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SUPPLEMENTARY INFORMATION

1 Overview of the modelling approach

We have eight datasets D = {D1, D2, ..., D8} which represent the repair kinetics in wildtype cells, genetic
knockouts, and particular stage of the cell cycle. We wish to fit a model to these data simultaneously to
infer the number of underlying repair processes plus their dynamical properties. To achieve this, we have
further developed the software ABC-SysBio [1,2] to include an option to perform ABC SMC on a hierarchical
model structure. In our hierarchical framework, we wish to obtain K d

i for a number of processes, where i
represents the repair process and d ∈ {1, ..., 8} denotes the dataset. These parameters are in some sense nui-
sance variables, with “true parameters" (or parameters of interest) of the repair process µi , which represent
the means of lognormal distributions and σ the variance (we group these hyper parameters as the vector
γ= (µi ,σ)). The K d

i are drawn from these population level distributions. In this case, the joint density can
be written

p (D, K ,γ) = p (D |K )p (K |γ)p (γ) (1)

where Bayes rule becomes

p (γ|D) =
p (γ)
∫

p (D |K )p (K |γ)d K

p (D)
. (2)

This is the posterior of the hyper parameters given the data, D. The integral indicates that we sum over
(marginalise) the K values. We can include this into ABC by simulating data D∗ using the following scheme:

µ∼U (α,β )

K ∼ LN (µ,σ)

D∗ ∼ f (D |K )

In our study, f (D |K ) is the data generating model, and is a realisation of the stochastic reaction system
described below.
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2 Biochemical kinetic models

2.1 One, two and three process models

To investigate the minimum number of repair processes that can explain the data, we consider models of
the form

x +E d
i

K d
i→ yi (3)

yi
K
′
i

d

→ ;+E i (4)

where x represents a double-strand break (DSB), K d
i and E d

i are the parameter and recruitment protein for
dataset d and repair mechanism i . Note that we have used the empty set notation, ;, to make explicit that
the DSB has been repaired and the recruitment protein released. Each recruitment protein has a conserva-
tion equation

E d
i + y d

i =C d
i , (5)

where C d
i is the total amount of recruitment protein for dataset d and repair mechanism i . If for any mech-

anism, the first protein to bind is repressed, then we remove all reactions corresponding to that mechanism.
If a protein downstream of the first protein to bind is repressed, then we remove the reaction corresponding
to end ligation for that mechanism. We compared three different models M 1 : {i = 1}, M 2 : {i = 1, 2} and
M 3 : {i = 1, 2, 3}. For the model M 2, we assume there are only two processes of non homologous end joining
(NHEJ) and an alternative, such that we group single strand annealing (SSA) and alternative end joining
(A-EJ) together as one alternative process.

2.2 Three process knockout model

Our final model consists of two reactions for each repair mechanism, giving a maximum total of six reactions
for each data set:

x +E1
K1→ y1 (6)

y1
K
′
1→;+E1 (7)

x +E2
K2→ y2 (8)

y2
K
′
2→;+E2 (9)

x +E3
K3→ y3 (10)

y3
K
′
3→;+E3 (11)

Each dataset, d , has three conservation equations
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E d
1 + y d

1 =C d
1 (12)

E d
2 + y d

2 =C d
2 (13)

E d
3 + y d

3 =C d
3 . (14)

When the reactions are taken to be deterministic, the wild type system can be described by the following set
of nonlinear ordinary differential equations.

d x

d t
=V −x (K1E1+K2E2+K3E3) (15)

d y1

d t
= K1E1x −K

′

1y1 (16)

d y2

d t
= K2E2x −K

′

2y2 (17)

d y3

d t
= K3E3x −K

′

3y3 (18)

where V is the initial concentration of DSBs. This system of equations can be solved numerically, how-
ever due to the low numbers of DSBs, probabilistic effects need to be correctly accounted for, so we use a
stochastic formalism. To determine the most probable set of parameters to give rise to the experimental
data - termed the posterior distribution - we apply approximate Bayesian computation sequential Monte
Carlo (ABC SMC) [3, 4].

3 Initial conditions and priors

The prior distributions for the hyperparameters were fixed across all datasets. In principle the recruitment
protein numbers, C i , can be inferred from the data. However we found little difference in the posterior
distributions when fixed, so we chose to reduce the number of free parameters.

3.1 One process

Hierarchical priors: µ1 ∼U (−4, 4), µ2 ∼U (−4, 4),σ∼U (0.05, 0.9).

constant: C1 = 700, C2 = 700, C3 = 700, C4 = 2800, C5 = 2800, C6 = 1906, C7 = 1814 and C8 = 1128.7.

Recruitment protein initial conditions: E 1
1 (0) = 700, E 2

1 (0) = 700, E 2
2 (0) = 700, E 3

1 (0) = 700, E 3
2 (0) = 700,

E 4
1 (0) = 2800, E 4

2 (0) = 2800, E 5
1 (0) = 2800, E 6

1 (0) = 1906, E 7
1 (0) = 1814, E 8

1 (0) = 1128.7.

State vector initial conditions: x 1(0) = 700, y 1
1 (0) = 0, x 2(0) = 700, y 2

1 (0) = 0, y 2
2 (0) = 0, x 3(0) = 700, y 3

1 (0) = 0,
y 3

2 (0) = 0, x 4(0) = 2800, y 4
1 (0) = 0, y 4

2 (0) = 0, x 5(0) = 2800, y 5
1 (0) = 0, x 6(0) = 1906, y 6

1 (0) = 0, x 7(0) = 1814,
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y 7
1 (0) = 0, x 8(0) = 1128.7, y 8

1 (0) = 0.

3.2 Two process

Hierarchical priors: µ1 ∼U (−4, 4), µ2 ∼U (−4, 4), µ3 ∼U (−4, 4),σ∼U (0.05, 0.9).

constant: C1 = 700, C2 = 700, C3 = 700, C4 = 2800, C5 = 2800, C6 = 1906, C7 = 1814 and C8 = 1128.7.

Recruitment protein initial conditions: E 1
1 (0) = 700, E 1

2 (0) = 700, E 2
1 (0) = 700, E 2

2 (0) = 700, E 3
1 (0) = 700, E 3

2 (0) =
700, E 4

1 (0) = 2800, E 4
2 (0) = 2800, E 5

2 (0) = 2800, E 6
2 (0) = 1906, E 7

2 (0) = 1814, E 8
1 (0) = 1128.7, E 8

2 (0) = 1128.7.

State vector initial conditions: x 1(0) = 700, y 1
1 (0) = 0, y 1

2 (0) = 0, x 2(0) = 700, y 2
1 (0) = 0, y 2

2 (0) = 0, x 3(0) = 700,
y 3

1 (0) = 0, y 3
2 (0) = 0, x 4(0) = 2800, y 4

1 (0) = 0, y 4
2 (0) = 0, x 5(0) = 2800, y 5

1 (0) = 0, x 6(0) = 1906, y 6
1 (0) = 0,

x 7(0) = 1814, y 7
1 (0) = 0, x 8(0) = 1128.7, y 8

1 (0) = 0, y 8
2 (0) = 0.

3.3 Three process

Hierarchical priors: µ1 ∼U (−4, 4), µ2 ∼U (−4, 4), µ3 ∼U (−4, 4), µ4 ∼U (−4, 4),σ∼U (0.05, 0.9).

The total amount of protein and initial conditions were set according to the data.

constant: C1 = 700, C2 = 700, C3 = 700, C4 = 2800, C5 = 2800, C6 = 1906, C7 = 1814 and C8 = 1128.7.

Recruitment protein initial conditions: E 1
1 (0) = 700, E 1

2 (0) = 700, E 1
3 (0) = 700, E 2

1 (0) = 700, E 2
2 (0) = 700,

E 2
3 (0) = 700, E 3

1 (0) = 700, E 3
2 (0) = 700, E 3

3 (0) = 700, E 4
1 (0) = 2800, E 4

2 (0) = 2800, E 4
3 (0) = 2800, E 5

2 (0) = 2800,
E 5

3 (0) = 2800, E 6
2 (0) = 1906, E 6

3 (0) = 1906, E 7
2 (0) = 1814, E 8

1 (0) = 1128.7, E 8
2 (0) = 1128.7.

State vector initial conditions: x 1(0) = 700, y 1
1 (0) = 0, y 1

2 (0) = 0, y 1
3 (0) = 0, x 2(0) = 700, y 2

1 (0) = 0, y 2
2 (0) = 0,

y 2
3 (0) = 0, x 3(0) = 700, y 3

1 (0) = 0, y 3
2 (0) = 0, y 3

3 (0) = 0, x 4(0) = 2800, y 4
1 (0) = 0, y 4

2 (0) = 0, y 4
3 (0) = 0, x 5(0) = 2800,

y 5
2 (0) = 0, y 5

3 (0) = 0, x 6(0) = 1906, y 6
2 (0) = 0, y 6

3 (0) = 0, x 7(0) = 1814, y 7
2 (0) = 0, x 8(0) = 1128.7, y 8

1 (0) = 0,
y 8

2 (0) = 0.

4 Details of the ABC inference

Reaction systems were generated in the software COPASI [5] and used as input files in a hierarchical imple-
mentation of the software ABC-SysBio [1, 2] (all code and model files are available in the ucl-cssb GitHub
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repository). ABC-SysBio implements the method of sequential importance sampling. This approach pro-
ceeds by the repeated sampling of parameters (particles), simulation of the model, and comparison of
model output to data through a distance function, ∆(D∗, D) , with acceptance determined by a decreasing
threshold, εt , schedule (∆(D∗, D) < εt ), which is determined automatically. The algorithm proceeds until
the fractional change is less than 0.5% ((εt −εt−1)/εt−1 < 0.01) when we judge the fitting to have converged.

The distance function relates the model output and simulated data D∗ to the biological data D and here we
use the Euclidean distance, given by the expression

∆(D∗, D) =
d=8
∑

d=1

∑

k∈Td

Æ

(Dd
k −D∗k

d )2,

where Td is the set of time points that are observed.

In the resampling step, each new particle is sampled from the previous population with a weighted proba-
bility and then perturbed with a uniform perturbation kernel. For the special case of the hierarchical model,
we perturb only the hyperparameters, γ, with the K values sampled from the corresponding lognormal dis-
tributions. The population size (number of particles) was 500 throughout. Model simulation was performed
on Graphics Processing Units (GPUs) using the cuda-sim package [6].

5 Model selection using approximations to the AIC and DIC

We used the DIC and AIC to compare models containing one, two and three repair processes [7]. In both
cases the lower the metric, the more appropriate the model. Since we cannot write down the likelihood for
our stochastic model, we approximate the AIC and DIC using the idea of a surrogate likelihood function [8].
We chose to examine both the AIC and DIC since they assess slightly different measures of fit, depending
on whether the K or the γ are the focus.

5.1 AIC

The AIC is given by the expression

AI C =−2 log p (D |γ̄)+2pγ (19)

where γ̄ is the mean value of the hyperparameter posterior, and pγ is the number of hyperparameters. The
first term can be written

−2 log p (D |γ̄) =−2 log

∫

p (D |K )p (K |γ̄)d K

=−2 log

∫ ∫

p (D |D∗)p (D∗|K )p (K |γ̄)d K d D∗, (20)

where D∗ are simulated data sets and p (D |D∗) is the surrogate likelihood function given by

p (D |D∗) =
1
p

2π
e−

∆(D∗ ,D)
2 . (21)
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5.2 DIC

The deviance is given by the expression

Dev(γ) =−2 log p (D |γ),

and we define the quantities

Dev(γ̄) =−2 log p (D |γ̄)
Dev= Eγ|D [Dev(γ)],

where again γ̄ is the mean value of the hyperparameter posterior. The Deviance Information Criterion [7] is
then given by

DI C = 2Dev−Dev(γ̄), (22)

where Dev(γ̄) is given by Equation 20 and Dev is given by

Dev= Eγ|D

�

−2 log

∫ ∫

p (D |D∗)p (D∗|K )p (K |γ̄)d K d D∗
�

(23)
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Figure A: Distance against population number for the three models. Blue dashed line is the lower bound of
the distance. Red dashed lines represents the point at which the population number percentage change is
less than 1% and 0.5%.
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Figure B: Deviance information criterion for the models M 1, M 2 and M 3. The three process model gives the
best score.
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Figure C: Akaike information criterion for the models M 1, M 2 and M 3. The three process model gives the
best score.
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Figure D: Trajectories from the posterior of the one process model M 1.
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Figure E: Trajectories from the posterior of the two process model M 2.

10



0 2 4 6 8

0
5

10
15

20

D1

Time (hrs)

D
os

e 
eq

.

●

●

●

●
● ●

0 2 4 6 8

0
5

10
15

20

D2

Time (hrs)

D
os

e 
eq

.

●

●

●
●

●

●

0 2 4 6 8

0
5

10
15

20

D3

Time (hrs)

D
os

e 
eq

.

●

●

●

● ●
●

0 2 4 6 8

0
20

40
60

80

D4

Time (hrs)

D
os

e 
eq

.

●

●
●

●

●
●

0 2 4 6 8

0
20

40
60

80

D5

Time (hrs)

D
os

e 
eq

.

●

●
●

●
●

●

0 2 4 6 8

0
10

30
50

D6

Time (hrs)

D
os

e 
eq

.

●

●

●

●

●

●

0 2 4 6 8

0
10

20
30

40
50

D7

Time (hrs)

D
os

e 
eq

.

●
●

● ●
●

●

0 2 4 6 8

0
5

15
25

35

D8

Time (hrs)

D
os

e 
eq

.

●

●

●

●
● ●

Figure F: Trajectories from the posterior of the three process model M 3.
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Figure G: The interquartile range for all the parameters K i in each dataset. Red (fast repair), blue (slow
repair) and green (intermediate repair).

12



Figure H: Univariate and marginal distributions of the posterior for NHEJ.
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Figure I: Univariate and marginal distributions of the posterior for SSA.
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Figure J: Univariate and marginal distributions of the posterior for A-EJ.
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Figure K: Time series showing a typical distribution of individual DSBs from one simulation.
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Figure L: Time series showing the model fit for 8 datasets, including an additional dataset for xrs-6 cells with
inhibition of PARP-1 with DPQ.
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Figure M: Posterior distributions of the hyper parameters µi for the eight dataset model (black lines, diag-
onal plots). Posterior distributions of the hyper parameters µi and the marginal distributions for the nine
dataset model (red lines).
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Figure N: Distribution for each parameter K i for the eight dataset model (red points), compared with pa-
rameter distribution for full repression of A-EJ by active NHEJ (black points).
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