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Supplementary Information 

 
Fig S1. Rule size distributions. Distribution of rule sizes for 2239 rules from 27 rule-based models in the literature models when 

represented as (A) rule syntax graph, (B) rule structure graph and (C) rule-derived regulatory graph. In all three representations, 

it is seen that large rules are infrequently encountered. 

 

Fig S2. Group Structures on the Model Regulatory Graph. On the full model regulatory graph of Faeder et al. [13], the default 

grouping heuristic for atomic patterns grouped phosphorylation sites on the same molecules and binding interactions between 

the same pairs of molecules. Then, rules were grouped automatically by analyzing edge signatures of individual rules, i.e. how 



they relate to adjacent atomic patterns and their groups. (A) A strict edge signature was used, which accounted for all three edge 

types. Rule variants that differ only in context are still considered different from each other (e.g. R12 and R13). (B) A permissive 

edge signature was used, which ignored context edges. This resulted in a broader grouping of rules that does not distinguish 

between contextual variants. 

 

Fig S3. Distribution of graph sizes for various visualization methods. Each graph (A-I) has 27 data-points (blue) corresponding to 

27 rule-based models from the literature, listed in S6 Appendix. The red data point marks the coordinates of the geometric mean 

of all 27 points. The graphs are as follows: (A) contact map, (B) conventional rule visualization, (C) compact rule visualization, (D) 

Simmune Network Viewer, (E) rule influence diagram, (F) full model regulatory graph, (G) model regulatory graph with 

background removed, (H) model regulatory graph with background removed and nodes compressed using a strict edge signature, 

(I) model regulatory graph with background removed and nodes compressed using a permissive edge signature. The geometric 

means shown are the same values plotted in Fig 13 and measure the center of each distribution in log-space. 



 

Fig S4. Comparison of rule-derived regulatory graph and Simmune Network Viewer.  (A) Shown is a model in which three sites 

on a protein are activated in sequence. (B) The sequence is evident on the rule-derived regulatory graph. (C) The sequence cannot 

be seen on the Simmune Network Viewer diagram because the three patterns used have the same molecule stoichiometry {A=1} 

and are represented by the same node, which obscures information mediated through state changes.  



 

Fig S5. Comparison of BioNetGen and rxncon regulatory graphs. (A) In BioNetGen, complex reaction mechanisms are specified 

as reaction rules and the rule-derived regulatory graph is inferred by analyzing the specified rules. The reaction rule shown models 

trans-phosphorylation of receptor R in the ligand-crosslinked dimer configuration by recruited kinase K, a frequently encountered 

mechanism in biochemical signaling. (B) In rxncon, regulation is specified using the rxncon syntax and directly visualized as the 

regulatory graph. Reaction mechanisms are reconstructed from the specified regulatory interactions and are limited to a small 

set of mechanisms, e.g. the current version of rxncon does not natively support trans-phosphorylation reactions. 

  



S6 Appendix: List of Rule-based Models 

No. Citation System Rules 

1 An et al. 2009 Math BioSci.  TLR4 59 

2 Barua et al. 2008 J Biol Chem. PDGFRβ 43 

3 Barua et al. 2009 PLoS Comput Biol. GH-Jak 6 

4 Barua et al. 2012 J Immunol. BCR 44 

5 Barua et al. 2012 PLoS One FcεRI 86 

6 Barua et al. 2013 PLoS Comput Biol. APC 79 

7 Blinov et al. 2006 Biosystems EGFR 39 

8 Chylek et al. 2014 Front Immunol. FcεRI 145 

9 Chylek et al. 2014 PLoS One TCR 158 

10 Creamer et al. 2012 BMC Syst Biol. ErBB 625 

11 Dushek et al. 2011 Biophys J. Multi-site phosphorylation 128 

12 Dushek et al. 2014 Biophys J. FRET Biosensors 10 

13 Faeder et al. 2003 J Immunol. FcεRI 24 

14 Falkenberg et al. 2013 Biophys J. TLBR 6 

15 Hat et al. 2016 PLoS Comput Biol. p53  94 

16 Kesseler et al. 2013 J Theor Biol. G2 checkpoint 173 

17 Kocieniewski et al. 2012 J Theor Biol. MAPK 28 

18 Kozer et al. 2013 Mol Biosyst. EGFR 26 

19 Kozer et al. 2014 Biochemistry EGFR-Grb2 28 

20 Ligon et al. 2014 PLoS One Lipoplex transfection 33 

21 Michalski et al. 2012 Phys Biol. CaMKII 8 

22 Mukhopadhyay et al. 2013 PLoS Comput Biol. TCR 42 

23 Nag et al. 2009 Biophys J. Lat-Grb2-SOS1 52 

24 Pekalski et al. 2013 PLoS One TNFα 40 

25 Stites et al. 2015 Biophys J.  EGFR 178 

26 Szymanska et al. 2015 PLoS One MTORC1 31 

27 Thomson et al. 2011 PNAS Yeast GPCR 54 

  



S7 Appendix: Algorithms 

S7.1 Pattern Structure Graph 
Goal: Given a BioNetGen pattern, compose a graph in which each element of the pattern is a node and 
each edge is a hierarchical relationship. The node has attributes (NodeIndex, NodeLabel, NodeType) 
where NodeLabel is a name, NodeType is one of {molecule, component, internal state, bond state} and 
NodeIndex is a unique index. Bond state nodes have NodeLabel + to indicate bonds and – to indicate 
unbound state.  
Example: Given the pattern A(b!1).B(a~x!1), we get a graph with six nodes { (1,A,molecule), 
(2,B,molecule), (3,b,component), (4,a,component), (5,x,internal state), (6,+,bond state) } and five edges 
{(1,3),(2,4),(2,5),(3,6),(4,6)}. 
Input: Pattern 𝑝 = (𝑥) and a map 𝑡𝑦𝑝𝑒: 𝑝 → {molecule, component, internal state, bond}. Each element 
𝑥 in 𝑝 has one of the following forms: 

(𝑚, 𝑚𝑡), is a molecule with index  𝑚 of type 𝑚𝑡, 
(𝑐, 𝑐𝑡 , 𝑚), a component with index 𝑐 of type 𝑐𝑡 in molecule 𝑚, 
(𝑠, 𝑠𝑡, 𝑐), is an internal state with index 𝑠 of type 𝑠𝑡 on component 𝑐, 
(𝑏, 𝑐1, 𝑐2) is a bond with index 𝑏 between components 𝑐1 and 𝑐2, 
(𝑏, 𝑐) is a wildcard bond with index 𝑏 on component 𝑐 
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initialize empty sets 𝑉, 𝐸 and function 𝑏𝑜𝑛𝑑𝑒𝑑 
for each 𝑥 in 𝑝, 
 if 𝑥 = (𝑚, 𝑚𝑡) and 𝑡𝑦𝑝𝑒(𝑥) = molecule 

 add node (𝑚,𝑚𝑡,molecule) to 𝑉 
 if 𝑥 = (𝑐, 𝑐𝑡 , 𝑚) and 𝑡𝑦𝑝𝑒(𝑥) = component 

 add node (𝑐, 𝑐𝑡, component) to 𝑉 
 add edg e (𝑚, 𝑐) to 𝐸 
 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ← False 
if 𝑥 = (𝑠, 𝑠𝑡, 𝑐) and 𝑡𝑦𝑝𝑒(𝑥) = internal state 
 add node (𝑠,𝑠𝑡,internal state) to 𝑉 
 add edge (𝑐, 𝑠) to 𝐸 
if 𝑥 = (𝑏, 𝑐1, 𝑐2) and 𝑡𝑦𝑝𝑒(𝑥) = bond 
 add node (𝑏,+, bond state) to 𝑉 
 add edges (𝑐1, 𝑏), (𝑐2, 𝑏) to 𝐸 
 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ← True 

 if  𝑥 = (𝑏, 𝑐) 
  add node (𝑏,+,bond state) to 𝑉 
  add edge (𝑐, 𝑏) to 𝐸 
  𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ←True 
for each component 𝑥 in 𝑝 such that 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) =False 

add node (𝑢,−,bond state) to 𝑉, where 𝑢 is a unique id 
add edge (𝑐, 𝑢) to 𝐸 

𝐺 ← (𝑉, 𝐸) 
Output: Pattern structure graph 𝐺. 
Complexity: 𝒪(|𝑝|) , i.e. linear in the size of the pattern. 
Notes: From above, |𝐸| ≤ 2|𝑉|. We will treat |𝐸| ∝ |𝑉| for pattern structure graphs in S7.2, S7.3.  
 
S7.2 Correspondence Map 
Goal: Given a BioNetGen rule, synthesize a partial map between reactants and products.  



Example: Given a rule A(b~x) -> A(b~y), the reactant structure graph is {(1,A,molecule), (2,b,component), 
(3,x,internal state), (4,-,bond state)}. Similarly, the product structure graph is {(5,A,molecule), 
(6,b,component), (7,y,internal state), (4,-,bond state)}. The correspondence map is {(1->5), (2->6), (4->8)}. 
For simplicity, we can denote this as A->A, b->b. 
Input: Rule (𝑝𝑙 , 𝑝𝑟) where 𝑝𝑙 ≔ (𝑥𝑙), 𝑝𝑟 ≔ (𝑥𝑟) and 𝑡𝑦𝑝𝑒: {𝑥|𝑥 ∈ 𝑝𝑙 ∪ 𝑝𝑟} →{ molecule, component, 
internal state, bond }. 𝑝𝑙  and 𝑝𝑟  are merged patterns of the left and right sides of the rule respectively.  

1 𝑀𝑙 = (𝑥), a sequence with molecules 𝑥 drawn from 𝑝𝑙   
2 𝑀𝑟 = (𝑥), a sequence with molecules 𝑥 drawn from 𝑝𝑟  
3 for each 𝑥 ∈ 𝑀𝑙 such that 𝑥 = (𝑚, 𝑚𝑡) 
4  𝐶𝑥 = (𝑦), a sequence with components 𝑦 drawn from 𝑝𝑙  s.t. 𝑦 = (𝑐, 𝑐𝑡 , 𝑚) 
5 for each 𝑥 ∈ 𝑀𝑟such that 𝑥 = (𝑚, 𝑚𝑡) 
6  𝐶𝑥 = (𝑦), a sequence with components 𝑦 drawn from 𝑝𝑟  s.t. 𝑦 = (𝑐, 𝑐𝑡 , 𝑥) 
7 initialize empty sets 𝑑𝑜𝑚, 𝑖𝑚𝑔 and function 𝜓: 𝑑𝑜𝑚 → 𝑖𝑚𝑔 
8 for each 𝑥 ∈ 𝑀𝑙 such that 𝑥 = (𝑚𝑥 , 𝑚𝑡

𝑥) and 𝑥 not in 𝑑𝑜𝑚 
9  for each 𝑦 ∈ 𝑀𝑟such that 𝑥 = (𝑚𝑦, 𝑚𝑡

𝑦
) and 𝑚𝑡

𝑥 = 𝑚𝑡
𝑦

 and 𝑦 not in 𝑖𝑚𝑔  
10   if exists 𝐶𝑥 → 𝐶𝑦 preserving component type, presence of internal state, wildcard 

11    add 𝑥 to 𝑑𝑜𝑚 and 𝑦 to 𝑖𝑚𝑔 
12    𝜓(𝑥) ← 𝑦 
13 for each molecule map (𝑥 → 𝑦) in 𝜓 
14  for each 𝑎 in 𝐶𝑥 such that 𝑎 = (𝑐𝑎, 𝑐𝑡

𝑎, 𝑚𝑎)and 𝑎 not in 𝑑𝑜𝑚 
15   for each 𝑏 in 𝐶𝑥 such that 𝑏 = (𝑐𝑏 , 𝑐𝑡

𝑏 , 𝑚𝑏)and 𝑐𝑡
𝑎 = 𝑐𝑡

𝑏 and 𝑏 not in 𝑖𝑚𝑔 

16    add 𝑎 to 𝑑𝑜𝑚 and 𝑏 to 𝑖𝑚𝑔 
17    𝜓(𝑎) ← 𝑏 
18 for each component map (𝑎 → 𝑏) in 𝜓 such that 𝑎 = (𝑐𝑎, 𝑐𝑡

𝑎, 𝑚𝑎), 𝑏 = (𝑐𝑏 , 𝑐𝑡
𝑏 , 𝑚𝑏) 

19  if exists (𝑠𝑙 , 𝑠𝑡
𝑙 , 𝑐𝑙) ∈ 𝑝𝑙 , (𝑠𝑟, 𝑠𝑡

𝑟, 𝑐𝑟) ∈ 𝑝𝑟 such that 𝑐𝑙 = 𝑐𝑎, 𝑐𝑟 = 𝑐𝑏 , 𝑠𝑡
𝑙 = 𝑠𝑡

𝑟 
20   add (𝑠𝑙 , 𝑠𝑡

𝑙 , 𝑐𝑙) to 𝑑𝑜𝑚 and (𝑠𝑟, 𝑠𝑡
𝑟 , 𝑐𝑟) to 𝑖𝑚𝑔 

21   𝜓((𝑠𝑙 , 𝑠𝑡
𝑙 , 𝑐𝑙)) ← (𝑠𝑟, 𝑠𝑡

𝑟, 𝑐𝑟) 
22 if exists (𝑏𝑙 , 𝑐𝑙) ∈ 𝑝𝑙 , (𝑏𝑟, 𝑐𝑟) ∈ 𝑝𝑟 such that 𝑐𝑙 = 𝑐𝑎 , 𝑐𝑟 = 𝑐𝑏 
23   add (𝑏𝑙 , 𝑐𝑙) to 𝑑𝑜𝑚 and (𝑏𝑟, 𝑐𝑟) to 𝑖𝑚𝑔 

24   𝜓((𝑏𝑙 , 𝑐𝑙)) ← (𝑏𝑟, 𝑐𝑟) 

25 for each bond 𝑔 ∈ 𝑝𝑙  such that 𝑔 = (𝑏𝑙 , 𝑐1
𝑙 , 𝑐2

𝑙 ) and 𝑔 not in 𝑑𝑜𝑚 

26  for each bond ℎ ∈ 𝑝𝑟  such that ℎ = (𝑏𝑟, 𝑐1
𝑟, 𝑐2

𝑟) and ℎ not in 𝑖𝑚𝑔 
27   if exists {𝑐1

𝑙 , 𝑐2
𝑙 } → {𝑐1

𝑟, 𝑐2
𝑟} in 𝜓 

28    add 𝑔 to 𝑑𝑜𝑚 and ℎ to 𝑖𝑚𝑔 
29    𝜓(𝑔) ← ℎ 

Output: Correspondence map 𝜓: 𝑝𝑙 ↛ 𝑝𝑟, where ↛ indicates that it is a partial map. 
Complexity: 𝒪(|𝑝𝑙| ∗ |𝑝𝑟|). This can be considered 𝒪(1) since rule sizes do not get very large (Fig S1A). 
Notes: Since the pattern structure graph has one node for every element in a pattern, the correspondence 

map can also be defined equivalently on pattern structure graphs, i.e. 𝜓: 𝑉𝑙 ↛ 𝑉𝑟 
 
S7.3 Rule Structure Graph 
Goal: Given a BioNetGen rule and a correspondence map between reactants and products, synthesize a 
graph in which the left and right sides are merged together. In addition to NodeIndex, NodeLabel, and 
NodeType, use the NodeSide attribute to indicate which side of the rule each node is derived from. 
Example: Given the rule A(b~x) -> A(b~y) and the map A->A, b->b, it produces a graph with five nodes 
{(1,A,molecule,both), (2,b,component,both), (3,x,internal state,left), (4,y,internal state,right), (5,-,bond 
state,both)} and four edges {(1,2), (2,3), (2,4), (2,5)}. The nodes with NodeSide ‘both’ have been merged 



from both sides of the rule whereas the nodes with NodeSide equals ‘left’ or ‘right’ come uniquely from 
the reactant or product sides of the rule respectively. 

Input: Rule (𝐺𝑙 , 𝐺𝑟, 𝜓) where 𝐺𝑙 ≔ (𝑉𝑙 , 𝐸𝑙), 𝐺𝑟 ≔ (𝑉𝑟 , 𝐸𝑟) are merged pattern structure graphs and 

𝜓: 𝑉𝑙 ↛ 𝑉𝑟 is a correspondence map. 
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initialize empty sets 𝑉, 𝐸 

for each node 𝑣 in 𝑉𝑙, label NodeSide(𝑣)=left 
for each node 𝑣 in 𝑉𝑟, label NodeSide(𝑣)=right 
for each map 𝑣 → 𝑣′ in 𝜓,  

label NodeSide(𝑣) = NodeSide(𝑣’) = both 

for each edge (𝑣, 𝑣′) in 𝐸𝑙, add edge (𝑣, 𝑣′) to 𝐸 
for each edge (𝑣, 𝑣′) in 𝐸𝑟 

if NodeSide(𝑣)=NodeSide(𝑣′)=both  
 next edge 
if NodeSide(𝑣)=both 
 𝑣 ← 𝜓−1(𝑣) 
if NodeSide(𝑣′)=both 
 𝑣′ ← 𝜓−1(𝑣′) 
add edge (𝑣, 𝑣′) to 𝐸 

𝐺 ← (𝑉, 𝐸) 
Output: Rule structure graph 𝐺 

Complexity: 𝒪(|𝑉𝑙| + |𝑉𝑟| + |𝐸𝑙| + |𝐸𝑟|) ≈ 𝒪(|𝑉𝑙| + |𝑉𝑟|) since |𝐸| ∝ |𝑉| for pattern structure graphs. 

The complexity is linear in the size of the rule |𝑉𝑙| + |𝑉𝑟|. This can be considered 𝒪(1) since rule sizes do 

not get very large (Fig S1A). 
Notes: The rule structure graph has the same property of the pattern structure graph, i.e. |𝐸| ∝ |𝑉| . 
 
S7.4 Rule-derived Regulatory Graph 
Goal: The rule-derived regulatory graph is a network graph in which nodes have attributes NodeType and 
NodeLabel and edges have attributes Reactant, Product and Context respectively which take binary values 
0/1 each. NodeType can be atomic pattern or rule and NodeLabel is sufficient to index nodes uniquely. 
Given a rule structure graph of a rule, synthesize a rule-derived regulatory graph in which one node is 
labeled with the name of the rule. 
Example: Given the rule labeled rule1 of the form A(b~x) -> A(b~y) and its corresponding rule structure 
graph (see S7.3 Example) build a network graph with four nodes having NodeLabel equals rule1, A(b), 
A(b~x), A(b~y) respectively. The node labeled rule1 is of NodeType rule and the other nodes are of node 
type atomic pattern. Draw edges { ( rule1,A(b) ), (rule1, A(b~x) ), (rule1, A(b~y) ) } respectively with edge 
labels 001, 100, 010 respectively, where 001 indicates that edge attributes are 
Reactant=0,Product=0,Context=1 respectively. Each node and edge is drawn by examining a 
corresponding node on the rule structure graph and its neighbors. 
Input: Rule structure graph 𝐺𝑠 ≔ (𝑉𝑠, 𝐸𝑠, 𝑟) where 𝑟 is a label indexing the rule. 

1 
2 
3 
4 
5 
6 
7 
8 

for each node 𝑣 in 𝑉𝑠, initialize empty set Parent(𝑣) 
for each edge (𝑣, 𝑣′) in 𝐸𝑠 

if 𝑣 is a molecule with NodeLabel 𝑚𝑡 
 if 𝑣′ is a component 

 add label "mt" to Parent(𝑣’) 
if 𝑣 is a component with NodeLabel 𝑐𝑡 and parent "mt"   
 if 𝑣′ is an internal or bond state 

add label "mt(ct)" to Parent(𝑣’) 



9 
10 
11 
12 
13 
14 
15 
16 
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18 

initialize empty sets 𝑉, 𝐸 
add node 𝑣𝑟=(𝑟,rule) to 𝑉 
for each node 𝑣𝑠 in 𝑉𝑠 

determine atomic pattern NodeLabel 𝑎 from Table below 
make node 𝑣𝑎 =(𝑎, atomicpattern),  
if 𝑣𝑎 not in 𝑉,  

  add node 𝑣𝑎 to 𝑉 
add edge (𝑣𝑎 , 𝑣𝑟) to 𝐸 with default labels (Reactant=0,Product=0,Context=0) 
apply label modification of edge (𝑣𝑎, 𝑣𝑟) from Table 

𝐺 ← (𝑉, 𝐸) 
Output: Rule-derived regulatory graph 𝐺. 
Complexity: 𝒪(|𝑉𝑠| + |𝐸𝑠|) ≈ 𝒪(|𝑉𝑠|) since |𝐸| ∝ |𝑉| for the rule structure graph. In other words, the 
complexity is linear in the size of the rule structure graph |𝑉𝑆|. This can be considered 𝒪(1) since rule 
structure graph sizes do not get very large (Fig S1B). 
Notes: From above, |𝐸| = |𝑉| − 1 for the rule regulatory graph. Since rule sizes are bounded, rule 
regulatory graph sizes are bounded also (Fig S1C). So we treat|𝐸| ≈ |𝑉| ≈constant for the rule-derived 
regulatory graph in S7.5. 
 

Attributes of node 𝑣𝑠 on rule structure graph of rule labeled 𝑟 NodeLabel 𝑎 for 
atomic pattern 
node 𝑣𝑎 

Label 
modification 
for edge 
(𝑣𝑎 , 𝑣𝑟) 

NodeType NodeLabel NodeSide Parents 

Molecule 𝑚𝑡 Left None mt Reactant← 1  

Right Product ← 1  

Both - - 

Internal State 𝑠𝑡 Left mt(ct) mt(ct~st) Reactant ← 1  

Right Product ← 1  

Both Context ← 1 

Bond State + Left mt(ct), mt
′(ct

′) mt(ct! 1). mt
′(ct

′! 1) Reactant← 1  

Right Product← 1  

Both Context←1 

Both mt(ct) mt(ct! +) Context ←1 

− 
 

Left mt(ct) mt(ct) Reactant← 1  

Right Product ←1  

Both Context ← 1 

 

S7.5 Model Regulatory Graph 
Goal: Given a set of rule derived regulatory graphs, merge them into a single graph. Additionally, remap 
wildcard bonds (e.g. A(b!+)) to matching fully specified bonds (e.g. A(b!1).B(a!1)). 
Example: Given two graphs with nodes {rule1, patt1, patt2} and {rule2, patt2, patt3} respectively, the 
resultant graph will have the nodes {rule1, rule2, patt1, patt2, patt3}. Edges on the resultant graph have 
all the labels of the corresponding edges on the individual graphs. 
Input: Set of rule regulatory graphs {𝐺𝑟|𝐺𝑟 ≔ (𝑉𝑟, 𝐸𝑟)}, where 𝑟 indexes the rule. 

1 𝑉 ← ⋃ 𝑉𝑟
∀𝑟

, 𝐸 ← ⋃ 𝐸𝑟
∀𝑟

 

2 
3 

edge label conflicts are resolved using Boolean OR. 
for each wildcard 𝑤 in 𝑉 



4 
5 
6 
7 
8 
9 

for each edge (𝑤, 𝑥) in 𝐸, 
for each bond 𝑏 in 𝑉 such that 𝑤 matches 𝑏 

add edge (𝑏, 𝑥) to 𝐸 with same labels as (𝑤, 𝑥) 
delete edge (𝑤, 𝑥) in 𝐸 

delete node 𝑤 in 𝑉 
𝐺 ← (𝑉, 𝐸) 

Output: model regulatory graph 𝐺. 
Complexity: 𝒪(Σ𝑟(|𝑉𝑟| + |𝐸𝑟|) + |𝑤| ∗ |𝑏|) where 𝑉𝑟 , 𝐸𝑟 are nodes and edges of individual rule regulatory 
graphs, |𝑤| and |𝑏| are number of wildcards and bonds respectively. Since |𝑉𝑟| ≈ |𝐸𝑟| ≈constant for 
individual rule regulatory graphs (S7.4 Notes) and wildcards are rarely used, the average complexity is 
𝒪(𝑛), where 𝑛 is the number of rules.  
Notes: Since there are only two node types, the model regulatory graph is also represented as the tuple 
(𝑉𝐴, 𝑉𝑅 , 𝐸) where 𝑉𝐴 and 𝑉𝑅 partition 𝑉 into atomic patterns and rules respectively. Since |𝐸| ≈ constant 
for individual rule regulatory graphs, we treat |𝐸| ∝ |𝑉𝑅| for the model regulatory graph in S7.6, S7.8. 
 
S7.6 Removing Background on the Model Regulatory Graph 
Goal: Given a model regulatory graph, remove background nodes.  
Example: Given a graph {rule1, rule2, patt1, patt2}, if the set of background nodes are {rule2, patt1}, then 
the output graph has the nodes {rule1, patt2}. Edges between non-background nodes are transferred as 
is to the new graph.  
Input: Model regulatory graph 𝐺 ≔ (𝑉, 𝐸), background assignment 𝐵𝑘𝑔: 𝑉 → {0,1} 

1 
2 
3 

𝑉′ ← 𝑉 − {𝑣|𝐵𝑘𝑔(𝑣) = 1, 𝑣 ∈ 𝑉} 
𝐸′ ← 𝐸 − {(𝑣, 𝑣′, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙)|𝐵𝑘𝑔(𝑣) + 𝐵𝑘𝑔(𝑣′) ≥ 1, (𝑣, 𝑣′, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) ∈ 𝐸} 
𝐺′ ← (𝑉′, 𝐸′) 

Output: model regulatory graph 𝐺′ 
Complexity: 𝒪(|𝑉| + |𝐸|), i.e. linear in the size of the model regulatory graph. 
 
S7.7 Determining Edge Signature of a Rule 
Goals: For a particular rule node on the model regulatory graph, compute a signature from adjacent 
nodes, edges and edge attributes.  
Example: Given a graph {rule1, patt1, patt2, patt3} with edges { (rule1,patt1,100), (rule1,patt2,010) , 
(rule1,patt3,001) }, where edge label 100 indicates edge attributes Reactant=1,Product=0,Context=0, the 
edge signature for rule1 is (patt1):(patt2):(patt3). Suppose a partial grouping function is provided on 
patterns, say patt1->pattgroup1 and patt2->pattgroup2, then the edge signature is 
(pattgroup1):(pattgroup2):(patt3). 
input, Rule 𝑣𝑟 ∈ 𝑉𝑅. model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial grouping function on atomic 
patterns 𝑓: 𝑉𝐴 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

initialize empty sets 𝑅𝑒, 𝑃𝑟, 𝐶𝑜 
for each edge (𝑣𝑎 , 𝑣𝑟 , 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) in 𝐸𝑀  

string 𝑆 ← 𝑣𝑎 if 𝑣𝑎 not in domain of 𝑓 
string 𝑆 ← 𝑓(𝑣𝑎) if 𝑣𝑎 in domain of 𝑓 
add 𝑆 to 𝑅𝑒 if Reactant=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙  
add 𝑆 to 𝑃𝑟 if Product=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 
add 𝑆 to 𝐶𝑜 if Context=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙 

string 𝑆1 ← sorted and concatenated elements of 𝑅𝑒 
string 𝑆2 ← sorted and concatenated elements of 𝑃𝑟 
string 𝑆3 ← sorted and concatenated elements of 𝐶𝑜 
string 𝑆𝑔𝑛(𝑣𝑟) ← 𝑆1: 𝑆2: 𝑆3 



Output: Edge signature 𝑆𝑔𝑛(𝑣𝑟)  

Complexity: 𝒪 ((
|𝐸𝑀|

|𝑉𝑅|
)

2
) ≈ 𝒪(1), since |𝐸𝑀| ∝ |𝑉𝑅| on the model regulatory graph (S7.5 Notes). 

Notes A more permissive edge signature can be obtained by discounting context edges, i.e. 𝑆𝑔𝑛(𝑣𝑟) ← 
concatenated 𝑆1: 𝑆2 only. 
 
S7.8: Grouping on the Model Regulatory Graph 
Goal: Given a model regulatory graph and an optional atomic pattern grouping, group rules according to 
edge signature.  
Example Given a graph {rule1, rule2, patt1, patt2} with edges { (rule1,patt1,product), 
(rule2,patt2,product) }, if pattgroup1={patt1,patt2}, then assign rule1 and rule2 to the same group 
rulegroup1. 
Input: Model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial group assignment 𝐺𝑟𝑝𝐴: 𝑉𝐴 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠 for 
atomic patterns. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

for each node 𝑣𝑟 in 𝑉𝑅 
𝑆𝑔𝑛(𝑣𝑟) ← Edge signature of 𝑣𝑟 given function 𝐺𝑟𝑝𝐴 using S7.6  
if 𝑆𝑔𝑛(𝑣𝑟) not in domain of 𝑐𝑜𝑢𝑛𝑡  

𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) ← 0 
increment 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) 
if 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) = 2 

𝑖𝑛𝑑(𝑆𝑔𝑛(𝑣𝑟)) ← 𝑥, where 𝑥 is a unique label  

for each node 𝑣𝑟 in 𝑉𝑅 such that 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) > 1 
 𝐺𝑟𝑝𝑅(𝑣𝑅) ← 𝑖𝑛𝑑(𝑆𝑔𝑛(𝑣𝑟)) 

Output: partial group assignment 𝐺𝑟𝑝𝑅: 𝑉𝑅 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠 for rules. 
Complexity: 𝒪(|𝑉𝑅|), i.e. linear in the number of rules. 
Notes: If the edge signature is built only from reactant and product edges and does not use context edges, 
then the grouping is more permissive and fewer groups are obtained having larger group sizes. 
 
S7.9: Collapsing Groups on the Model Regulatory Graph 
Goal: Given a model regulatory graph with groups, replace each group of nodes by a single node labeled 
with the group name.  
Example: Given a graph with nodes {patt1,patt2,patt3,rule1,rule2,rule3} in which pattgroup1 = {patt1, 
patt2}, rulegroup1 = {rule1, rule2}, the new graph has nodes {pattgroup1, patt3, rulegroup1, rule3}. Edges 
incident on either patt1 or patt2 are remapped to pattgroup1 and edges incident on rule1 or rule2 are 
remapped to rulegroup1. 
Input: Model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial group assignments 𝐺𝑟𝑝𝐴, 𝐺𝑟𝑝𝑅 on 𝑉𝐴, 𝑉𝑅 
respectively.  

1 
2 
3 
4 
5 
6 
7 
8 

initialize empty sets 𝑉, 𝐸 and function 𝑅𝑒𝑚𝑎𝑝 
for each node 𝑣 in 𝑉𝐴 ∪ 𝑉𝑅 

make node 𝑥 from 𝑣 according to Table below 
add node 𝑥 to 𝑉 
𝑅𝑒𝑚𝑎𝑝(𝑣) ← 𝑥 

for each edge (𝑣𝑎 , 𝑣𝑟, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) in 𝐸𝑀 
add edge (𝑅𝑒𝑚𝑎𝑝(𝑣𝑎), 𝑅𝑒𝑚𝑎𝑝(𝑣𝑟), 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) to 𝐸 

𝐺 ← (𝑉, 𝐸) 
Output: collapsed regulatory graph 𝐺. 
Complexity: 𝒪(|𝑉𝐴| + |𝑉𝑅| + |𝐸𝑀|) ≈ 𝒪(|𝑉𝐴| + |𝑉𝑅|), since |𝐸𝑀| ∝ |𝑉𝑅|, i.e. linear in the size of the 
model regulatory graph |𝑉𝐴| + |𝑉𝑅|. 



 

NodeType of 𝑣 𝑣 ∈domain of 𝐺𝑟𝑝𝐴 𝑣 ∈domain of 𝐺𝑟𝑝𝑅 𝑥 =(NodeLabel,NodeType,isGroup) 

atomic pattern True - (𝐺𝑟𝑝𝐴(𝑣), atomic pattern, True) 

False - (𝑣, atomic pattern, False) 

rule - True (𝐺𝑟𝑝𝑅(𝑣), rule, True) 

- False (𝑣, rule, False) 

 
  



S8 Appendix: Rendering Conventions 

S8.1 Site Graph 
Goal: Given a pattern structure graph, draw a site graph by nesting components within molecules, 
internal states within components and drawing bonds as edges between components. 
Example: Given a pattern A(b!1).B(a~x!1), nest b within A, a within B, x within a and add an edge 
between a and b. 
Input: Pattern structure graph 𝐺 ≔ (𝑉, 𝐸) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

for each node 𝑣 in 𝑉 
 if type={molecule,component,internalstate} and name=S 
  render as node labeled S  
for each node 𝑣 in 𝑉 such that type=component 
 if exists (𝑣, 𝑣′) in 𝐸 such that 
  type=molecule for 𝑣′, then nest 𝑣 in 𝑣′ 
  type=internalstate for 𝑣′, then nest 𝑣′ in 𝑣 
for each node 𝑣 in  𝑉 such that type=bond 
 ignore if name=− 
 if name=+ and adjacent to two components 𝑐, 𝑐′ 
  render as edge between renderings of 𝑐, 𝑐′ 
 if name=+ and adjacent to only one component 𝑐 
  render as node labeled + 
  add edge to rendering of 𝑐 

Output: Site graph 
 
S8.2 Compact Rule Visualization 
Goal: Given a rule structure graph, draw a site graph with the nodes labeled side=both and render nodes 
labeled side=left or side=right with special conventions. 
Example: Given a rule A(b~x)-> A(b~y) and a rule structure graph {A,b,-,x,y} nest b within A, x within b, y 
within b, add ChangeState node, add directed edge from x to ChangeState, add directed edge from 
ChangeState to y. 
Input: rule structure graph 𝐺 ≔ (𝑉, 𝐸) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

for each node 𝑣 in 𝑉 
 if side=both or type=internal state, render using site graph conventions 

if type=molecule and side=left 
 add node labeled DeleteMol 
 add directed edge from 𝑣 to DeleteMol 
if type=molecule and side=right 
 add node labeled AddMol 
 add directed edge from to AddMol to 𝑣 
if type=bond and name=+ and side=left 
 replace with node labeled DeleteBond 
 add directed edges from adjacent components to DeleteBond 
if type=bond and name=+ and side=right 
 replace with node labeled AddBond 
 add directed edges to adjacent components from AddBond 
if type=component and exists two adjacent states 𝑠, 𝑠′ 

if side=left for 𝑠 and side=right for 𝑠′ 
  add node labeled ChangeState 



18 
19 
20 

  nest ChangeState node within 𝑣 
  add directed edge from 𝑠 to ChangeState 
  add directed edge from ChangeState to 𝑠′ 

Output: compact rule visualization 
 
S8.3 Regulatory Graph 
Goal: Given a regulatory graph draw each node and edge according to provided conventions for atomic 
pattern and rule node types and reactant, product and context edge types. If a grouping scheme is 
provided, draw groups around the respective sets of nodes. 
Example: Given graph {patt1, patt2, patt3, rule1, rule2, rule3} and groups pattgroup1={patt1,patt2}, 
rulegroup1={rule1,rule2}, draw nodes {patt1, patt2, patt3} using atomic pattern conventions, nodes 
{rule1, rule2, rule3} using rule node conventions, node pattgroup1 around {patt1,patt2} and node 
rulegroup1 around {rule1,rule2}. 
Input: Regulatory graph 𝐺 ≔ (𝑉, 𝐸), two node rendering conventions for atomic pattern and rule 
respectively, three node rendering conventions for reactant, product and context respectively, and 
optionally a partial group assignment 𝐺𝑟𝑝: 𝑉 → 𝐿𝑎𝑏𝑒𝑙𝑠. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

for each label 𝑠 in 𝑖𝑚𝑔(𝐺𝑟𝑝) 
 draw node labeled 𝑠 
for each node 𝑣 in 𝑉 
 if type=atomicpattern and name=S 
  render with atomic pattern node conventions and label S 
 if type=rule and name=S 
  render with rule node conventions and label S 
 if 𝐺𝑟𝑝(𝑣) = 𝑠 
  nest within node labeled 𝑠 
for each edge (𝑣, 𝑣′) in 𝐸 
 if type of 𝑣 is atomicpattern and type of 𝑣′ is rule 
  if re=1, draw directed edge from 𝑣 to 𝑣′ with reactant edge conventions 
  if pr=1, draw directed edge from 𝑣′ to 𝑣 with product edge conventions 
  if co=1, draw directed edge from 𝑣 to 𝑣′ with context edge conventions 
  allow multiple edges between the same pair of nodes 

Output: Rendered regulatory graph 


