Supplementary Figures and Legends for

Lipid metabolic perturbation is an early-onset phenotype in adult *spin* mutants: a *Drosophila* model for lysosomal storage disorders

Sarita Hebbar^{1#}*, Avinash Khandelwal¹⁺, Jayashree R², Samantha J. Hindle^{3^}, Yin Ning Chiang⁴, Joanne Y. Yew⁵, Sean T. Sweeney³, and Dominik Schwudke^{1*§}

¹: National Center For Biological Sciences, Tata Institute For Fundamental Research,

Bangalore, India 560065

²: c-CAMP, Proteomics Facility, NCBS

³: Department of Biology, University of York, York

⁴: Temasek Life Sciences Laboratory, Singapore

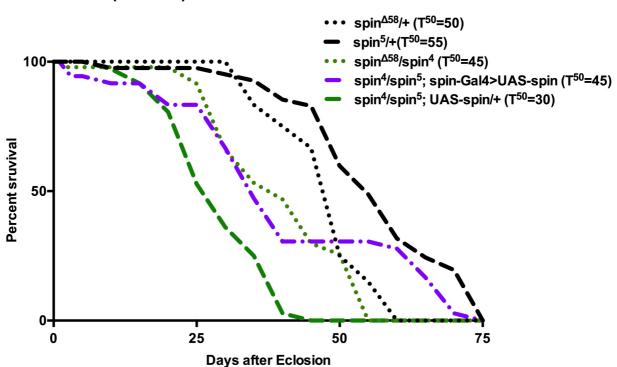
5: Pacific Biosciences Research Center, University of Hawai'i at Mānoa, 1993 East-

West Road, Honolulu, HI 96822

*Equal contribution as corresponding authors: hebbar@mpi-cbg.de and dschwudke@fz-borstel.de

Present Address:

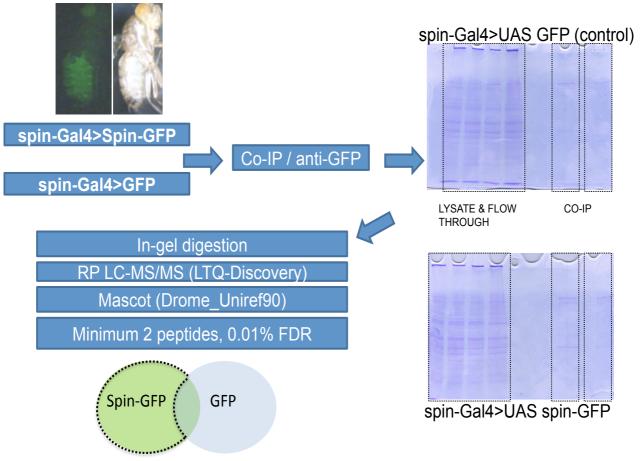
#: Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01277
+: EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain & Universitat Pompeu Fabra (UPF), Barcelona, Spain.


[§]: Research Center Borstel, Borstel, 23845, Germany

[^]: Department of Anesthesia and Perioperative Care, Genentech Hall, 600 16th Street, University of California San Francisco, San Francisco, CA.

Supplemental Figure S1:

Decreased adult lifespan in spin mutants


Survival plot comprises line graphs generated using percentage of surviving adults over time at 25°C for *spin* mutants (green lines) and in a rescue condition (purple) in relation to their genetic controls (black). This data comes from multiple sets of 15 flies constituting a sample size of at least 50-100 flies. For $spin^4/spin^5$ the population size is below 50 because of the inability to obtain large number of escaper adults. Legend displays the genotypes and T⁵⁰ values in parenthesis

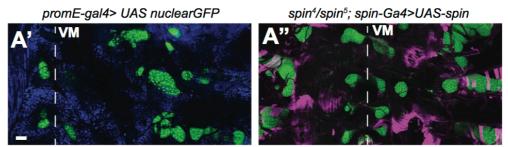
Survival Plot (at 25 °C)

Supplemental Figure S2: Strategy for characterization of interactors of spin using LC-MS.

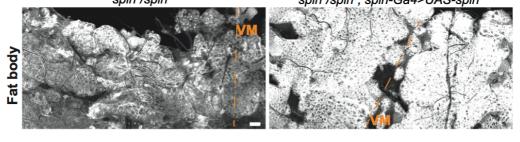
Adult flies overexpressing Spin-GFP (*spin-Gal4>spin-GFP*; fluorescent and corresponding bright-field image) were used for protein extraction. As a control we also used protein extracts from flies overexpressing only GFP (*spin-Gal4>GFP*). A pull-down was achieved using a GFP antibody. The initial lysate, flow-through following the binding, and final eluent (Co-IP) were run on a SDS_PAGE gel. Images from two independent experiments for each (*spin-Gal4>spin-GFP and spin-Gal4>GFP*) are presented here. These were subjected to routine in gel-digestion followed by LC-MS workflow as described in methods. Schematic Venn Diagram highlights subset of proteins that are specific interactors of Spin-GFP (black dotted

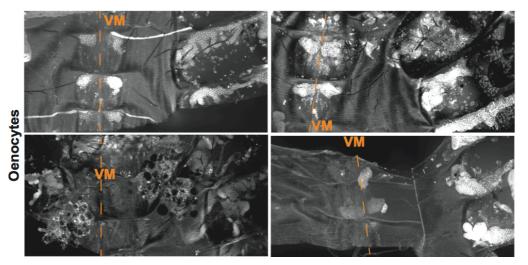
outline), i.e. not common to the GFP control pull-down are presented in Table 1.

Supplemental Figure S3: Abdominal body wall staining in spin mutants


A: Oenocytes Identification: Representative images from dissected adult abdominal fillets of females of

A': Oenocyte driver (*promE (800)- Gal4*; Billeter et al., 2009) driving nuclear GFP (Green). Oenocytes that are located dorsally and ventrally located are clearly evident. Ventral mid-line is indicated with a dashed line. The fat bodies (blue) are stained with Lipid droplet dye, LD450 (Spandl et al, 2009).


A": *spin-Gal4* rescue in *spin* mutants clearly shows the rescue construct (UAS *spin-GFP*; green) is expressed abundantly in oenocytes (green). The musculature is labeled with Phalloidin tagged Alexa-Fluor 568 (shown in magenta)


B: Examples of different adult abdominal fillets for mutants $(spin^4/spin^5)$ and rescue $(spin^4/spin^5; spin-Gal4>UAS spin)$ stained with LPP antibody showing fat-body and oenocyte staining.

A. Rescue with spin-Gal4 drives expression in Oenocytes

B. Decreased Lpp immunostaining in *spin* mutants *spin*⁴/*spin*⁵ *spin*⁴/*spin*⁵; *spin*-Ga4>UAS-*spin*

Suppl Table 1: Genotypes used in this study

Genotype	Achieved genetic perturbation	
+/+; <i>spin</i> ⁴ / <i>spin</i> ⁵ ;+	spin mutant heteroallelic combination /transheterozygote (Sweeney and	
	Davis, 2002) constituting a genetic null.	
+/+; <i>spin⁴/spin⁴⁵⁸</i> ;+	spin mutant heteroallelic combination /transheterozygote (Milton et al.,	
	2011; Sweeney and Davis, 2002) constituting a genetic hypomorph	
+/+; <i>spin⁵/spin⁴⁵⁸</i> ;+	spin mutant heteroallelic combination /transheterozygote (Milton et al.,	
	2011; Sweeney and Davis, 2002) constituting a genetic hypomorph	
+/+; $spin^4$ / $spin^5$; $spin$ -	Rescue of spin levels in a transheterozygote in endogenous spin	
Gal4>UAS spin-	producing cells (Sweeney and Davis, 2002)	
GFP;+		
+/+; UAS spin-	Expression of spin-tagged GFP in endogenous spin producing cells	
GFP/+; spin-Gal4/+	(Sweeney and Davis, 2002)	
$+/+;spin^4/spin^5; UAS$	spin mutant background for overexpression experiments	
spin-GFP/+		
+/+;spin ⁴ /spin ⁵ ; spin-	<i>spin</i> mutant and an overexpression of <i>slab</i> (Rohrbough et al., 2004)	
Gal4>UAS slab		
+/+; <i>spin⁴/spin⁵</i> ;	<i>spin</i> mutant and $slab^2$ heterozygosity (Rohrbough et al., 2004)	
slab ² /+		

Supplemental Table 2: Details for Internal Standard (IS) mix used:

I. IS composition (for single brain analyses; corresponding to Fig. 2)

Lipid	Amount
Standard	(picomoles)
Cer_35:1	11.62
PC_31:1	9.88
PE_31:1	9.56
PE-OO	11.98
PI_31:1	8.32
TAG_51:0	13.88
CerPE_29:1	11.12
TOTAL	76.36

II. IS composition (for pooled brain extracts; corresponding to Fig. 3/4)

Lipid Standard	Amount (picomoles)
CerPE-C12 Sphingosyl PE [d17:1]	(picoliloles) 7.97
PC [17:0-14:1]	4.43
PE [17:1-14:0]	4.29
C17-Cer [d18:1/17:0]	10.41
PE-OO [40:00]	7.16
Sphingosine [d17:1]	7.1
PI [17:0-14:1]	3.72
GluCer[d18:1/12:0]	7.89
PS [17:0-14:1]	2.95
TOTAL	55.92