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S1 Noise analysis in the generalized adder

For the generalized adder strategy for growth, the newborn cell-size Vn progresses through discrete
cell cycles as

Vn+1 = (aVn + ∆n,αn)βn. (S1.1)

Here ∆n,αn takes the form

∆n,αn = ∆nF (ᾱ)

(
1 + c Sᾱ

αn − ᾱ
ᾱ

)
. (S1.2)

By taking the expectation on both sides in (S1.1) we obtain the mean newborn cell-size

〈Vn+1〉 = (a 〈Vn〉+ 〈∆n,αn〉) 〈β〉 . (S1.3)

We assume the first moment is finite as for biological systems usually the mean newborn cell-sizes
does not grow unboundedly. Then limn→∞ 〈Vn+1〉 = limn→∞ 〈Vn〉 = 〈V 〉. Thus the mean newborn
cell-size is

〈V 〉 = 〈∆〉F (ᾱ) 〈β〉
1− a 〈β〉

. (S1.4)

Where F (ᾱ) is the dependence of ∆n,αn on the mean growth-rate as defined in the main text.
Next we derive the expression for the second order moment of newborn cell-size. To do this we
assume the second moment/variance of newborn cell-size similar to the mean is finite. We then
let limn→∞

〈
V 2
n+1

〉
= limn→∞

〈
V 2
n

〉
=
〈
V 2
〉
. Squaring (S1.1) on both sides and taking expectation

gives 〈
V 2
〉

= (a2
〈
V 2
〉

+ 〈∆2〉F (ᾱ)2(1 + c2S2
ᾱCV

2
α ) + 2a lim

n→∞
〈Vn∆n,αn〉)

〈
β2
〉
. (S1.5)

Where Sᾱ is the log sensitivity of the mean cell-size on the mean growth-rate as defined in the main
text. Notice that ∆n,αn and Vn are not independent due to the memory in growth-rate between
consecutive cell-cycles. Hence to derive limn→∞ 〈∆n,αnVn〉 we expand Vn in terms of previous
cell-cycle newborn cell-sizes

lim
n→∞

〈∆n,αnVn〉 = lim
n→∞

〈
∆n,αnβn(aVn−1 + ∆n−1,αn−1)

〉
(S1.6)

= lim
n→∞

〈
∆n,αn(aVn−1 + ∆n−1,αn−1)

〉
2

(S1.7)

= lim
n→∞

an

2n
〈∆n,αnV0〉+ lim

n→∞

1

2

n∑
r=1

〈
∆n,αn∆n−r,αn−r

〉 (a
2

)r−1
. (S1.8)
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Recall that a ∈ [0, 1], hence dropping the first term we can write

lim
n→∞

〈∆n,αnVn〉 = lim
n→∞

1

2

n∑
r=1

〈
∆n,αn∆n−r,αn−r

〉 (a
2

)r−1
. (S1.9)

Again note that ∆n,αn and ∆n−r,αn−r are dependent due to the memory in growth-rate. Here we
use the assumption that αn follows an autoregressive process given in eqn. (5) of the main text.
To obtain

〈
∆n,αn∆n−r,αn−r

〉
we expand these in terms of growth-rate as

〈
∆n,αn∆n−r,αn−r

〉
= 〈∆〉2 ᾱ2

〈
(1 + cSᾱ

αn − ᾱ
ᾱ

)(1 + cSᾱ
αn−r − ᾱ

ᾱ
)

〉
(S1.10)

= 〈∆〉2 ᾱ2(1 + c2S2
ᾱ

〈(αn − ᾱ)(αn−r − ᾱ)〉
ᾱ2

)) (S1.11)

= 〈∆〉2 ᾱ2(1 + c2S2
ᾱρ

r
αCV

2
α ). (S1.12)

Substituting (S1.12) in (S1.9) we can write

lim
n→∞

〈∆n,αnVn〉 =
〈∆〉2 ᾱ2

2

(
1

1− a/2
+ c2S2

ᾱCV
2
α

ρα
1− aρα/2

)
. (S1.13)

For the second order moment of V substituting the above expression in (S1.5) we obtain,

〈
V 2
〉

=
F (ᾱ)2

〈
β2
〉

1− a2 〈β2〉

(
〈∆2〉+ aᾱ 〈∆〉2

(
2

2− a
+ c2S2

ᾱ

2CV 2
α ρα

2− aρα

))
. (S1.14)

Thus dividing the second order moment above by the square of the mean in (S1.4) and using CV 2
α̂

as defined in the main text we obtain the variation in newborn cell-size as,

CV 2
V =

(CV 2
β + 1)(2− a)2

4− a2 − a2CV 2
β

(
CV 2

α̂ + 1)(1 + CV 2
∆)

+ 2a

(
1

2− a
+
CV 2

α̂ ρα
2− aρα

))
− 1. (S1.15)

S2 Noise analysis in mixer model

In this section, we derive the mean and variation in newborn cell-size for two cases of the mixer
model: a timer followed by generalized adder and generalized adder followed by timer.

S2-a Timer followed by generalized adder

The newborn cell-size Vn+1 in the (n+ 1)th cell cycle newborn cell-size is given by

Vn+1 = (a(1 + fn)Vn + ∆n,αn)βn. (S2.1)

Taking expectation on both sides we get the mean newborn cell-size,

〈Vn+1〉 = (a(1 + 〈f〉)〈Vn〉+ 〈∆n,αn〉)βn. (S2.2)

We assume the first moment is finite and use the expression for 〈∆n,αn〉 from (S1.2) to obtain the
mean newborn cell-size

〈V 〉 =
〈β〉F (ᾱ) 〈∆〉

1− a 〈β〉 (1 + 〈f〉)
. (S2.3)
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To obtain the second order moment we square (S2.1) on both sides and take expectation〈
V 2
〉

=(a2(1 + 2〈f〉+ 〈f2〉)
〈
V 2
〉

+ 〈∆2〉F (ᾱ)2(1 + c2S2
ᾱCV

2
α )

+ 2a(1 + 〈f〉) lim
n→∞

〈Vn∆n,αn〉
〈
β2
〉
. (S2.4)

Here ∆n,αn and Vn are dependent due to the memory in growth-rate between consecutive cell-cycles.
Hence to derive limn→∞ 〈∆n,αnVn〉 we expand Vn in terms of previous cell-cycle newborn cell-sizes

lim
n→∞

〈∆n,αnVn〉 = lim
n→∞

〈
(1 + fn)∆n,αnβn(aVn−1 + ∆n−1,αn−1)

〉
(S2.5)

= lim
n→∞

(
a(1 + 〈f〉)

2

)n
〈∆n,αnV0〉+ lim

n→∞

1

2

n∑
r=1

〈
∆n,αn∆n−r,αn−r

〉(a(1 + 〈f〉)
2

)r−1

. (S2.6)

From the definition of a ∈ [0, 1] and fn with 〈f〉 < 1, a(1 + 〈f〉) ∈ [0, 2), hence

lim
n→∞

〈∆n,αnVn〉 = lim
n→∞

1

2

n∑
r=1

〈
∆n,αn∆n−r,αn−r

〉(a(1 + 〈f〉)
2

)r−1

. (S2.7)

The expression for
〈
∆n,αn∆n−r,αn−r

〉
is same as that derived in the generalized adder case〈

∆n,αn∆n−r,αn−r
〉

= 〈∆〉2 ᾱ2(1 + c2S2
ᾱρ

r
αCV

2
α ). (S2.8)

Substituting (S2.8) in (S2.7) results in

lim
n→∞

〈∆n,αnVn〉 =
〈∆〉2 ᾱ2

2

(
1

1− a(1 + 〈f〉)/2
+

ραc
2S2

ᾱCV
2
α

1− a(1 + 〈f〉)ρα/2

)
. (S2.9)

Further from (S2.4) , the second order moment of newborn cell-size can be expressed as

〈
V 2
〉

=
〈
β2
〉(
〈∆〉2 ᾱ2a(1 + 〈f〉)

(
1

1− a(1 + 〈f〉)/2
+

ραc
2S2

ᾱCV
2
α

1− a(1 + 〈f〉)ρα/2

)
+ 〈∆2〉F (ᾱ)2(1 + c2S2

ᾱCV
2
α )

)
1

1− a2 〈β2〉 ((1 + 〈f〉)2 + 〈f〉2CV 2
f )
. (S2.10)

Thus from the above and (S2.3) with CV 2
α̂ as defined in the main text we obtain the variation

in newborn cell-size as

CV 2
V =

(CV 2
β + 1)(2− a(1 + 〈f〉))2

4− a2(CV 2
β + 1)((1 + 〈f〉)2 + 〈f〉2CV 2

f )

(
2a(1 + 〈f〉)×(

1

2− a(1 + 〈f〉)
+

ραCV
2
α̂

2− aρα(1 + 〈f〉)

)
+ (1 + CV 2

∆)(1 + CV 2
α̂ )

)
− 1. (S2.11)

S2-b Generalized adder followed by timer

For this case the newborn cell-size in the nth cell-cycle is given by

Vn+1 = (aVn + ∆n,αn) (1 + fn)βn. (S2.12)

Using the same method described in the previous section we obtain the mean newborn cell-size,

〈V 〉 =
〈∆〉F (ᾱ)(1 + 〈f〉)

2− a(1 + 〈f〉)
. (S2.13)
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The second moment of newborn cell-size can be derived similar to the previous section〈
V 2
〉

= (1 + 2〈f〉+ 〈f2〉)
〈
β2
〉

(a2
〈
V 2
〉

+ 〈∆2〉F (ᾱ)2(1 + c2S2
ᾱCV

2
α ) + 2a lim

n→∞
〈Vn∆n,αn〉). (S2.14)

Here the term limn→∞ 〈Vn∆n,αn〉 can be expressed as

lim
n→∞

〈∆n,αnVn〉 =
1 + 〈f〉

2
lim
n→∞

n∑
r=1

〈
∆n,αn∆n−r,αn−r

〉(a(1 + 〈f〉)
2

)r−1

(S2.15)

=
1 + 〈f〉

2
lim
n→∞

n∑
r=1

〈∆〉2ᾱ2(1 + c2S2
ᾱρ

r
αCV

2
α )

(
a(1 + 〈f〉)

2

)r−1

(S2.16)

=
(1 + 〈f〉)〈∆〉2ᾱ2

2

(
1

1− a(1 + 〈f〉)/2
+

ραc
2S2

ᾱCV
2
α

1− a(1 + 〈f〉)ρα/2

)
. (S2.17)

Substituting this in (S2.14) we can write the second moment as〈
V 2
〉

=
〈
β2
〉(
〈∆〉2ᾱ2a(1 + 〈f〉)

(
1

1− a(1 + 〈f〉)/2
+

ραc
2S2

ᾱCV
2
α

1− a(1 + 〈f〉)ρα/2

)
+ 〈∆2〉F (ᾱ)2(1 + c2S2

ᾱCV
2
α )

)
(1 + 〈f〉)2 + 〈f〉2CV 2

f

1− a2 〈β2〉 ((1 + 〈f〉)2 + 〈f〉2CV 2
f )
. (S2.18)

Thus from the above expression and (S2.13), with CV 2
α̂ as defined in the main text we obtain the

variation in newborn cell-size

CV 2
V =

(
〈f〉2CV 2

f

(1 + 〈f〉)2
+ 1

)
(CV 2

β + 1)(2− a(1 + 〈f〉))2

4− a2(CV 2
β + 1)((1 + 〈f〉)2 + 〈f〉2CV 2

f )

(
2a(1 + 〈f〉)×(

1

2− a(1 + 〈f〉)
+

ραCV
2
α̂

2− aρα(1 + 〈f〉)

)
+ (1 + CV 2

∆)(1 + CV 2
α̂ )

)
− 1. (S2.19)

Comparing this expression with (S2.11) we can write

CV 2
V︸︷︷︸

timer after adder

= (CV 2
V + 1)︸ ︷︷ ︸

adder after timer

×

(
〈f〉2CV 2

f

(1 + 〈f〉)2
+ 1

)
− 1. (S2.20)

From the above expression we can see that the variation in newborn cell-size is higher for the adder
followed by timer case compared to the opposite.

S3 Power-law exponent of cell-size in mixer model

Introducing a timer phase fold-change with noise in the generalized adder can cause higher order
moments to become infinite. The power-law exponent is a parameter that determines the threshold
of moments above which all moments are infinite. If the power-law exponent is m then all the
moments above m− 1 are unbounded. To obtain the power-law exponent for newborn cell-size, we
raise both sides in (S2.1) to m− 1, and take expectation on both sides

〈V m−1
n+1 〉 = 〈(aVn + ∆n,αn)m−1(1 + fn)m−1〉〈βm−1

n 〉 (S3.1)

= 〈(aVn(1 + fn))m−1〉〈βm−1
n 〉 (S3.2)

+
m−1∑
k=1

(
m− 1

k

)
〈∆k

n,αn〉〈(aVn)m−1−k(1 + fn)m−1〉〈βm−1
n 〉.
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Now using the assumption that all higher order moments of fn, ∆n and αn are finite. This shows
that all the higher order moments of ∆n,αn is finite. Also by definition of power-law exponent,
all moments of Vn lower than m − 1 are finite. Hence all the terms except the first are finite and
are irrelevant for the boundedness of moments of newborn cell size. Now let limn→∞〈V m−1

n 〉 =
limn→∞〈V m−1

n−1 〉 = 〈V m−1〉. Expanding Vn in the first term in (S3.2) and taking the limit n → ∞
gives

〈V m−1〉 = lim
n→∞

〈
(1 + fn)m−1

〉n 〈V m−1〉〈βm−1
n 〉nan(m−1) + Lower order moments. (S3.3)

From which the condition for the power-law exponent m becomes

1 =
〈
(1 + fn)m−1

〉 〈
βm−1
n

〉
a(m−1). (S3.4)

To obtain a closed form expression for the term
〈
(1 + fn)m−1

〉
, we write it as〈

(1 + fn)m−1
〉

= 〈exp ((m− 1) log (1 + fn))〉 . (S3.5)

Then we use the Taylor series approximation of log(1 + fn) with respect to fn about 〈f〉. Also
using the fact that CV 2

f � 1 and truncating upto the first order term gives

〈
(1 + fn)m−1

〉
≈
〈

exp

(
(m− 1) log(1 + 〈f〉) +

m− 1

1 + 〈f〉
(fn − 〈f〉)

)〉
(S3.6)

For low noise limit CV 2
f � 1, we assume fn’s are approximately gaussian random variables. Thus,

we can write 〈
exp

(
(m− 1) log(1 + 〈f〉) +

m− 1

1 + 〈f〉
(fn − 〈f〉)

)〉
= (S3.7)

(1 + 〈f〉)m−1 exp

(
〈(fn − 〈f〉)2〉(m− 1)2

2(1 + 〈f〉)2

)
(S3.8)

=⇒
〈
(1 + fn)m−1

〉
≈ (1 + 〈f〉)m−1 exp

(〈f〉2CV 2
f (m− 1)2

2(1 + 〈f〉)2

)
(S3.9)

To find 〈βm−1
n 〉 assuming βn ∼ Beta(r, p)

〈
βm−1
n

〉
=

Γ(m+ r − 1)Γ(r + p)

Γ(m+ r + p− 1)Γ(r)
(S3.10)

where r =

(
1

CV 2
β

(
1
〈β〉 − 1

)
− 1

)
〈β〉 and p =

(
1
〈β〉 − 1

)
r. Hence to obtain the dependence of m on

the partitioning errors and timer-phase noise in Fig. 3 in the main text we numerically solve the
equation

0 = log

(
Γ(m+ r − 1)Γ(r + p)

Γ(m+ r + p− 1)Γ(r)

)
+ (m− 1) log(1 + 〈f〉)

+
〈f〉2CV 2

f (m− 1)2

2(1 + 〈f〉)2
+ (m− 1) log a. (S3.11)
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In some limit 〈βm−1
n 〉 can be simplified further. In the case where partitioning is very precise with

partitioning noise CV 2
β � 1 and (m − 1)(m − 2) � 1/CV 2

β we find that 〈βm−1
n 〉 can be simplified

by Taylor expansion about βn = 〈β〉. Truncating upto the second order term we obtain〈
βm−1
n

〉
≈
〈
〈β〉m−1 + (m− 1)〈β〉m−2(βn − 〈β〉) (S3.12)

+ 〈β〉m−3 (m− 1)(m− 2)

2
(βn − 〈β〉)2

〉
= 〈β〉m−1 + 〈β〉m−1 (m− 1)(m− 2)

2
CV 2

β . (S3.13)

log(
〈
βm−1
n

〉
) = (m− 1) log〈β〉+ log

(
1 +

(m− 1)(m− 2)

2
CV 2

β

)
(S3.14)

≈ (m− 1) log〈β〉+
(m− 1)(m− 2)

2
CV 2

β (S3.15)

Substituting (S3.13) and (S3.9) in (S3.4) we get

m =
− log 〈β〉 − log a+ CV 2

β /2− log(1 + 〈f〉)
〈f〉2CV 2

f

2(1+〈f〉)2 + CV 2
β /2

+ 1. (S3.16)

S4 C. crescentus parameters and model predicted exponent

To obtain the parameters of partitioning at cell-division we use the single cell data of cell-size at
birth and before division published in [1]. The single-cell data of sizes was obtained for C. crescentus
in the balanced growth conditions at the temperature 31 C. The sizes were measured within 2%
precision. The data set consists of 11906 pairs of values of cell sizes before and after division for
consecutive generations. The sample of partitioning variables βn is obtained by taking the ratio of
lengths before and after division for all generations. We obtain the confidence intervals for 〈β〉 and
CV 2

β by bootstrapping. Bootstrapping is performed by randomly sampling partitioning variables

with replacement from the original data set 10000 times. Then we calculate 〈β〉 and CV 2
β for each

sample and find the 95% confidence interval for these parameters across samples.

Parameter 95% Confidence interval

〈β〉 0.5772± 0.0002
CV 2

β 0.0085± 0.0004

〈f〉 0.376± 0.003
CV 2

f 0.1325± 0.0041

m 29± 0.9
mV 15.6± 1.1
m∆ 13.5± 1.9
mf 19.6± 2.3

Table I: Estimated parameters

The parameters 〈f〉 and CV 2
f in the timer phase were calculated from the distribution of αntn

in Fig. 3(B) in [2]. Here tn is the time in the timer-phase. We take the exponential of αntn to
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obtain the distribution of fold-change 1+fn = exp(αntn). This distribution was then bootstrapped
to obtain the confidence intervals of mean fold-change 1 + 〈f〉 and CV 2

f [2]. We then derive m by
using (S3.11). To derive the confidence intervals in m we incorporate uncertainty in timer-phase
and partitioning parameters. This is done by simultaneously bootstrapping the parameters β, CV 2

β ,

〈f〉 and CV 2
f for 10000 realizations and calculating m for each set of parameters. The parameter

values are shown in Table I.

S5 Power law fitting

S5-a Estimation of power law exponent from raw data

In addition to the contribution of the timer phase noise processes, the boundedness of moments
of ∆n and fn have an impact on the exponent of newborn cell-size. Hence we need to estimate
the power law exponents mV , mf and, m∆ from the raw data in [2]. To obtain these we use the
maximum likelihood estimate method given in [3] shown for a general variable x below. We first
fit the distribution of sample data assuming that it is power law,

P (x) =
(k − 1)

xmin

(xmin
x

)k
. (S5.1)

Here, P (x) is the probability density function of the power-law fit, k is the power law exponent
and xmin is the cut-off above which the power law distribution holds. We conveniently fix a cut-off
threshold and find the maximum likelihood estimate of power-law exponent

k = 1 +N

(
N∑
i=1

log
xi
xmin

)−1

. (S5.2)

Here N is the total number of samples above the cut-off xmin in the data. xi are the sample values
above the cut-off.

We apply the above method to data for newborn cell-size, added cell-size, and timer-phase
fold-change and obtain power-law exponents shown in Fig. S1 and Table I. The single cell data
for newborn cell-size of the adherent cells is obtained from Fig. 3E of [2]. Further for the single
cell data of added cell-size in adder phase we extract the data from Fig. 3E of [2]. For the single
cell fold-change data we obtain the data from Fig. 3D of [2]. All these figures show single cell
scatter plots of the respective parameters. The confidence intervals on the experimentally derived
power-law exponents can then be obtained by bootstrapping the raw data and using the maximum
likelihood estimate for each bootstrapped sample.
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Figure S1: Figures show the derived power-law exponents of added cell-size in adder phase and
size fold-change in timer-phase. Left The power-law exponent of added cell size in the adder phase
explains the exponent of newborn cell size. The cut-off threshold used is 1.4 µm with 185 data
points. The raw data is binned starting at 1.1853 µm using bin widths of 0.0433 µm with the last
bin 0.3028 µm wide. The dots shows the ratio of the normalized frequency of samples in each bin
to the width of the bin. The normalization is done with respect to total number of points above
the threshold. The error bars show the 95% confidence interval of the height of each bin with
the median as the dots. Right The power-law exponent of size fold-change is shown . The cut-off
threshold used is 1.448 with 264 data points. The raw data is binned using bin-width 0.0214 with
the last bin 0.15 wide. The dots shows the normalized ratio of number of samples in each bin to
the width of the bin. The normalization is done with respect to the total number of samples above
the threshold. The error bars show the 95% confidence interval of the height of each bin with the
median as the dots.
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