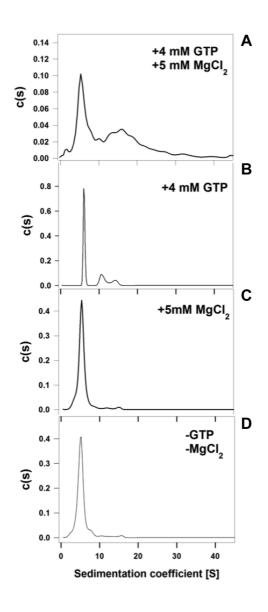
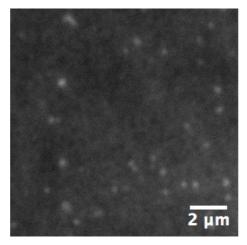
## Supporting Information

## Chiral vortex dynamics on membranes is an intrinsic property of FtsZ, driven by GTP hydrolysis

Diego Ramirez, Daniela A. García-Soriano, Ana Raso, Mario Feingold, Germán Rivas and Petra Schwille

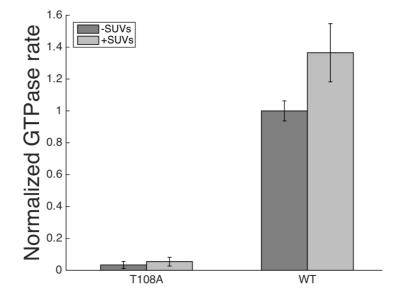

## Supplementary methods

**Sedimentation velocity.** Sedimentation velocity analysis was performed at 0.5 mg/ml of FtsZ-YFP-mts (0.5 mg/ml) equilibrated in 50 mM Tris-HCl, 150 mM KCl, pH 7.5 buffer, in the absence or presence of GTP and MgCl<sub>2</sub>, as specified. The experiments were carried out at 38,000 rpm and at 20 °C in an XL-I analytical ultracentrifuge (Beckman-Coulter Inc.) equipped with a UV-VIS detection system, an An-50 Ti rotor and 12 mm double-sector centrepieces. The sedimentation coefficient distributions were calculated by least-squares boundary modelling of sedimentation velocity data using the c(s) method as implemented in the SEDFIT program<sup>1</sup>.

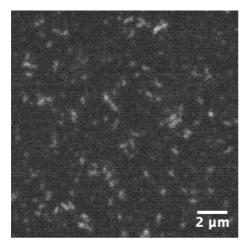

**GTPase activity.** FtsZ GTPase activity was determined using the BIOMOL GREEN reagent for phosphate detection (Enzo). In brief FtsZ at 5  $\mu$ M concentration is measured every 20 seconds after adding 1 mM GTP for a total of 7 time points. After 15 minutes of incubation with Biomol Green, the samples are measured OD<sub>620nm</sub>. The data is later fit to a standard curve of 40  $\mu$ M phosphate.

(1) Schuck P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78:1606-1619

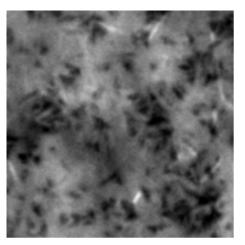
## **Supplementary figures**




**FIGURE S1.** Distribution of sedimentation coefficients obtained from sedimentation velocity analysis of FtsZ-YFP-mts with 150 mM of salt. Four different conditions were tested. (A) When GTP and Mg<sup>2+</sup> are absent, polymers are not observed, and the sedimentation coefficient distribution shows a single main peak, comparable with monomeric protein, at 5.5 S. (B) Similar results are observed when only Mg<sup>2+</sup> is added. (C) In the presence of only GTP, some oligomers are present. (D) At 4 mM GTP and 5 mM Mg<sup>2+</sup>, the sedimentationvelocity behaviour changes dramatically when compared with the other conditions. The sample is polydisperse. The distribution profile shows polymers of different sizes.

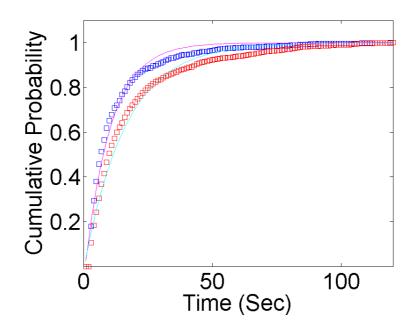



0 mM GTP


**FIGURE S2**. No visible structures are observed when GTP is absent. Representative image after adding 0.5  $\mu$ M FtsZ-YFP-mts in buffer solution with 5 mM Mg<sup>2+</sup>.



**FIGURE S3.** GTPase activity of FtsZ-YFP-mts (5  $\mu$ M) or FtsZ\*[T108A]-YFP-mts (5  $\mu$ M) in the absence or presence of phospholipids (4 mg/ml). The corresponding rates where normalized to the GTP activity of FtsZ-YFP-mts in the absence of phospholipids. We observed that the GTPase activity of FtsZ\*[T108A]-YFP-mts was almost zero. GTPase activities were determined using the BIOMOL GRENN assay (Enzo). Error bars correspond to s.d. from three different experiments.




0.1 µm FtsZ-YFP-mts



1 µm FtsZ-YFP-mts

**FIGURE S4.** Representative images of FtsZ-YFP-mts at low (left panel) and high (right panel) protein concentrations. No polymers could be detected at 0.1  $\mu$ M. On the contrary, when 1  $\mu$ M of FtsZ-TFP-mts is added, polymer networks were observed almost instantly at the vicinity of the membrane. Dynamic rings were only noticed at intermediated protein concentrations.



**FIGURE S5.** To show that photobleaching contribution does not affect the trend observed with the single molecule results from **Figure 5**, we performed the same set of experiments with half laser intensity. Blue squares represent the cumulative probability of ~3000 events at 4 mM whereas red squares refer to the cumulative probability of ~6000 events at 0.04mM. The fit to an single exponential  $1 - exp(-t/\tau)$  for both GTP concentrations reveals than  $\tau$  for low concentration GTP is about 1.5 fold longer than high GTP (~10.9 sec), agreeing with the findings of the main text.