
Additional File 3: Overview of the package exposed functions 

SLAPenrich is implemented as an open-source Bioconductor R-package 

(submission in progress) and it is public available on GitHub (at 

https://github.com/francescojm/SLAPenrich). It contains seven exposed functions 

available to the user, nine internal functions and two data objects. 

The referenced equations are contained in the formal description of the statistical 

framework underlying SLAPenrich (Additional File 1). 

 

Input/Output 

Of the thirteen exposed functions, two are for data input/output: the first one, 

 

SLAPE.readDataset(filename), 

 

reads a dataset stored in a .csv file as a sparse binary matrix; the second one, 

 

SLAPE.write.table(PFP,EM,filename='', fdrth=Inf,exclcovth=0, 

PATH_COLLECTION, GeneLenghts), 

 

extracts from the PFP (pathway fingerprints) object (outputted by the SLAPE.analysis 

function, see below) the subset of pathways (from the collection specified in the pathway 

collection specified in PATH_COLLECTION) whose enrichment false discovery rate is 

below the threshold specified in the parameter fdrth and whose exclusive coverage (see 

methods) is above the threshold specified in the parameter exclcovth. The extracted 



enriched pathways are then assembled and written in the csv file specified in the 

parameter filename, together with other information such as, for example, the 

percentage of altered samples of the initial dataset (specified in the matrix EM) when 

considering individual genes in a given pathway, and total exonic block lengths of the 

enriched pathways (extracted from the data object specified in GeneLenghts). 

 

Core analysis 

The core analysis function implementing the statistical framework described in the 

methods section is  

 

SLAPE.analyse(EM, show_progress=TRUE, correctionMethod='fdr', 

NSAMPLES=1, NGENES=1, accExLength=TRUE, BACKGROUNDpopulation=NULL, 

PATH_COLLECTION, path_probability='Bernoulli', Rho=10^-6,GeneLenghts) 

 

This function takes in input a dataset (the parameter EM) stored in a sparse binary matrix, 

or a sparse matrix with integer non-null entries. In this matrix the columns correspond to 

samples, the rows correspond to genes and a non-zero entry indicates the presence of a 

somatic mutations harbored by a given sample in a given gene. If the matrix contains 

integer entries then they are deemed as the number of somatic point mutations harbored 

by a given sample in a given gene (these values will be considered to account for the 

sample mutation rate if the analysis takes into account of the gene exonic lengths, or 

converted in binary values otherwise, see below). 

For each pathway gene-set 𝑃 in the pathway collection specified in the parameter 

PATH_COLLECTION, and an inputted genomic dataset (summarized by the parameter EM), 



this function computes first of all a vector of probabilities 𝜋 = 𝑝!  quantifying how 

likely each sample is to harbor at least one somatic mutation in a gene belonging to 𝑃, by 

random chance. 

These probabilities are computed by default using a Bernoulli model accounting for the 

total exonic block lengths of all the genes belonging to 𝑃, and the expected or observed 

background mutation rate (Additional File (AF) Equation 4) [1,2] (as specified by the 

parameter Rho, which in the second case should be set equal to NULL). Alternatively, 

these probabilities can be computed through a complementary cumulative 

hypergeometric distribution evaluated at 𝑋 = 0 and taking into account of the mutation 

burden of the samples, the size of 𝑃 in terms of number of genes (AF Equations 1 and 2, 

and accExLength = FALSE), or its total exonic content block length (AF Equation 3 and 

accExLength = TRUE, the default setting). In all the tests make use of a gene background 

population that can be defined by the user (through the parameter 

BACKGROUNDpopulation) or assembled pooling together all the genes belonging to at 

least one pathway of the collection specified in PATH_COLLECTION. 

After 𝜋 has been computed, this function computes a pathway alteration score at the 

population level, quantifying the deviance of the number of samples in the datasets 

harbouring at least a somatic mutation in at least one gene of 𝑃, 𝑂 𝑃  (Equation 6) from 

its random expectation 𝐸 𝑃  (AF Equation 7, which is computed summing the 𝑝!  

across all the samples, AF Equation 5). Finally, it computes the significance of this score 

with a p-value against the null hypothesis: “𝑂 𝑃  is drawn from a Poisson binomial 

distribution with 𝑝!  success probabilities” (AF Equation 8). This comes from the 

observation that if there is no tendency for a given pathway to be recurrently mutated 



across 𝑚 samples of the datasets, then each of these samples can be considered as the 

observation of a single Bernoulli trial (in a series of 𝑚 of them), where the event under 

consideration in the 𝑖-th trial is “At least one gene belonging to 𝑃 is mutated in the 𝑖-th 

sample”. The success probability of this event is given by 𝑝!. Worthy of note is that a 

Poisson binomial distribution should be considered instead of a simple binomial 

distribution because the 𝑝! are, of course, not identical. 

After alteration scores and corresponding significance have been assessed for all the 

pathways considered in the analysis, resulting p-values are corrected for multiple 

hypothesis testing with a user-defined method, specified by the parameter 

correctionMethod. Possible values for this parameter are all the admissible values of 

the parameter method in the built-in function p.adjust of R, plus qvalue through which 

the user can select the Storey-Tibshirani [3,4] correction method. 

Through the parameters NSAMPLES and NGENES the minimal values that the number of 

samples harbouring a mutation in the pathway 𝑃, and the number of genes in 𝑃 mutated 

in at least one sample should assume in order for 𝑃 to be included in the analysis can be 

specified, respectively. The default value for these two parameters is 1. 

As mentioned, the two parameters accExLength and BACKGROUNDpopulation specify 

whether the gene exonic lengths should be taken into account while defining the 

probabilities 𝑝!  described above, and the collection of official symbols of the genes that 

should be included in the background population in the used statistical framework, 

respectively. If the value of accExLength is TRUE (default) then the non-null values of 

the matrix coding for the inputted dataset (EM) are deemed to indicate the number of 

somatic point mutations harbored by a given gene in a give sample. 



BACKGROUNDpopulation could be, for example, all the genes whose mutational status is 

accounted in the inputted dataset EM. If the value of BACKGROUNDpopulation is NULL 

(default) then the set of all the genes included in at least one pathway of the collection 

included in the analysis is used as background population. 

Finally, the parameter show_progress determines if a progress bar should be visualized 

during the execution of the analysis. 

 

For an inputted dataset of 𝑚 samples and a collection of 𝑝 pathways included in the 

analysis, SLAPE.Analyse outputs also (i) a 𝑝 × 𝑚 binary pathway alteration matrix 

where rows indicate pathways, columns indicate samples and non-null entries indicate the 

presence of at least a somatic mutation in at least one gene of a given pathway in a given 

sample; (ii) a 𝑝 × 𝑚 pathway mutation probability matrix, where the 𝑗-th row contains 

the vector of probabilities 𝑝!,!  of the 𝑖-th sample harboring at least a somatic mutation 

in at least one gene of the 𝑗-th pathway, by random chance; (iii) a vector of pathway 

alteration expectations (with an element for each pathway) with an estimation of the 

expected number of samples harbouring at least one somatic mutation in at least on gene 

of a given analysed pathway; (iv) a vector of pathway exclusive coverage scores 

quantifying the tendency of the genes composing each of the analysed pathway to be 

mutated in a mutual exclusive fashion; (v) a list of individual binary pathway alteration 

matrices (one for each analysed pathway), where the generic matrix 𝑀! has dimensions 

𝑘 × 𝑚, where 𝑘 is the number of genes in the 𝑖-th pathway, 𝑚 is the number of samples 

in the analysed dataset and a generic non-null entry in position ℎ, 𝑗 is equal to 1 if the h-th 



gene of the i-th pathway of the analyzed collection harbors at least one somatic mutation 

in the j-th sample; (vi) a vector of numerical pathway identifiers. 

 

Visualisation 

Storing the results outputted by the SLAPE.Analyse function in a list, it is possible to 

visualize them systematically and to produce pdf files with resulting plots using the 

function 

 

SLAPE.serialPathVis(EM, PFP, fdrth=5, exCovTh=50, PATH='./', 

PATH_COLLECTION). 

 

This function extracts from the list of results outputted by SLAPE.Analyse (specified by 

the PFP parameter) those pathways (from the collection specified by the parameter 

PATH_COLLECTION) with an enrichment false discovery rate (FDR) below the user 

defined threshold value specified by the parameter fdrth, and with an exclusive coverage 

score (AF Equation 9) above the threshold value specified by the parameter exCovTh. All 

the figures produced by this function are stored in the directory specified by the 

parameter PATH. 

After selecting the pathways following the user definitions, this function systematically 

calls for each of them (distinguished by their numerical identifier, Id) the sub-routine: 

 

SLAPE.pathVis(EM, PFP, Id, i=NULL,PATH='./', PATH_COLLECTION). 

 



Before producing the plots, SLAPE.pathVis rearranges rows and columns of the 

alteration matrix of the Id pathway through a heuristic mutual-exclusivity sorting 

procedure (detailed in the method), which highlights the tendency of the composing 

genes to be mutated in a mutual exclusive fashion across the samples of the analyzed 

dataset. This sorting is implemented in the function  

 

SLAPE.heuristic_mut_ex_sorting(EM), 

 

which is exported, therefore available to the user and suitable for sorting any type of 

binary matrix. After this re-arrangement the alteration matrix of the Id pathway is 

visualized and stored in a pdf file as a binary heatmap with genes on the rows, samples on 

the columns, and blue entries indicating the presence of somatic mutations in given 

gene/sample combinations (an example is reported in figure 2A). Additionally, mutation 

probabilities and alteration expectations are visualized and saved as bar diagrams, 

together with other statistical scores in a separate figure file. 

 

 

Extraction of core-components from the enriched pathways 

 

The function 

 

SLAPE.core_components(PFP, EM, PATH='./', 

fdrth=Inf, exclcovth=0, PATH_COLLECTION), 



 

identifies sets of core-components genes frequently altered and shared by multiple 

enriched pathways identified by the SLAPE.Analyse function (and specified in PFP). 

These core-component gene sets are supposed to lead the enrichment outcomes. To detect 

such core components, the function executes a fast greedy community detection 

algorithm [5,6], implemented in the fastgreedy.community function of the iGraph 

package [7-9]. The analysis performed by this function considers only enrichments at a 

false discovery rate lower than the threshold value specified in the parameter fdrth and 

corresponding to pathways with an exclusive coverage greater than the threshold value 

specified in the parameter exclcovth. After these core-component gene-sets have been 

identified, this function visualizes them together with the pathways they belong to 

through a set of membership matrices: binary heatmaps with pathways on the columns, a 

set of core-component genes on the rows and non-empty entries specifying to which 

enriched pathway each gene belongs to (an example is provided in figure 2B). These 

heatmaps are stored in individual pdf files and saved in the directory specified by the 

PATH parameter. 

 

Differential pathway enrichment analysis 

 

The function 

 

SLAPE.diff_SLAPE_analysis (EM, contrastMatrix, positiveCondition, 

negativeCondition, SLAPE.FDRth=5, ...) 



 

performs a differential enrichment analysis of pathway alterations at the sample 

population level between two sample subsets of dataset specified in the parameter EM 

(defined as for the previous function). The parameter contrastMatrix specifies which 

samples are included in each sub-population and it is a binary matrix with sample 

identifiers on the rows and condition identifiers on the columns. The sample identifiers 

should match those of the initial datasets, i.e. the column headers of the EM matrix. A 1 in 

the position 𝑖, 𝑗 of such a matrix indicates that the i-th sample is included in the sub-

population corresponding to the j-th condition. 

The two sub-populations to be contrasted are specified by the parameters 

positiveCondition and negativeCondition that should match two different column 

headers of the contrastMatrix. This function first performs two independent 

SLAPenrich analyses on the two user-defined sub-populations of samples with an 

experimental setting specified by the additional parameters (not listed in the function 

signature above), which are the same of the SLAPE.analyse function. Then it selects the 

pathways with an enrichment FDR smaller than the value specified in the 

SLAPE.FDRth=5 in at least one of the two independent analyses. For this set of pathways 

a differential enrichment score is computed, as detailed in the method, and summary 

heatmaps are visualised, as shown in figure 3. 

 

Accessory functions and data objects 

 

The SLAPenrich package contains additional exposed functions allowing users to: 



• check the consistency of (and possibly update the) gene symbol identifiers in both 

genomic datasets and pathway collection data object with the Hugo gene 

nomenclature (HGNC) catalogue, including approved gene symbols and 

previously used synonyms, contained in the SLAPE.hgnc.table_20160210 data 

object;  

• update or create a new HGNC catalogue, by downloading the most up-to-date 

version from the HUGO Gene Nomenclature Committee web-site 

(www.genenames.org); 

• compute the total length of the exonic block of a given gene, making use of the 

gene exon attribute data object 

SLAPE.all_genes_exonic_lengths_ensemble_20160209, containing the 

genomic coordinates of all the exons for all the genes (the genome-wide total 

exonic block lengths are already precomputed and available in the 

SLAPE.all_genes_exonic_content_block_lengths_ensemble_20160209 data 

object, and can be updated with a dedicated function); 

• update the gene exon attribute data object, by making use of functions from the 

biomaRt R package [10-12]. 

 

Additionally, different collections of pathway gene sets from the Pathway Commons data 

portal (v4-201311) [7,9,13-16], and their post-processed versions computed as detailed in 

the methods to reduce redundancies are embedded in the package as R objects. These 

objects contain, for each pathway, multiple information such as uniprot identifiers of the 

composing genes, official data source, and pathway title/definition. 



Finally the genomic datasets and corresponding patient clinical information used in the 

case study described in the following sections are also provided as R objects. 
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