
Automated Visualization of Rule-based Models

John A. P. Sekar, Jose-Juan Tapia, James R. Faeder*
University of Pittsburgh School of Medicine

Department of Computational & Systems Biology
{johnsekar,jjtapia,faeder}@pitt.edu

*-corresponding author

Supplementary Information

Fig S1. Rule size distributions. Distribution of rule sizes for 2239 rules from 27 rule-based models in the literature models when

represented as (A) rule syntax graph, (B) rule structure graph and (C) rule-derived regulatory graph. In all three representations,

it is seen that large rules are infrequently encountered.

Fig S2. Group Structures on the Model Regulatory Graph. On the full model regulatory graph of Faeder et al. [13], the default

grouping heuristic for atomic patterns grouped phosphorylation sites on the same molecules and binding interactions between

the same pairs of molecules. Then, rules were grouped automatically by analyzing edge signatures of individual rules, i.e. how

they relate to adjacent atomic patterns and their groups. (A) A strict edge signature was used, which accounted for all three edge

types. Rule variants that differ only in context are still considered different from each other (e.g. R12 and R13). (B) A permissive

edge signature was used, which ignored context edges. This resulted in a broader grouping of rules that does not distinguish

between contextual variants.

Fig S3. Distribution of graph sizes for various visualization methods. Each graph (A-I) has 27 data-points (blue) corresponding to

27 rule-based models from the literature, listed in S6 Appendix. The red data point marks the coordinates of the geometric mean

of all 27 points. The graphs are as follows: (A) contact map, (B) conventional rule visualization, (C) compact rule visualization, (D)

Simmune Network Viewer, (E) rule influence diagram, (F) full model regulatory graph, (G) model regulatory graph with

background removed, (H) model regulatory graph with background removed and nodes compressed using a strict edge signature,

(I) model regulatory graph with background removed and nodes compressed using a permissive edge signature. The geometric

means shown are the same values plotted in Fig 13 and measure the center of each distribution in log-space.

Fig S4. Comparison of rule-derived regulatory graph and Simmune Network Viewer. (A) Shown is a model in which three sites

on a protein are activated in sequence. (B) The sequence is evident on the rule-derived regulatory graph. (C) The sequence cannot

be seen on the Simmune Network Viewer diagram because the three patterns used have the same molecule stoichiometry {A=1}

and are represented by the same node, which obscures information mediated through state changes.

Fig S5. Comparison of BioNetGen and rxncon regulatory graphs. (A) In BioNetGen, complex reaction mechanisms are specified

as reaction rules and the rule-derived regulatory graph is inferred by analyzing the specified rules. The reaction rule shown models

trans-phosphorylation of receptor R in the ligand-crosslinked dimer configuration by recruited kinase K, a frequently encountered

mechanism in biochemical signaling. (B) In rxncon, regulation is specified using the rxncon syntax and directly visualized as the

regulatory graph. Reaction mechanisms are reconstructed from the specified regulatory interactions and are limited to a small

set of mechanisms, e.g. the current version of rxncon does not natively support trans-phosphorylation reactions.

S6 Appendix: List of Rule-based Models

No. Citation System Rules

1 An et al. 2009 Math BioSci. TLR4 59

2 Barua et al. 2008 J Biol Chem. PDGFRβ 43

3 Barua et al. 2009 PLoS Comput Biol. GH-Jak 6

4 Barua et al. 2012 J Immunol. BCR 44

5 Barua et al. 2012 PLoS One FcεRI 86

6 Barua et al. 2013 PLoS Comput Biol. APC 79

7 Blinov et al. 2006 Biosystems EGFR 39

8 Chylek et al. 2014 Front Immunol. FcεRI 145

9 Chylek et al. 2014 PLoS One TCR 158

10 Creamer et al. 2012 BMC Syst Biol. ErBB 625

11 Dushek et al. 2011 Biophys J. Multi-site phosphorylation 128

12 Dushek et al. 2014 Biophys J. FRET Biosensors 10

13 Faeder et al. 2003 J Immunol. FcεRI 24

14 Falkenberg et al. 2013 Biophys J. TLBR 6

15 Hat et al. 2016 PLoS Comput Biol. p53 94

16 Kesseler et al. 2013 J Theor Biol. G2 checkpoint 173

17 Kocieniewski et al. 2012 J Theor Biol. MAPK 28

18 Kozer et al. 2013 Mol Biosyst. EGFR 26

19 Kozer et al. 2014 Biochemistry EGFR-Grb2 28

20 Ligon et al. 2014 PLoS One Lipoplex transfection 33

21 Michalski et al. 2012 Phys Biol. CaMKII 8

22 Mukhopadhyay et al. 2013 PLoS Comput Biol. TCR 42

23 Nag et al. 2009 Biophys J. Lat-Grb2-SOS1 52

24 Pekalski et al. 2013 PLoS One TNFα 40

25 Stites et al. 2015 Biophys J. EGFR 178

26 Szymanska et al. 2015 PLoS One MTORC1 31

27 Thomson et al. 2011 PNAS Yeast GPCR 54

S7 Appendix: Algorithms

S7.1 Pattern Structure Graph
Goal: Given a BioNetGen pattern, compose a graph in which each element of the pattern is a node and
each edge is a hierarchical relationship. The node has attributes (NodeIndex, NodeLabel, NodeType)
where NodeLabel is a name, NodeType is one of {molecule, component, internal state, bond state} and
NodeIndex is a unique index. Bond state nodes have NodeLabel + to indicate bonds and – to indicate
unbound state.
Example: Given the pattern A(b!1).B(a~x!1), we get a graph with six nodes { (1,A,molecule),
(2,B,molecule), (3,b,component), (4,a,component), (5,x,internal state), (6,+,bond state) } and five edges
{(1,3),(2,4),(2,5),(3,6),(4,6)}.
Input: Pattern 𝑝 = (𝑥) and a map 𝑡𝑦𝑝𝑒: 𝑝 → {molecule, component, internal state, bond}. Each element
𝑥 in 𝑝 has one of the following forms:

(𝑚, 𝑚𝑡), is a molecule with index 𝑚 of type 𝑚𝑡,
(𝑐, 𝑐𝑡 , 𝑚), a component with index 𝑐 of type 𝑐𝑡 in molecule 𝑚,
(𝑠, 𝑠𝑡, 𝑐), is an internal state with index 𝑠 of type 𝑠𝑡 on component 𝑐,
(𝑏, 𝑐1, 𝑐2) is a bond with index 𝑏 between components 𝑐1 and 𝑐2,
(𝑏, 𝑐) is a wildcard bond with index 𝑏 on component 𝑐

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

initialize empty sets 𝑉, 𝐸 and function 𝑏𝑜𝑛𝑑𝑒𝑑
for each 𝑥 in 𝑝,
 if 𝑥 = (𝑚, 𝑚𝑡) and 𝑡𝑦𝑝𝑒(𝑥) = molecule

 add node (𝑚,𝑚𝑡,molecule) to 𝑉
 if 𝑥 = (𝑐, 𝑐𝑡 , 𝑚) and 𝑡𝑦𝑝𝑒(𝑥) = component

 add node (𝑐, 𝑐𝑡, component) to 𝑉
 add edg e (𝑚, 𝑐) to 𝐸
 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ← False
if 𝑥 = (𝑠, 𝑠𝑡, 𝑐) and 𝑡𝑦𝑝𝑒(𝑥) = internal state
 add node (𝑠,𝑠𝑡,internal state) to 𝑉
 add edge (𝑐, 𝑠) to 𝐸
if 𝑥 = (𝑏, 𝑐1, 𝑐2) and 𝑡𝑦𝑝𝑒(𝑥) = bond
 add node (𝑏,+, bond state) to 𝑉
 add edges (𝑐1, 𝑏), (𝑐2, 𝑏) to 𝐸
 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ← True

 if 𝑥 = (𝑏, 𝑐)
 add node (𝑏,+,bond state) to 𝑉
 add edge (𝑐, 𝑏) to 𝐸
 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) ←True
for each component 𝑥 in 𝑝 such that 𝑏𝑜𝑛𝑑𝑒𝑑(𝑐) =False

add node (𝑢,−,bond state) to 𝑉, where 𝑢 is a unique id
add edge (𝑐, 𝑢) to 𝐸

𝐺 ← (𝑉, 𝐸)
Output: Pattern structure graph 𝐺.
Complexity: 𝒪(|𝑝|) , i.e. linear in the size of the pattern.
Notes: From above, |𝐸| ≤ 2|𝑉|. We will treat |𝐸| ∝ |𝑉| for pattern structure graphs in S7.2, S7.3.

S7.2 Correspondence Map
Goal: Given a BioNetGen rule, synthesize a partial map between reactants and products.

Example: Given a rule A(b~x) -> A(b~y), the reactant structure graph is {(1,A,molecule), (2,b,component),
(3,x,internal state), (4,-,bond state)}. Similarly, the product structure graph is {(5,A,molecule),
(6,b,component), (7,y,internal state), (4,-,bond state)}. The correspondence map is {(1->5), (2->6), (4->8)}.
For simplicity, we can denote this as A->A, b->b.
Input: Rule (𝑝𝑙 , 𝑝𝑟) where 𝑝𝑙 ≔ (𝑥𝑙), 𝑝𝑟 ≔ (𝑥𝑟) and 𝑡𝑦𝑝𝑒: {𝑥|𝑥 ∈ 𝑝𝑙 ∪ 𝑝𝑟} →{ molecule, component,
internal state, bond }. 𝑝𝑙 and 𝑝𝑟 are merged patterns of the left and right sides of the rule respectively.

1 𝑀𝑙 = (𝑥), a sequence with molecules 𝑥 drawn from 𝑝𝑙
2 𝑀𝑟 = (𝑥), a sequence with molecules 𝑥 drawn from 𝑝𝑟
3 for each 𝑥 ∈ 𝑀𝑙 such that 𝑥 = (𝑚, 𝑚𝑡)
4 𝐶𝑥 = (𝑦), a sequence with components 𝑦 drawn from 𝑝𝑙 s.t. 𝑦 = (𝑐, 𝑐𝑡 , 𝑚)
5 for each 𝑥 ∈ 𝑀𝑟such that 𝑥 = (𝑚, 𝑚𝑡)
6 𝐶𝑥 = (𝑦), a sequence with components 𝑦 drawn from 𝑝𝑟 s.t. 𝑦 = (𝑐, 𝑐𝑡 , 𝑥)
7 initialize empty sets 𝑑𝑜𝑚, 𝑖𝑚𝑔 and function 𝜓: 𝑑𝑜𝑚 → 𝑖𝑚𝑔
8 for each 𝑥 ∈ 𝑀𝑙 such that 𝑥 = (𝑚𝑥 , 𝑚𝑡

𝑥) and 𝑥 not in 𝑑𝑜𝑚
9 for each 𝑦 ∈ 𝑀𝑟such that 𝑥 = (𝑚𝑦, 𝑚𝑡

𝑦
) and 𝑚𝑡

𝑥 = 𝑚𝑡
𝑦

 and 𝑦 not in 𝑖𝑚𝑔
10 if exists 𝐶𝑥 → 𝐶𝑦 preserving component type, presence of internal state, wildcard

11 add 𝑥 to 𝑑𝑜𝑚 and 𝑦 to 𝑖𝑚𝑔
12 𝜓(𝑥) ← 𝑦
13 for each molecule map (𝑥 → 𝑦) in 𝜓
14 for each 𝑎 in 𝐶𝑥 such that 𝑎 = (𝑐𝑎, 𝑐𝑡

𝑎, 𝑚𝑎)and 𝑎 not in 𝑑𝑜𝑚
15 for each 𝑏 in 𝐶𝑥 such that 𝑏 = (𝑐𝑏 , 𝑐𝑡

𝑏 , 𝑚𝑏)and 𝑐𝑡
𝑎 = 𝑐𝑡

𝑏 and 𝑏 not in 𝑖𝑚𝑔

16 add 𝑎 to 𝑑𝑜𝑚 and 𝑏 to 𝑖𝑚𝑔
17 𝜓(𝑎) ← 𝑏
18 for each component map (𝑎 → 𝑏) in 𝜓 such that 𝑎 = (𝑐𝑎, 𝑐𝑡

𝑎, 𝑚𝑎), 𝑏 = (𝑐𝑏 , 𝑐𝑡
𝑏 , 𝑚𝑏)

19 if exists (𝑠𝑙 , 𝑠𝑡
𝑙 , 𝑐𝑙) ∈ 𝑝𝑙 , (𝑠𝑟, 𝑠𝑡

𝑟, 𝑐𝑟) ∈ 𝑝𝑟 such that 𝑐𝑙 = 𝑐𝑎, 𝑐𝑟 = 𝑐𝑏 , 𝑠𝑡
𝑙 = 𝑠𝑡

𝑟
20 add (𝑠𝑙 , 𝑠𝑡

𝑙 , 𝑐𝑙) to 𝑑𝑜𝑚 and (𝑠𝑟, 𝑠𝑡
𝑟 , 𝑐𝑟) to 𝑖𝑚𝑔

21 𝜓((𝑠𝑙 , 𝑠𝑡
𝑙 , 𝑐𝑙)) ← (𝑠𝑟, 𝑠𝑡

𝑟, 𝑐𝑟)
22 if exists (𝑏𝑙 , 𝑐𝑙) ∈ 𝑝𝑙 , (𝑏𝑟, 𝑐𝑟) ∈ 𝑝𝑟 such that 𝑐𝑙 = 𝑐𝑎 , 𝑐𝑟 = 𝑐𝑏
23 add (𝑏𝑙 , 𝑐𝑙) to 𝑑𝑜𝑚 and (𝑏𝑟, 𝑐𝑟) to 𝑖𝑚𝑔

24 𝜓((𝑏𝑙 , 𝑐𝑙)) ← (𝑏𝑟, 𝑐𝑟)

25 for each bond 𝑔 ∈ 𝑝𝑙 such that 𝑔 = (𝑏𝑙 , 𝑐1
𝑙 , 𝑐2

𝑙) and 𝑔 not in 𝑑𝑜𝑚

26 for each bond ℎ ∈ 𝑝𝑟 such that ℎ = (𝑏𝑟, 𝑐1
𝑟, 𝑐2

𝑟) and ℎ not in 𝑖𝑚𝑔
27 if exists {𝑐1

𝑙 , 𝑐2
𝑙 } → {𝑐1

𝑟, 𝑐2
𝑟} in 𝜓

28 add 𝑔 to 𝑑𝑜𝑚 and ℎ to 𝑖𝑚𝑔
29 𝜓(𝑔) ← ℎ

Output: Correspondence map 𝜓: 𝑝𝑙 ↛ 𝑝𝑟, where ↛ indicates that it is a partial map.
Complexity: 𝒪(|𝑝𝑙| ∗ |𝑝𝑟|). This can be considered 𝒪(1) since rule sizes do not get very large (Fig S1A).
Notes: Since the pattern structure graph has one node for every element in a pattern, the correspondence

map can also be defined equivalently on pattern structure graphs, i.e. 𝜓: 𝑉𝑙 ↛ 𝑉𝑟

S7.3 Rule Structure Graph
Goal: Given a BioNetGen rule and a correspondence map between reactants and products, synthesize a
graph in which the left and right sides are merged together. In addition to NodeIndex, NodeLabel, and
NodeType, use the NodeSide attribute to indicate which side of the rule each node is derived from.
Example: Given the rule A(b~x) -> A(b~y) and the map A->A, b->b, it produces a graph with five nodes
{(1,A,molecule,both), (2,b,component,both), (3,x,internal state,left), (4,y,internal state,right), (5,-,bond
state,both)} and four edges {(1,2), (2,3), (2,4), (2,5)}. The nodes with NodeSide ‘both’ have been merged

from both sides of the rule whereas the nodes with NodeSide equals ‘left’ or ‘right’ come uniquely from
the reactant or product sides of the rule respectively.

Input: Rule (𝐺𝑙 , 𝐺𝑟, 𝜓) where 𝐺𝑙 ≔ (𝑉𝑙 , 𝐸𝑙), 𝐺𝑟 ≔ (𝑉𝑟 , 𝐸𝑟) are merged pattern structure graphs and

𝜓: 𝑉𝑙 ↛ 𝑉𝑟 is a correspondence map.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

initialize empty sets 𝑉, 𝐸

for each node 𝑣 in 𝑉𝑙, label NodeSide(𝑣)=left
for each node 𝑣 in 𝑉𝑟, label NodeSide(𝑣)=right
for each map 𝑣 → 𝑣′ in 𝜓,

label NodeSide(𝑣) = NodeSide(𝑣’) = both

for each edge (𝑣, 𝑣′) in 𝐸𝑙, add edge (𝑣, 𝑣′) to 𝐸
for each edge (𝑣, 𝑣′) in 𝐸𝑟

if NodeSide(𝑣)=NodeSide(𝑣′)=both
 next edge
if NodeSide(𝑣)=both
 𝑣 ← 𝜓−1(𝑣)
if NodeSide(𝑣′)=both
 𝑣′ ← 𝜓−1(𝑣′)
add edge (𝑣, 𝑣′) to 𝐸

𝐺 ← (𝑉, 𝐸)
Output: Rule structure graph 𝐺

Complexity: 𝒪(|𝑉𝑙| + |𝑉𝑟| + |𝐸𝑙| + |𝐸𝑟|) ≈ 𝒪(|𝑉𝑙| + |𝑉𝑟|) since |𝐸| ∝ |𝑉| for pattern structure graphs.

The complexity is linear in the size of the rule |𝑉𝑙| + |𝑉𝑟|. This can be considered 𝒪(1) since rule sizes do

not get very large (Fig S1A).
Notes: The rule structure graph has the same property of the pattern structure graph, i.e. |𝐸| ∝ |𝑉| .

S7.4 Rule-derived Regulatory Graph
Goal: The rule-derived regulatory graph is a network graph in which nodes have attributes NodeType and
NodeLabel and edges have attributes Reactant, Product and Context respectively which take binary values
0/1 each. NodeType can be atomic pattern or rule and NodeLabel is sufficient to index nodes uniquely.
Given a rule structure graph of a rule, synthesize a rule-derived regulatory graph in which one node is
labeled with the name of the rule.
Example: Given the rule labeled rule1 of the form A(b~x) -> A(b~y) and its corresponding rule structure
graph (see S7.3 Example) build a network graph with four nodes having NodeLabel equals rule1, A(b),
A(b~x), A(b~y) respectively. The node labeled rule1 is of NodeType rule and the other nodes are of node
type atomic pattern. Draw edges { (rule1,A(b)), (rule1, A(b~x)), (rule1, A(b~y)) } respectively with edge
labels 001, 100, 010 respectively, where 001 indicates that edge attributes are
Reactant=0,Product=0,Context=1 respectively. Each node and edge is drawn by examining a
corresponding node on the rule structure graph and its neighbors.
Input: Rule structure graph 𝐺𝑠 ≔ (𝑉𝑠, 𝐸𝑠, 𝑟) where 𝑟 is a label indexing the rule.

1
2
3
4
5
6
7
8

for each node 𝑣 in 𝑉𝑠, initialize empty set Parent(𝑣)
for each edge (𝑣, 𝑣′) in 𝐸𝑠

if 𝑣 is a molecule with NodeLabel 𝑚𝑡
 if 𝑣′ is a component

 add label "mt" to Parent(𝑣’)
if 𝑣 is a component with NodeLabel 𝑐𝑡 and parent "mt"
 if 𝑣′ is an internal or bond state

add label "mt(ct)" to Parent(𝑣’)

9
10
11
12
13
14
15
16
17
18

initialize empty sets 𝑉, 𝐸
add node 𝑣𝑟=(𝑟,rule) to 𝑉
for each node 𝑣𝑠 in 𝑉𝑠

determine atomic pattern NodeLabel 𝑎 from Table below
make node 𝑣𝑎 =(𝑎, atomicpattern),
if 𝑣𝑎 not in 𝑉,

 add node 𝑣𝑎 to 𝑉
add edge (𝑣𝑎 , 𝑣𝑟) to 𝐸 with default labels (Reactant=0,Product=0,Context=0)
apply label modification of edge (𝑣𝑎, 𝑣𝑟) from Table

𝐺 ← (𝑉, 𝐸)
Output: Rule-derived regulatory graph 𝐺.
Complexity: 𝒪(|𝑉𝑠| + |𝐸𝑠|) ≈ 𝒪(|𝑉𝑠|) since |𝐸| ∝ |𝑉| for the rule structure graph. In other words, the
complexity is linear in the size of the rule structure graph |𝑉𝑆|. This can be considered 𝒪(1) since rule
structure graph sizes do not get very large (Fig S1B).
Notes: From above, |𝐸| = |𝑉| − 1 for the rule regulatory graph. Since rule sizes are bounded, rule
regulatory graph sizes are bounded also (Fig S1C). So we treat|𝐸| ≈ |𝑉| ≈constant for the rule-derived
regulatory graph in S7.5.

Attributes of node 𝑣𝑠 on rule structure graph of rule labeled 𝑟 NodeLabel 𝑎 for
atomic pattern
node 𝑣𝑎

Label
modification
for edge
(𝑣𝑎 , 𝑣𝑟)

NodeType NodeLabel NodeSide Parents

Molecule 𝑚𝑡 Left None mt Reactant← 1

Right Product ← 1

Both - -

Internal State 𝑠𝑡 Left mt(ct) mt(ct~st) Reactant ← 1

Right Product ← 1

Both Context ← 1

Bond State + Left mt(ct), mt
′(ct

′) mt(ct! 1). mt
′(ct

′! 1) Reactant← 1

Right Product← 1

Both Context←1

Both mt(ct) mt(ct! +) Context ←1

−

Left mt(ct) mt(ct) Reactant← 1

Right Product ←1

Both Context ← 1

S7.5 Model Regulatory Graph
Goal: Given a set of rule derived regulatory graphs, merge them into a single graph. Additionally, remap
wildcard bonds (e.g. A(b!+)) to matching fully specified bonds (e.g. A(b!1).B(a!1)).
Example: Given two graphs with nodes {rule1, patt1, patt2} and {rule2, patt2, patt3} respectively, the
resultant graph will have the nodes {rule1, rule2, patt1, patt2, patt3}. Edges on the resultant graph have
all the labels of the corresponding edges on the individual graphs.
Input: Set of rule regulatory graphs {𝐺𝑟|𝐺𝑟 ≔ (𝑉𝑟, 𝐸𝑟)}, where 𝑟 indexes the rule.

1 𝑉 ← ⋃ 𝑉𝑟
∀𝑟

, 𝐸 ← ⋃ 𝐸𝑟
∀𝑟

2
3

edge label conflicts are resolved using Boolean OR.
for each wildcard 𝑤 in 𝑉

4
5
6
7
8
9

for each edge (𝑤, 𝑥) in 𝐸,
for each bond 𝑏 in 𝑉 such that 𝑤 matches 𝑏

add edge (𝑏, 𝑥) to 𝐸 with same labels as (𝑤, 𝑥)
delete edge (𝑤, 𝑥) in 𝐸

delete node 𝑤 in 𝑉
𝐺 ← (𝑉, 𝐸)

Output: model regulatory graph 𝐺.
Complexity: 𝒪(Σ𝑟(|𝑉𝑟| + |𝐸𝑟|) + |𝑤| ∗ |𝑏|) where 𝑉𝑟 , 𝐸𝑟 are nodes and edges of individual rule regulatory
graphs, |𝑤| and |𝑏| are number of wildcards and bonds respectively. Since |𝑉𝑟| ≈ |𝐸𝑟| ≈constant for
individual rule regulatory graphs (S7.4 Notes) and wildcards are rarely used, the average complexity is
𝒪(𝑛), where 𝑛 is the number of rules.
Notes: Since there are only two node types, the model regulatory graph is also represented as the tuple
(𝑉𝐴, 𝑉𝑅 , 𝐸) where 𝑉𝐴 and 𝑉𝑅 partition 𝑉 into atomic patterns and rules respectively. Since |𝐸| ≈ constant
for individual rule regulatory graphs, we treat |𝐸| ∝ |𝑉𝑅| for the model regulatory graph in S7.6, S7.8.

S7.6 Removing Background on the Model Regulatory Graph
Goal: Given a model regulatory graph, remove background nodes.
Example: Given a graph {rule1, rule2, patt1, patt2}, if the set of background nodes are {rule2, patt1}, then
the output graph has the nodes {rule1, patt2}. Edges between non-background nodes are transferred as
is to the new graph.
Input: Model regulatory graph 𝐺 ≔ (𝑉, 𝐸), background assignment 𝐵𝑘𝑔: 𝑉 → {0,1}

1
2
3

𝑉′ ← 𝑉 − {𝑣|𝐵𝑘𝑔(𝑣) = 1, 𝑣 ∈ 𝑉}
𝐸′ ← 𝐸 − {(𝑣, 𝑣′, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙)|𝐵𝑘𝑔(𝑣) + 𝐵𝑘𝑔(𝑣′) ≥ 1, (𝑣, 𝑣′, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) ∈ 𝐸}
𝐺′ ← (𝑉′, 𝐸′)

Output: model regulatory graph 𝐺′
Complexity: 𝒪(|𝑉| + |𝐸|), i.e. linear in the size of the model regulatory graph.

S7.7 Determining Edge Signature of a Rule
Goals: For a particular rule node on the model regulatory graph, compute a signature from adjacent
nodes, edges and edge attributes.
Example: Given a graph {rule1, patt1, patt2, patt3} with edges { (rule1,patt1,100), (rule1,patt2,010) ,
(rule1,patt3,001) }, where edge label 100 indicates edge attributes Reactant=1,Product=0,Context=0, the
edge signature for rule1 is (patt1):(patt2):(patt3). Suppose a partial grouping function is provided on
patterns, say patt1->pattgroup1 and patt2->pattgroup2, then the edge signature is
(pattgroup1):(pattgroup2):(patt3).
input, Rule 𝑣𝑟 ∈ 𝑉𝑅. model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial grouping function on atomic
patterns 𝑓: 𝑉𝐴 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠.

1
2
3
4
5
6
7
8
9
10
11

initialize empty sets 𝑅𝑒, 𝑃𝑟, 𝐶𝑜
for each edge (𝑣𝑎 , 𝑣𝑟 , 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) in 𝐸𝑀

string 𝑆 ← 𝑣𝑎 if 𝑣𝑎 not in domain of 𝑓
string 𝑆 ← 𝑓(𝑣𝑎) if 𝑣𝑎 in domain of 𝑓
add 𝑆 to 𝑅𝑒 if Reactant=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙
add 𝑆 to 𝑃𝑟 if Product=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙
add 𝑆 to 𝐶𝑜 if Context=1 in 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙

string 𝑆1 ← sorted and concatenated elements of 𝑅𝑒
string 𝑆2 ← sorted and concatenated elements of 𝑃𝑟
string 𝑆3 ← sorted and concatenated elements of 𝐶𝑜
string 𝑆𝑔𝑛(𝑣𝑟) ← 𝑆1: 𝑆2: 𝑆3

Output: Edge signature 𝑆𝑔𝑛(𝑣𝑟)

Complexity: 𝒪 ((
|𝐸𝑀|

|𝑉𝑅|
)

2
) ≈ 𝒪(1), since |𝐸𝑀| ∝ |𝑉𝑅| on the model regulatory graph (S7.5 Notes).

Notes A more permissive edge signature can be obtained by discounting context edges, i.e. 𝑆𝑔𝑛(𝑣𝑟) ←
concatenated 𝑆1: 𝑆2 only.

S7.8: Grouping on the Model Regulatory Graph
Goal: Given a model regulatory graph and an optional atomic pattern grouping, group rules according to
edge signature.
Example Given a graph {rule1, rule2, patt1, patt2} with edges { (rule1,patt1,product),
(rule2,patt2,product) }, if pattgroup1={patt1,patt2}, then assign rule1 and rule2 to the same group
rulegroup1.
Input: Model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial group assignment 𝐺𝑟𝑝𝐴: 𝑉𝐴 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠 for
atomic patterns.

1
2
3
4
5
6
7
8
9

for each node 𝑣𝑟 in 𝑉𝑅
𝑆𝑔𝑛(𝑣𝑟) ← Edge signature of 𝑣𝑟 given function 𝐺𝑟𝑝𝐴 using S7.6
if 𝑆𝑔𝑛(𝑣𝑟) not in domain of 𝑐𝑜𝑢𝑛𝑡

𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) ← 0
increment 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟))
if 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) = 2

𝑖𝑛𝑑(𝑆𝑔𝑛(𝑣𝑟)) ← 𝑥, where 𝑥 is a unique label

for each node 𝑣𝑟 in 𝑉𝑅 such that 𝑐𝑜𝑢𝑛𝑡(𝑆𝑔𝑛(𝑣𝑟)) > 1
 𝐺𝑟𝑝𝑅(𝑣𝑅) ← 𝑖𝑛𝑑(𝑆𝑔𝑛(𝑣𝑟))

Output: partial group assignment 𝐺𝑟𝑝𝑅: 𝑉𝑅 ↛ 𝐿𝑎𝑏𝑒𝑙𝑠 for rules.
Complexity: 𝒪(|𝑉𝑅|), i.e. linear in the number of rules.
Notes: If the edge signature is built only from reactant and product edges and does not use context edges,
then the grouping is more permissive and fewer groups are obtained having larger group sizes.

S7.9: Collapsing Groups on the Model Regulatory Graph
Goal: Given a model regulatory graph with groups, replace each group of nodes by a single node labeled
with the group name.
Example: Given a graph with nodes {patt1,patt2,patt3,rule1,rule2,rule3} in which pattgroup1 = {patt1,
patt2}, rulegroup1 = {rule1, rule2}, the new graph has nodes {pattgroup1, patt3, rulegroup1, rule3}. Edges
incident on either patt1 or patt2 are remapped to pattgroup1 and edges incident on rule1 or rule2 are
remapped to rulegroup1.
Input: Model regulatory graph 𝐺𝑀 ≔ (𝑉𝐴, 𝑉𝑅 , 𝐸𝑀), partial group assignments 𝐺𝑟𝑝𝐴, 𝐺𝑟𝑝𝑅 on 𝑉𝐴, 𝑉𝑅
respectively.

1
2
3
4
5
6
7
8

initialize empty sets 𝑉, 𝐸 and function 𝑅𝑒𝑚𝑎𝑝
for each node 𝑣 in 𝑉𝐴 ∪ 𝑉𝑅

make node 𝑥 from 𝑣 according to Table below
add node 𝑥 to 𝑉
𝑅𝑒𝑚𝑎𝑝(𝑣) ← 𝑥

for each edge (𝑣𝑎 , 𝑣𝑟, 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) in 𝐸𝑀
add edge (𝑅𝑒𝑚𝑎𝑝(𝑣𝑎), 𝑅𝑒𝑚𝑎𝑝(𝑣𝑟), 𝐸𝑑𝑔𝑒𝐿𝑎𝑏𝑒𝑙) to 𝐸

𝐺 ← (𝑉, 𝐸)
Output: collapsed regulatory graph 𝐺.
Complexity: 𝒪(|𝑉𝐴| + |𝑉𝑅| + |𝐸𝑀|) ≈ 𝒪(|𝑉𝐴| + |𝑉𝑅|), since |𝐸𝑀| ∝ |𝑉𝑅|, i.e. linear in the size of the
model regulatory graph |𝑉𝐴| + |𝑉𝑅|.

NodeType of 𝑣 𝑣 ∈domain of 𝐺𝑟𝑝𝐴 𝑣 ∈domain of 𝐺𝑟𝑝𝑅 𝑥 =(NodeLabel,NodeType,isGroup)

atomic pattern True - (𝐺𝑟𝑝𝐴(𝑣), atomic pattern, True)

False - (𝑣, atomic pattern, False)

rule - True (𝐺𝑟𝑝𝑅(𝑣), rule, True)

- False (𝑣, rule, False)

S8 Appendix: Rendering Conventions

S8.1 Site Graph
Goal: Given a pattern structure graph, draw a site graph by nesting components within molecules,
internal states within components and drawing bonds as edges between components.
Example: Given a pattern A(b!1).B(a~x!1), nest b within A, a within B, x within a and add an edge
between a and b.
Input: Pattern structure graph 𝐺 ≔ (𝑉, 𝐸)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

for each node 𝑣 in 𝑉
 if type={molecule,component,internalstate} and name=S
 render as node labeled S
for each node 𝑣 in 𝑉 such that type=component
 if exists (𝑣, 𝑣′) in 𝐸 such that
 type=molecule for 𝑣′, then nest 𝑣 in 𝑣′
 type=internalstate for 𝑣′, then nest 𝑣′ in 𝑣
for each node 𝑣 in 𝑉 such that type=bond
 ignore if name=−
 if name=+ and adjacent to two components 𝑐, 𝑐′
 render as edge between renderings of 𝑐, 𝑐′
 if name=+ and adjacent to only one component 𝑐
 render as node labeled +
 add edge to rendering of 𝑐

Output: Site graph

S8.2 Compact Rule Visualization
Goal: Given a rule structure graph, draw a site graph with the nodes labeled side=both and render nodes
labeled side=left or side=right with special conventions.
Example: Given a rule A(b~x)-> A(b~y) and a rule structure graph {A,b,-,x,y} nest b within A, x within b, y
within b, add ChangeState node, add directed edge from x to ChangeState, add directed edge from
ChangeState to y.
Input: rule structure graph 𝐺 ≔ (𝑉, 𝐸)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

for each node 𝑣 in 𝑉
 if side=both or type=internal state, render using site graph conventions

if type=molecule and side=left
 add node labeled DeleteMol
 add directed edge from 𝑣 to DeleteMol
if type=molecule and side=right
 add node labeled AddMol
 add directed edge from to AddMol to 𝑣
if type=bond and name=+ and side=left
 replace with node labeled DeleteBond
 add directed edges from adjacent components to DeleteBond
if type=bond and name=+ and side=right
 replace with node labeled AddBond
 add directed edges to adjacent components from AddBond
if type=component and exists two adjacent states 𝑠, 𝑠′

if side=left for 𝑠 and side=right for 𝑠′
 add node labeled ChangeState

18
19
20

 nest ChangeState node within 𝑣
 add directed edge from 𝑠 to ChangeState
 add directed edge from ChangeState to 𝑠′

Output: compact rule visualization

S8.3 Regulatory Graph
Goal: Given a regulatory graph draw each node and edge according to provided conventions for atomic
pattern and rule node types and reactant, product and context edge types. If a grouping scheme is
provided, draw groups around the respective sets of nodes.
Example: Given graph {patt1, patt2, patt3, rule1, rule2, rule3} and groups pattgroup1={patt1,patt2},
rulegroup1={rule1,rule2}, draw nodes {patt1, patt2, patt3} using atomic pattern conventions, nodes
{rule1, rule2, rule3} using rule node conventions, node pattgroup1 around {patt1,patt2} and node
rulegroup1 around {rule1,rule2}.
Input: Regulatory graph 𝐺 ≔ (𝑉, 𝐸), two node rendering conventions for atomic pattern and rule
respectively, three node rendering conventions for reactant, product and context respectively, and
optionally a partial group assignment 𝐺𝑟𝑝: 𝑉 → 𝐿𝑎𝑏𝑒𝑙𝑠.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

for each label 𝑠 in 𝑖𝑚𝑔(𝐺𝑟𝑝)
 draw node labeled 𝑠
for each node 𝑣 in 𝑉
 if type=atomicpattern and name=S
 render with atomic pattern node conventions and label S
 if type=rule and name=S
 render with rule node conventions and label S
 if 𝐺𝑟𝑝(𝑣) = 𝑠
 nest within node labeled 𝑠
for each edge (𝑣, 𝑣′) in 𝐸
 if type of 𝑣 is atomicpattern and type of 𝑣′ is rule
 if re=1, draw directed edge from 𝑣 to 𝑣′ with reactant edge conventions
 if pr=1, draw directed edge from 𝑣′ to 𝑣 with product edge conventions
 if co=1, draw directed edge from 𝑣 to 𝑣′ with context edge conventions
 allow multiple edges between the same pair of nodes

Output: Rendered regulatory graph

