

2

) can be understood as follows. We consider how a paper right triangle defined
by internal angle ✓ can be wrapped around a pencil. We place the adjacent side against the pencil
and begin rolling up the paper as in (Fig. 4B). The hypotenuse of the triangle creates a helix that
serves as a proxy for the string. When the triangle is completely wrapped around the pencil, the
opposite side of the triangle has the length �R

pencil

where � is the angle of rotation of the helix in
radians and R

pencil

is the radius of the pencil. We can also define the length of the string in the
twist to be l

2

. This results in the relation:

sin ✓ = sgn(�)
�R

pencil

l
2

, (9)

Applying this to the paperfuge, R
pencil

becomes R
s

, � becomes the angle of rotation of the paperfuge
disc, and ✓ is the angle subtended by the string as shown in Fig. 4B.

Because the three right triangles are similar, we can form one large right triangle that satisfies

sin ✓ =
|�|R

s

+R
h

+R
w

L
, (10)

where R
h

is the radius of the handle, and 2R
w

is the distance between the two holes on the disc.
This exercise provides us with a relation between ✓ and � to evaluate ⌧

Input

for the slip condition:

⌧
Input,slip

= � sgn(�)2R
s

F
|�|R

s

+R
h

+R
wp

L2 � (|�|R
s

+R
h

+R
w

)2
(11)

We conduct a similar analysis for the no-slip condition next.

9



Disc

Strings

F
T

Handle

Rw
Rs

L

Rh
Fθ

A

Rs

T sinθ 

T sinθ 

 

Side-view of disc

B

l1

θ

l2

l3

L

θ

2π

φ = 0 · 2π

φ = 1 · 2π

φ = 2 · 2π

θ

P0θh θd

C

4Rs

cosθ crit = 2 /π

θcrit

2π
R

s

D Zero-Twist Point

No-slip 

Slip 

P0

L

l1

Rh

Rs

Rs l2 l3

Rw

4Rs
θcrit

Figure 4: Schematic for theoretical model. A) Schematic illustrating the parameters for the
paperfuge model. Side-view of the disc highlights the component of the string force creating a
torque on the disc. B) Slip condition: For the slip assumption, to relate ✓ in terms of material
parameters, we divide the total string (L) into three similar right triangles, corresponding to l

1

, l
2

, l
3

.
C) No-slip condition: Assuming high surface friction, the first point of contact during twisting
becomes fixed at p

0

. The two parts on either side of p
0

evolve independently. D) Zero-twist
point: During twisting, the strings reach a critical point beyond which any further coiling is
impossible without lateral compression or formation of secondary helical structures (super-coiling).
By geometrical arguments, the corresponding ✓

crit

can be calculated for this point.
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3.2.2 No-slip condition

In this no-slip condition, we assume that any point of contact between two strings remains fixed
until the strings are separated. In other words, there is always enough friction between the strings
so that they never slip against each other. This condition can be described as follows.

When � is zero, the string is in an uncoiled state. As the strings start to twist (due to the rotation
motion of the disc), their first point of contact is at point p

0

, which is defined through geometrical
constraints of the system (Fig. 4C). This creates two triangles defined by the angles ✓

h

and ✓
d

respectively. As the string begins to twist more, both angles increase and a twisting region grows
outwards from p

0

. During the whole cycle, the strings continue to touch at point p
0

adhering
to the no-slip condition. Essentially this means that strings on the handle and disc sides evolve
independently (Fig. 4C).

We now choose a reference frame that fixes p
0

so that the strings at this point do not rotate. In
this reference frame, the disc and the handle rotate with an angular speed, ✓̇

d

and ✓̇
h

, respectively.
We also dissect the system at p

0

, forming two separate systems defined by parameters: �
i

, ✓
i

, L
i

,
and R

i

, where i 2 {d, h}.

To characterize the evolution of the twisting region, we again utilize the pencil heuristic discussed
in Section 3.2.1. First, we consider only an infinitesimally small change in �, defined as d�. We
imagine a correspondingly small triangle formed by unrolling the pencil and the large triangle
formed by angle ✓

d

and the disc. Using the pencil heuristic, we can write the di↵erential triangle
as

sin ✓ = sgn(�)
d(�R

pencil

)

dl
twisti

, (12)

where l
twist

is the length of string between p
0

and the vertex of ✓
i

.

We replace the generic parameters with specific parameter of our system to yield:

sin ✓
i

= sgn(�
i

)
d�

i

R
s

dl
twisti

. (13)

And for the larger triangle, we obtain the relation

sin ✓
i

=
R

i

L
i

� l
twisti

. (14)

We now relate the handle and disc sides through their relative velocity, �̇. We define positive
rotation to be counter clock-wise about the axial axis, where the positive direction points from p

0

to the vertex of ✓
i

. Thus, both sides of the paperfuge are related through

�̇ = �̇
d

+ �̇
h

. (15)

As described earlier, due to the massless string assumption, we find that ✓
h

= ✓
w

= ✓. Using these
relations, we can now integrate Eq. 13-15 to write an expression for the dependence of ✓ on the
geometric parameters of the system, for a no-slip condition as:

sin(✓) =
(R

h

+R
w

)e

L
, (16)
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where  = Rs|�|
Rh+Rw

. This enables us to solve for ⌧
Input

for the no-slip condition:

⌧
Input,no-slip

= � sgn(�)2R
s

F
(R

h

+R
w

)ep
L2 � ((R

h

+R
w

)e)2
. (17)

3.2.3 Transition Condition

In this transition condition, we aim to find a general mathematical formalism that captures both
the slip and no-slip asymptotic conditions through a single parameter. The advantage of such a
formalism is two-fold: first, it enables a single-parameter model for seamlessly transitioning between
the slip, no-slip boundary conditions, and second, it opens up the possibility of choosing a complex
boundary condition, i.e., a transition boundary condition, which lies somewhere between slip and
no-slip. As we will show, the slip condition is su�cient for our paperfuge data-sets; however, this
exercise leaves us with a compact formalism that may serve useful to others.

We begin this transition by noting that for small �, both models are the same. Using a first-order
Taylor’s series expansion on ⌧

Input,no-slip

in Eq. 17 about |�|Rs

Rh+Rw
stated as:

e
|�|Rs

Rh+Rw ⇠ 1 +
|�|R

s

R
h

+R
w

, (18)

completely recovers the slip input torque (⌧
Input,slip

), as shown in Eq. 11. Therefore, we now aim
to create a continuous transition between the function e and 1 +  parametrized by a value, ↵,
where  = |�|Rs

Rh+Rw
. One way to do this is through the following function:

e↵ + ↵� 1

↵
. (19)

When ↵ = 1, we recover e. We can also make ↵ arbitrarily close to zero enabling us to expand
e↵ about ↵. Performing this expansion to first order gives

e↵ + ↵� 1

↵
⇠ 1 + +O(↵2), (20)

which is our continuous transition between e and 1 + . Thus, the general equation for the input
torque can now be re-written as follows:

⌧
Input,transition

= � sgn(�)2R
s

F
(R

h

+R
w

)( e
↵

+↵�1

↵

)
q
L2 � ((R

h

+R
w

)( e
↵

+↵�1

↵

))2
, (21)

where ↵ 2 (0, 1] with ↵ = 0 and ↵ = 1 recovers ⌧
Input,slip

and ⌧
Input,no-slip

, respectively. We
will demonstrate in Section 3.3 that the slip condition (↵ = 0) matches remarkably well with our
experimental data-sets. However, ↵ allows for the abstraction of frictional conditions which may
be useful to other researchers utilizing our model for di↵erent string twisting systems.

3.3 Drag torque (⌧Drag)

We now tackle the second major force acting on the paperfuge: air drag. When a disc revolves
in a fluid at angular velocity �̇, a boundary layer develops around the disc. We assume that the

12



Reynolds number of this system is high (Re ⇠ 105), resulting in an air resistance force proportional
to velocity squared and the surface area of the disc. We also assume that the wheel has a cylindrical
shape. We leave the radius and width of this cylinder as free parameters, R

d

and w
d

. Over a small
surface with area, dS

d

, and velocity, V = R
d

�̇, we posit that force of air resistance, F
Drag

, is

F
Drag

= �a
R

S
d

⇣
R

d

�̇
⌘
2

. (22)

where a
R

is the drag coe�cient that depends on the fluid properties (air density and viscosity), as
well as the surface frictional properties of the paper-disc. The parameter a

R

has to be obtained
empirically, by matching experiments and theory. For a small surface element S

d

on the wheel of
the paperfuge, V becomes a function of radius along the wheel. Integrating over the surface of a
wheel with radius, R

d

, and width, w
d

, results in the following expression for the torque,

⌧
Drag

= �a
R

sgn(�̇)

✓
4⇡

5
R5

d

+ 2⇡w
d

R4

d

◆
�̇2. (23)

At this point we have two degrees of freedom in our system: a
R

and ↵. Soon we will introduce
another degree of freedom, �, due to ⌧

Twist

(Section 3.4). To simplify the decision between frictional
conditions, we exclude ⌧

Twist

in comparing experiments to theory to obtain the empirical values
for a

R

and ↵. We justify this as follows. ⌧
Drag

and ⌧
Twist

dominate during di↵erent parts of the
oscillation cycle, allowing removal of ⌧

Twist

without interfering with ⌧
Drag

.

In Fig. 5A, we compare experimental data of a paperfuge (R
d

= 50 mm) with the theoretical model
with ↵ = 0, ↵ = 1 and ↵ = 0.6, corresponding to slip, no-slip and transition conditions, respectively.
We observe that slip-model captures the experimental data, both qualitatively and quantitatively
well, for a

R

= 0.003. Furthermore, we confirm the slip boundary condition by showing a periodic
distribution of twists across the length of the string, as shown in Fig. 5B.

3.4 Twisting torque (⌧Twist)

We now construct a term that accounts for many forces in the paperfuge dynamics associated with
the string. As the paperfuge winds up, it reaches a geometric maximum that it can only pass by
forming supercoiling structures. To account for this geometric maximum, supercoiling, and other
possible parameters such as coiling resistance, string elasticity, string surface friction, we define an
empirical equation, with a single-free parameter (�).

To construct this formulation, we write down three specific boundary conditions, corresponding
to how the string undergoes twisting, as shown in Fig. 6A. We will then construct a continuous
function that satisfies all three boundary conditions, ultimately resulting in a single-parameter
formulation for ⌧

Twist

(�). The parameter � will be obtained by comparing the theoretical model
with experimental data.

We present the three observations, which are illustrated in Fig. 6A(i-iii), as follows:

(i) At � = 0, we do not expect any torque on the disc, i.e., ⌧
Twist

(�)
��
�=0

= 0.

(ii) When ✓ = ✓
crit

, string in the twisting region lays against itself. This gives us an opportunity
to characterize the sti↵ness of the string as it compresses, resulting in braking force to the
paperfuge wheel. We approximate the torque at this point with a linear spring force model:
@
@�⌧Twist

(�)
��
�=�

crit

= k, where k is the spring constant.
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Figure 5: Evaluating slip, no-slip and transition boundary conditions. A) Comparison of
experimental data with theory reveals a

R

= 0.003 as an optimal value for the frictional parameter
across all boundary conditions (slip ↵ = 0, no-slip ↵ = 1 and transition ↵ = 0.6 ). We find that the
slip assumption has the most reliable fit to the data, confirmed by experimental observations. B)
Plots of pixel intensity across the twisting region (right side of disc) at three di↵erent times points
(i-iii) during coiling. The periodicity of pixel intensity peaks reflects the uniform spacing of twists,
confirming that the slip condition is indeed the most accurate description of our experiments (see
video S3).
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(iii) � cannot exceed some maximum value, �
max

(defined below), which is decided by the geometry
of the system. This yields: ⌧

Twist

(�)
��
�=�

max

= 1.

For the simplicity of our model, we assume k = 1; however we introduce a free-parameter, �, below
that we use to tune our system.

To obtain a continuous function satisfying the above three conditions, we use a function of the form

⌧
Twist

(�) = � sgn(�)A
h

1

(B�|�|)� � C
i
, where � is a free parameter and A,B,C are found using the

three constraints discussed above.

A =
1

�
(�

max

� �
crit

)�+1 (24)

B = �
max

(25)

C = ���

max

. (26)

Substituting these parameters, we can re-write the expression for ⌧
Twist

(�) as:

⌧
Twist

(�) = � sgn(�)
1

�
(�

max

� �
crit

)�+1


1

(�
max

� |�|)� � 1

��

max

�
. (27)

We now need to define �
crit

and �
max

. To calculate �
crit

, it is easier to calculate ✓
crit

, which is
illustrated in Fig. 4D. This is the zero-twist point where the string cannot twist any further without
undergoing compression or forming super-coiling structures [60], and is defined as cos ✓

crit

= 2/⇡.
Using Eq. 10, we can then calculate �

crit

.

Now, to find the value of �
max

, we imagine that the twisting region spans the distance from the
disc to the handle. This means that in Fig. 4B, only the green triangle is present (l

2

). Additionally,
we know that ✓

crit

defines this triangle. Thus, using Eq. 9, we can obtain �
max

as:

sin ✓
crit

=
|�

max

|R
s

L� (R
h

+R
w

)
(28)

Finally, we now evaluate Eq. 27 for di↵erent values of � as shown in Fig. 6B.

At this point, we have defined all the terms in Eq. 5 and by substituting all the torque terms, we
can re-write the governing equation of motion for the paperfuge as follows:

I�̈ =� sgn(�)2R
s

F
|�|R

s

+R
h

+R
wp

L2 � (|�|R
s

+R
h

+R
w

)2
� a

R

sgn(�̇)

✓
4⇡

5
R5

d

+ 2⇡w
d

R4

d

◆
�̇2

� sgn(�)
1

�
(�

max

� �
crit

)�+1


1

(�
max

� |�|)� � 1

��

max

�
.

(29)

We compute Eq 29 numerically, and validate with experimental data at di↵erent forces for a single
disc (R

d

= 50 mm). We estimate a value of � = 6 that works best for our paperfuge system
(Fig 6B).

Even though we can solve this non-linear equation numerically to compare with the experimental
data, it is complex and non-intuitive. In the next section, we show how this equation can be reduced
to a linear form to guide our intuition.
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Figure 6: Twisting Torque. A) Schematic illustrating the governing conditions for the ⌧
Twist

: i)
⌧
Twist

(�)
��
�=0

= 0, ii) ⌧
Twist

(�)
��
�=�

max

= 1, and iii) @

@�

⌧
Twist

(�)
��
�=�

crit

= 1. B) Characterization

of ⌧
Twist

for di↵erent values of the parameter �. C) Choosing � = 6 and utilizing experimental
force into the model, we show that our theory accurately describes a R

d

= 50 mm paperfuge across
input forces with di↵erent peak-amplitudes of F

max

= 20, 40, and 70 N.
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3.5 Gaining Intuition: Simple Harmonic Oscillator (SHO)

By reducing Eq. 29 to a simple harmonic oscillator, we can intuitively understand how frequency
(f

0

) and rotational velocity (�̇) scale with changes in system parameters.

As discussed above, there are three major forces at play in our paperfuge system: input, drag force
and string-twisting force. To simplify our model, we keep the input force constant and neglect the
latter two forces. We justify this as follows: 1) The air drag force is dissipative and dampens the
motion of the system (neglecting the drag force will not a↵ect the scaling trends). 2) The twisting
force is also a dissipative force that acts mainly when the string has over-twisted (� > �

crit

from
the zero-twist geometric constraint in Section 3.4). Therefore we can neglect the twisting force if
we enforce �  �

crit

.

Eq. 29 can now be simplified to:

I�̈ = � sgn(�)2FR
s

tan ✓ (30)

We make one final approximation. We assume that the blue and red triangles are much smaller
than the green triangle (the twisting region as previously shown in Fig. 4B), which means that
R

h

⇠ R
w

⇠ 0. Now we can write the simplified expression:

tan ✓ =
�R

sp
L2 + (�R

s

)2
(31)

⇠ �R
s

L
. (32)

Substituting this into Eq. 30 gives:

I�̈ = �2FR2

s

L
�, (33)

which is a SHO of the form ẍ = �!2x, where ! =
q

2FmR

2

s
IL

is the angular frequency of the system
and F

m

is a constant corresponding to the peak-amplitude of the input force.

Since for a paperfuge (centrifuge), we care about the maximum RPM and RCF, we can write both
these terms simply as:

�̇
max

= �
crit

! (34)

=
L
p
⇡2 � 22

2R
s

r
2F

m

R2

s

IL
(35)

/
r

LF
m

I
(36)

RCF =
R

d

< �̇2(t) >

g
(37)

=
R

d

�̇2

max

2g
(38)
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We can validate this scaling intuition by comparing with the scaling analysis found in Section 3.7,
in which we use the model to numerically scale the system parameters. For our disc with constant
density ⇢, we have I = ⇡

2

⇢w
d

R4

d

. This results in ! / 1

R

2

d
, �̇

max

/ 1

R

2

d
, ! / 1p

wd
, and �̇

max

/ 1p
wd

. We

indeed capture these trends as shown Fig. 8A,B. As we increase radius (R
d

) and width (w
d

) of the
disc respectively, which ultimately increases I. Furthermore, ! / R

s

while �
max

has no dependence,
as defined above. Indeed, in Fig. 8C, we show that frequency shows a linear dependence on R

s

and �
max

is relatively constant. Likewise, scaling L yields ! / 1p
L

and �
max

/
p
L which we see

accurately depicted in Fig. 8D.

3.6 Making Model Predictive: A Theoretical Input Force

We begin modeling the input force of a human (F ) by finding a paperfuge parameter that highly
correlates with the input force. Upon inspection, we identify ✓ to be the optimum parameter to
scale F . ✓ varies between fixed values from 0 to 90 degrees, and is therefore, less a↵ected by changes
in parameters such as string length (L), disc radius (R

d

), and string radius (R
s

). Experience of
handling the paperfuge re-a�rms this choice: by playing with paperfuge, we realize as users that
our largest cue to begin pulling on the paperfuge is when it winds up all the way and needs to be
unwound. This happens when ✓ becomes large. Thus, we can always use ✓ as a cue for us to begin
pulling regardless of other changes to the system geometry.

We show that forces with varying peak-amplitudes (F
max

= 20, 40, and 70 N) show similar
cyclical profiles as a function of ✓ in Fig. 7(A,B). Here the paperfuge cycle traverses the curve in
the counter-clockwise direction, where F

max

occurs during an unwinding phase as the user applies
a force to set the paperfuge disc spinning in motion. We use this as a reference to construct a
theoretical input force, F

th

(✓). As seen in Fig. 7C, there are three major regions in the F
th

vs. ✓
space. The first region is when ✓ < ✓

min-start

. Using both experimental F (✓) data-sets (Fig. 7A,B)
and by tuning to achieve good agreement, we set ✓

min-start

= 35�. Experimentally, this corresponds
to the region when the disc is winding up due to its inertial mass, and the user is applying negligible
force.

The second region is defined when ✓ > ✓
min-start

. During this phase, the force takes on some small
value, F

min

, which serves to slow the disc. We define the value of F
min

= 0.2F
max

, based on
experimental observations, where F

max

is the maximum amplitude of the applied force. Both the
first and second regions correspond to the wind up phase. The last region is during unwinding of
the strings, where the angle ✓ decreases. During this phase, the user pulls the hardest to accelerate
the paperfuge and unwind the strings. In this region, we define the force as a linearly decreasing
function, between F

max

and F
max

/2. Using this approach, we have a simple protocol to generate
di↵erent theoretical input force profiles, F

th

(✓). To validate our approach, we create a phase-space
plot showing good agreement between our theoretically generated dynamics and experimental data
for R

d

= 50 mm (Fig. 7D).

3.7 Scaling Analysis

The values of the parameters employed during the scaling analysis are listed in Table 2.

We explore how the disc radius (Fig. 8A) and width (Fig. 8B) a↵ect the maximum rotational velocity
(�̇

max

) and frequency (f
0

). We find that both �̇
max

and f
0

decrease drastically as we increase the
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Figure 7: Theoretical Input Force. A) Experimental force vs. ✓ at varying force-amplitudes
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that the force profiles collapse onto each other. C) Theoretical input force F

th

(✓) profile constructed
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Parameters Values
a
R

(kg m�3) 0.003
k (N m) 1
� [�] 6
⇢ (kg m�3) 1000
R

w

(mm) 0.3
R

h

(mm) 11
✓
min-start

35

Table 2: Parameter values used in scaling analysis

radius and width of the disc, which in turn, increases the moment of inertia (I = ⇡

2

⇢w
d

R4

d

) and the
drag force.

Next, we show how changes in string radius (Fig. 8C) and length (Fig. 8D) a↵ect the maximum
rotational velocity (�̇

max

) and frequency (f
0

). As discussed in Section 3.7, increasing the string
radius results in a linear increase in frequency while �̇

max

remains constant. Based on Eq. 29, an in-
crease in R

s

causes a larger input torque. However, due to increased geometric constraints, the disc
has less time to accelerate. These two e↵ects balance each other, resulting in a relatively constant
�̇
max

. In contrast, increasing the string length increases �̇
max

and decreases f
0

. More specifically,
�
max

is a↵ected, allowing the input forces to be applied for longer, thus the disc accelerates for a
longer time.

Disc Radius (R
d

) 5 mm 12.5 mm 25 mm 50 mm 85 mm
Maximum Input Force (N) 3 18 27 40 50
Disc width (mm) 1.2 4.5 1.2 0.3 0.3
Mass (g) 0.26 2.6 2.2 2.4 6.5
Total String Length (m) 0.91 0.69 0.66 0.66 0.99
String Radius (mm) 0.05 0.25 0.25 0.25 0.50

Table 3: Experimental parameters for various sizes of paperfuge

3.8 Calculating E↵ective RCF

We discuss and compare two methods for finding an e↵ective RCF. The first reduces the varying
˙�(t) to a constant value through a time average. This results in

E↵ective RCF =
R

d

h�̇2(t)i
g

, (39)

where [�̇] = rad/s.

The second method for finding e↵ective RCF involves accounting for the entire shape of ˙�(t). We
can solve for the time it takes for paperfuge to separate plasma and blood cells. We then identify
our e↵ective RCF by finding a constant �̇

e↵ective

such that it separates plasma and blood cells in
the same amount of time as �̇(t).

To validate our first method and compare that to our second one, we employ the particle sedimen-
tation model derived by Wong et al. [61], and plot the volume of plasma obtained as a function of
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time of centrifugation (Fig. 9B). By using �̇2

constant

attained through time average, we find that our
calculated V

constant

(red) matches V (t) (blue) very closely. We find here that though the maximum
�̇ of 50 mm paperfuge is ⇠ 22000 rpm, the e↵ective �̇ is ⇠ 13000 rpm. This means that spinning
the paperfuge at �̇

max

of 22000 rpm is equivalent to operating a traditional centrifuge at 13000 rpm.

Both methods are validated because of their clear agreement. We also note that the periodic nature
of paperfuge can be seen in the plot of V (t). As the paperfuge stops during its rotation cycle, we
expect that the sedimentation pauses and V (t) is approximately constant. As paperfuge re-starts,
we expect to see the slope of V (t) to become larger. Indeed, we observe these periodic changes in
Fig. 9B.

Finally, by choosing equivalent design parameters, we show a theoretical surface plot that describes
the RCF dependence on disc radius and input force with overlayed experimental data (in red circles,
Fig. 9A). We also provide a table of parameters of various paperfuge sizes (Table 3) that we tested
(Fig. 9C) along with the �̇

max

and e↵ective RCF we attain using these devices (Fig. 9D).

Parameter Symbol
Force input F
String radius R

s

Handle radius R
h

Disc radius R
d

Acrylic oval radius R
w

String length L
Angular displacement �

Angular velocity �̇
Frequency of the disc f

0

Disc density ⇢
Air drag constant a

R

Disc width w
d

Spring constant k
Moment of inertia I
Angle between string and handle ✓
Hyperparameter �
Kinetic Energy E

KE

Input Energy E
Input

Drag Energy E
Drag

Twisting Energy E
Twist

Table 4: List of parameters used in the theoretical model.
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