
SUPPLEMENTARY METHODS1

Simulations: We model adaptive walks in diploid populations with Wright-Fisher2

simulations using Fisher’s geometric model (FGM) as in Sellis et al. (2011). The3

simulations use code modified from Sellis et al. to allow for more than 2 dimensions. We4

perform 10,000 replicate simulations with population size N = 5, 000. Simulations are5

conducted for 10,000 generations. Complete source code is available at6

https://github.com/sunthedeep/Fisher-Geometric-Model.7

In FGM, alleles are represented as a vector in n-dimensional space (Figure 1a). We explore8

two models, one with two dimensions and one with 25 dimensions. We define the9

phenotype of a diploid individual as the midpoint of the two vectors of the constituent10

alleles (Sellis et al., 2011). This amounts to an assumption of phenotypic additivity of11

alleles, but not necessarily additivity of fitness. The population initially contains a single12

allele with a distance of 2 units from the optimum, and evolves on a symmetrical Gaussian13

fitness landscape with single phenotypic optimum at the origin. Fitness is computed using14

the function:15

w(x) = e
−x2

216

where x is the distance of the individuals phenotype to the optimum. The mutation rate is17

set to µ = 5 ∗ 10−6 which results in one mutation every 20 generations on average in the18

population. The angle of the mutation vector is drawn from a spherically uniform19

distribution. The magnitude of the mutation vector is drawn from an exponential20

distribution. For the two dimensional regime, the mean of the mutational magnitude is 0.5,21

while for the 25 dimensional regime, the mean is set to 5. The mutational magnitudes were22
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chosen to generate sufficient numbers of adaptive walks both with and without23

overdominant mutations in simulations of both dimensionalities.24

For the remainder of our analysis, we identify the most frequent allele in each simulated25

population at the end of 10,000 generations of evolution and study the mutations present26

on that allele. This is the set of mutations typically available for study in experimental27

systems. We limit our analysis to studying the first five mutations of each adaptive walk28

and ignore simulations with fewer than 5 mutations in order to control for the length of the29

adaptive walk when studying predictability. We partition our five-mutation adaptive walks30

into those that do and those that do not contain overdominant mutations to study the31

impact of balanced states on predictability.32

Partitioning Walks: Throughout all of our analysis, we have separated walks with and33

without overdominant mutations. The methodology for this separation is as follows. For34

each FGM simulation, we have identified the most frequent allele at the end of the35

simulation, and isolated the first five mutations to occur on this allele. We first determine36

the time at which the fifth mutation exceeded 5% frequency in the population, which we37

use as a cutoff for eliminating alleles that have increased in frequency due to drift. All38

time-points in the simulation after this threshold time are no longer considered for analysis.39

Throughout the remainder of the simulation, we compute whether the alleles in the40

population at at least 1% frequency could be maintained as a balanced polymorphism41

using the method of Kimura (1956). If, at any time before the threshold time, the42

population contains a set of alleles that could be maintained in a stable polymorphic state,43

the walk is classified as containing at least one overdominant state.44

Forward Predictability Analysis: We calculate the forward predictability of the45

adaptive trajectory using two metrics. In both of these metrics, we only consider46
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homozygous phenotypes. Our first metric, maximum pairwise distance, considers pairs of47

adaptive walks. We compute the maximum of the phenotypic distances between the48

observed single mutant phenotypes of the two adaptive walks, the double mutant49

phenotypes, the triple mutant phenotypes etc. Our second metric measures the maximal50

deviation from the optimal trajectory. For each adaptive walk, we compute the maximal51

phenotypic distance of any encountered (homozygous) phenotype from the line segment52

connecting the ancestral phenotype and the optimum.53

Backward Predictability Analysis: We calculate the probability of all possible54

mutational trajectories for the given set of mutations in a manner similar to Weinreich55

et al. (2006), but generalized to allow balanced states. The likelihood of a mutational56

trajectory is the product of the probabilities of each mutation in the trajectory being57

generated on the appropriate background and successfully invading the population and58

reaching equilibrium. The probability of a mutation landing on the appropriate59

background is proportional to the frequency of the background. For example, if the60

ancestral allele is balanced with the 1-mutant allele, the probability of generation of a61

2-mutant allele is proportional to the frequency of the 1-mutant allele.62

The probability of a new allele (generated through mutation) invading and reaching a63

stable intermediate frequency or fixing from a single copy is calculated empirically through64

10,000 Wright-Fisher (Fisher, 1930; Wright, 1931) simulations. These simulations are65

entirely separate from the FGM simulations used to generate the adaptive walks used66

throughout this work. In order to compute this probability, one first needs to define the67

expected equilibrium frequency of a new allele. This is complicated because new alleles can68

potentially balance with any of the existing alleles or fix in the population. We first ask69

whether the new allele can balance with any of preexisting alleles by determining whether70

the fitness of the heterozygous genotype is greater than the fitness of both homozygous71
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genotypes. If the allele can balance, we compute the equilibrium frequency of the new72

(derived) allele as73

t
s+t74

from Gillespie (2004) when 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1, where an individual homozygous for75

the ancestral allele has a relative fitness of 1 − t, the heterozygote has fitness 1 and the76

derived homozygote has fitness 1 − s. If one of the two homozygous genotypes is the most77

fit state, we determine whether the new allele is either fixed or lost and set the expected78

equilibrium frequency of the new allele to 1 or 0, respectively. Using this equilibrium79

frequency, we can compute the mean fitness of the population at equilibrium for this pair80

of alleles. Through this process, we make a simplifying assumption that balanced states81

with more than two alleles are unlikely. This process is repeated to compute the mean82

fitness of every possible balanced state involving the new allele. We choose the state with83

the highest mean fitness as the equilibrium condition for this new allele. This can be either84

a balanced state or fixation or loss of this new allele. If the new allele is not present in the85

computed equilibrium condition with the highest mean fitness, we determine that the new86

allele cannot invade the population. Otherwise, if the new allele is able to invade the87

population, we compute the likelihood of reaching this equilibrium condition by asking how88

frequently the new allele (starting at a single copy) can get to 90% of its equilibrium89

frequency in our Wright-Fisher simulations.90

We are forced to utilize empirical estimations through simulations and not the classical91

analytic solutions (Haldane, 1927; Kimura, 1962) for invasion and fixation probability as92

many of the observed mutations have a selective advantage exceeding 100%, violating the93

assumptions of the analytic solutions that the mutations are weakly beneficial. Our94
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simulations (not shown) suggest that the analytic solutions significantly overestimate the95

invasion probability under these conditions.96

We validate this method of computing the likelihood of a particular adaptive trajectory by97

testing whether the high probability trajectories are more likely to have been observed in98

our FGM simulations. We sort all trajectories by their computed probability of occurrence99

(excluding those with zero probability) and bin them into 40 equally-sized bins. We found100

that the median of the trajectory probabilities within a bin is significantly positively101

correlated with the number of trajectories in that bin that were observed in our original102

FGM simulations (Pearson r2 = 0.997, p << 10−10), suggesting that our method is truly103

capturing the likelihood of a trajectory taking place in the FGM simulations.104

Note that in a traditional haploid model, where each successive mutation fixes in the105

population, there are 5! = 120 possible orders of the five mutations observed in the106

simulated walk to generate the five-mutant allele observed at the end of the simulation. In107

our diploid model, however, each mutation can occur on any allele in the population where108

it has not already been introduced. Therefore, the same mutation can be introduced into109

the population multiple times, but it can occur only once on each allele. The probabilities110

of all viable mutational orders (where the 5-mutant allele is successfully reached) are then111

rescaled to add up to 1, to give the probability of a trajectory conditional on reaching the112

final 5-mutant allele. Mutation orders where the mutations were introduced on the final113

adapted allele in the same order, but different balanced intermediate alleles were114

encountered, are not distinguished from each other as these would be indistinguishable in115

natural systems.116

We define the effective number of trajectories as117
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1∑
p2118

where p is the rescaled probability for each viable trajectory in a given five-mutation119

system. The effective number of trajectories is defined to be 0 when there are no viable120

trajectories. This is similar to the effective number of alleles in a population (Kimura1964),121

the predictability metric of Roy (2009) and the entropy metric of Palmer et al. (2013).122

Thus, when a single trajectory dominates the probability density, the effective number of123

trajectories is close to 1, even if there are many other trajectories with nonzero probability.124

This provides a single metric of the diversity of mutational orders that are possible and125

summarizes the backward predictability of the adaptive walk.126
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SUPPLEMENTARY FIGURES127

128

Figure S1. Phenotypic distribution of homozygous alleles in the first two phenotypic129

dimensions as in Figure 1b,c for FGM simulations conducted using 25 dimensions and a130

mean mutational magnitude of 5.131
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132

Figure S2. Maximum pairwise distance metric to study forward predictability as in Figure133

2 for FGM simulations conducted using 25 dimensions and a mean mutational magnitude134

of 5. Kolmogorov-Smirnov test p� 10−10
135
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136

Figure S3. Maximum distance from the optimal trajectory metric to study forward137

predictability as in Figure 3 for FGM simulations conducted using 25 dimensions and a138

mean mutational magnitude of 5. Kolmogorov-Smirnov test p = 10−6
139
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140

Figure S4. Effective number of paths statistic to study backward predictability as in Figure141

4 for FGM simulations conducted using 25 dimensions and a mean mutational magnitude142

of 5. Kolmogorov-Smirnov test p = 0.03143
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