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Figure S1 (continued)  
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Figure S1 (continued) 
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Figure S1. Comparison of GNM-predicted MSFs of gene loci with accessibility measured by ATAC and 
DNase-seq for all chromosomes. MSFs are calculated by using 500 GNM modes (at the lowest frequency end of 
the spectrum) based on Hi-C map at 5kb resolution obtained by Rao et al. for GM12878 (1). Spearman 
correlations between theoretical (MSFs) and experimental (ATAC (2) and DNase-seq (3)) data are shown for each 
chromosome in the corresponding legend box.  

  



5	  
	  

 

Figure S2. Contributions of different subsets of modes to the mobility profile of chromosome 17. (A) – (C) 
Comparisons between experimental data and computed MSF profiles obtained using 10, 100, and 500 GNM 
modes in the computations. (D) Spearman correlations between experimental and computationally predicted 
fluctuation/accessibility profiles obtained with different numbers of modes. Note that the abscissa is in 
logarithmic scale. The correlation levels off at around a few hundreds of modes. 
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Figure S3. Mobility profile of chromosome 17 predicted by the GNM based on Hi-C maps at different 
resolutions. The three panels display the correlations between chromatin accessibility data (ATAC and DNase-
seq) and GNM-predicted fluctuation profiles based on the Hi-C contact map for chromosome 17 at (A) 50kb, (B) 
10kb, and (C) 5kb resolution. GNM results are computed using 500 lowest-frequency modes. The level of 
agreement between computational predictions and experimental observations is insensitive to the resolution of 
experimental data. 
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Figure S4. Armatus gamma values as a function of GNM modes. The gamma values corresponding to the 
lowest VI value for each GNM mode increase monotonically with the number of modes used, showing that higher 
resolution domains can be found by using higher GNM modes, consistent with decreasing granularity of GNM-
predicted substructures with increasing mode number. 

 

 

Figure S5. Comparison of GNM domains with (A) compartments and (B) TADs for chromosome 14. In both 
panels, the background is a heat map of the Hi-C contact matrix for this chromosome, and the red and white lines 
represent the domains identified by the two indicated methods. The two axes represent the loci numbers. Data for 
compartments are from the work of Lieberman-Aiden et al. (4). TADs are computed using Armatus (5). 
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Figure S6 (first part) 
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Figure S6. Intra-chromosomal covariance of gene loci computed for all chromosomes at 5kb resolution. The 
entries in the map display the type and strength of correlations between the gene loci indicated along the two axes. 
The maps are color-coded from dark red the dark blue, with dark red indicating the gene loci pairs that show the 
strongest cross-correlations in their spatial movements (same direction, same sense movements in space), and 
dark blue regions refer to gene pairs undergoing anticorrelated movements (same direction, opposite sense). 
Green/yellow bands refer to regions that lack Hi-C contact data. The red blocks along the diagonal are indicative 
of highly coupled clusters of loci. Results are obtained using all GNM modes for the individual chromosomes. 
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Figure S7. Reproducibility of the covariance map computed for chromosome 17 using two different levels 
of resolution. (A) Results at 50kb resolution computed using all GNM modes, (B) Results at 5kb resolution 
obtained with 500 slowest modes. The maps on the right of the covariance maps show the sign of the covariance. 
Red indicates positive, blue indicates negative. Most of the positively correlated gene loci are contiguous along 
the chromosome, except for a few off-diagonal islands which correspond to CCDs. The curve along the upper 
abscissa represent the average covariance of corresponding loci (averaged over its correlations with all other loci). 
Maxima indicate gene loci that are engaged in strong couplings with other loci.  
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Figure S8. Identification of cross-correlated distal domains (CCDDs). CCDDs are found by searching for 
connected components outside of the widest point of the main diagonal. The CCDD is then the rectangle of 
maximal area contained entirely within the connected component. 

 

 

Figure S9. The number of GNM domains in total and of length one varied by smoothing window size. A 
drastic decrease of domains of length one can be seen around 10-20. This critical value is consistent on all 
chromosomes (only 17-22 are shown here). The smoothing window was chosen to be 16 for eigenvectors 
obtained from Hi-C data at 5kb resolution. 
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Methods 

Gaussian Network Model 

Gaussian network model (GNM) is a bead-and-spring representation of biological macromolecules(6-8). A 
common representation of protein is that each residue is a node, and two residues is connected by a spring if their 
spatial distance is close. To adapt the modeling of chromatin structure, the nodes represent loci and the strength of 
the springs indicate the intensity of interactions.  

The major component of GNM is the Kirchhoff matrix (𝚪, also termed as Laplacian matrix) representing the 
connectivity of loci. The matrix can be easily constructed from Hi-C contact map M, where each entry 𝐌!" is the 
number of interactions between two locus i and locus j: 

𝚪!" =
−𝐌!" , (𝑖 ≠ 𝑗)

− 𝚪!"
!,  !!!

, (𝑖 = 𝑗) 

Intuitively, the off-diagonal elements each are the negative of the value at the corresponding position in Hi-C map, 
and the diagonal elements are the negative summation of the row or column where the element is located in the 
Kirchhoff matrix. In this way, unlike GNM on proteins, we use non-uniform force constants for chromosomes.  

The diagonalization of the Kirchhoff matrix results in eigenvectors and eigenvalues:  

𝚪 = 𝐕𝐃𝐕! 

Suppose n is the number of nodes in the system, then V is a unitary matrix where each column is an eigenvector 
𝒖!   (0 < 𝑖 ≤ 𝑛). D is a diagonal matrix of eigenvalues, λ1, λ2, ..., λn, usually ordered ascendingly. An eigenvector 
and its eigenvalue is a GNM mode, of which the pattern of the motion of each node will be manifested by the 
eigenvector, and the eigenvalue is squared vibrational frequency of the corresponding mode. Therefore, the modes 
with small eigenvalue are slow modes with low frequency but large amplitude given conserved energy. These 
slow modes describe global and collective motions of the macromolecule, which are usually more biologically 
meaningful than local motions described by fast modes. In addition, in the case of GNM, there is always one zero 
eigenvalue corresponding to the rigid translation of the entire system. If there are more than one zero eigenvalue, 
it usually indicates the system contains disconnected regions. 

 

Another important output of GNM is the covariance matrix. It can be proved that the inverse of Kirchhoff matrix 
is proportional to the covariance matrix of displacements of interacting nodes: 

Δ𝐑 ⋅ Δ𝐑! =
3𝑘!𝑇
𝛾

(𝚪!!) 

Where kB is the Boltzmann constant, T is the temperature, and γ is the spring constant. The covariance matrix can 
also be reconstructed by using all the modes (𝑚   =   𝑛) or fewer modes (𝑚   <   𝑛) with the following equation: 

Δ𝐑 ⋅ Δ𝐑! =
𝒖!    ⋅   𝒖!!

𝜆!

!

!!!

 

Note that 𝒖! is a 𝑛  ×  1 column vector, therefore the product in the numerator is an 𝑛  ×  𝑛 matrix. Usually the 
covariance matrix calculated from the slow modes shares most features with the full covariance matrix. 

Square fluctuations are the diagonal values of the covariance matrix (i.e. the variances of the displacements of 
loci). Their values indicate the mobility of loci: higher the square fluctuation, higher the mobility. 
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Removal of Unmapped Regions 

In the Hi-C map there are regions where no cross-linked DNA fragments can be mapped. These unmapped 
regions are isolated from the system, and their existence may lead to multiple zero-eigenvalue modes. These 
modes correspond to the rigid translation of isolated regions which will not cause conformational change, 
therefore they are biologically meaningless. In addition, these unmapped regions are not constrained by any other 
loci, so they may cause large fluctuations that flatten the signal from other regions. These extra zero-eigenvalue 
modes and unphysically large fluctuations can be effectively removed by simply discarding the unmapped regions. 
Note that the removal of the unmapped regions will not cause disconnections because chromosomes are highly 
compact, so the loci next to the unmapped regions are still connected to the loci located on the other end of the 
region. 

 

Normalization 

Two types of normalization methods were applied to the Hi-C contact map: Vanilla-Coverage normalization 
(referred as VCnorm) (4) and Knight-Ruiz normalization (referred as KRnorm) (9). Both methods aim to 
eliminate the so-called “one-dimension bias” (1). However, we found that GNM performed much better on Hi-C 
map normalized by VCnorm. Not only are the correlations with the chromatin accessibility lower, but also the 
square fluctuations become flatter and flatter by adding more modes in the calculation when KR normalization 
has been applied on the contact map. In the extreme case, when all the modes are used, the square fluctuations 
become almost completely flat along the chromosome. This is because KRnorm ensures that every row and 
column sums to 1. By setting the same sum for each row or column, all the loci will be constrained by the 
approximately same number of springs. Consequently, the mobilities measured by square fluctuations calculated 
based on all the modes will be similar for all the loci. Due to the better performance and fit with the theory of 
GNM, we chose VC normalized contact maps to perform further analyses.  



14	  
	  

 
Figure S12. Comparison of the results obtained with two different normalization methods: Vanilla Coverage 
normalization (left) and Knight-Ruiz (right) normalization. 
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Table S1. List of Sequence Read Run (SRR) IDs for all 212 RNA-seq experiments from the Sequence Read 
Archive used in co-expression calculations.(*) 
SRR038295 SRR038448 SRR038449 SRR065510 SRR065514 

SRR065515 SRR065532 SRR089332 SRR089333 SRR1024156 

SRR1024157 SRR1066622 SRR1066623 SRR1066624 SRR1066625 

SRR1066626 SRR1066627 SRR1066628 SRR1066629 SRR1066630 

SRR1066631 SRR1066632 SRR1066633 SRR1066634 SRR1066635 

SRR1066636 SRR1066637 SRR1066638 SRR1066639 SRR1066640 

SRR1066641 SRR1153470 SRR1163655 SRR1293901 SRR1293902 

SRR1803196 SRR1803197 SRR1803198 SRR1909074 SRR1909076 

SRR1909078 SRR1909107 SRR1909108 SRR1909113 SRR1983907 

SRR1983908 SRR1983909 SRR2192704 SRR2192705 SRR2192706 

SRR2192707 SRR2192708 SRR2192709 SRR2192710 SRR2192711 

SRR2192712 SRR2192713 SRR306998 SRR306999 SRR307000 

SRR307001 SRR307002 SRR307003 SRR307004 SRR307005 

SRR307006 SRR307007 SRR307008 SRR307009 SRR307010 

SRR307011 SRR307012 SRR307897 SRR307898 SRR307899 

SRR307900 SRR307921 SRR307922 SRR315297 SRR315298 

SRR317058 SRR317059 SRR317060 SRR317061 SRR3191739 

SRR3191740 SRR3191773 SRR3191774 SRR3191775 SRR3191776 

SRR3191777 SRR3191778 SRR3191779 SRR3191849 SRR3192069 

SRR3192132 SRR3192133 SRR3192134 SRR3192135 SRR3192136 

SRR3192137 SRR3192138 SRR3192139 SRR3192140 SRR3192218 

SRR3192396 SRR3192397 SRR3192398 SRR3192399 SRR3192400 

SRR3192401 SRR3192402 SRR3192403 SRR3192406 SRR3192407 

SRR3192657 SRR3192658 SRR363871 SRR390498 SRR390507 

SRR390508 SRR390509 SRR390510 SRR390511 SRR390512 

SRR390513 SRR390514 SRR390517 SRR390542 SRR390543 

SRR390544 SRR390545 SRR521447 SRR521448 SRR521449 

SRR521450 SRR521451 SRR521452 SRR521453 SRR521454 

SRR521455 SRR521456 SRR521466 SRR521467 SRR521510 

SRR521511 SRR521512 SRR527657 SRR527658 SRR527677 

SRR527678 SRR530637 SRR530638 SRR545687 SRR545688 

SRR549363 SRR549364 SRR576703 SRR764776 SRR764777 

SRR764778 SRR764779 SRR764780 SRR764781 SRR764782 

SRR764783 SRR764784 SRR764785 SRR764786 SRR764787 

SRR764788 SRR764789 SRR764790 SRR764791 SRR764792 

SRR764793 SRR764794 SRR764795 SRR764796 SRR764797 

SRR764798 SRR764799 SRR764800 SRR764801 SRR764802 

SRR764803 SRR764804 SRR764805 SRR764806 SRR764807 

SRR764808 SRR764809 SRR764810 SRR764811 SRR764812 
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SRR764813 SRR764814 SRR764815 SRR764816 SRR764817 

SRR768411 SRR768412 SRR972706 SRR972707 SRR972712 

SRR972713 SRR972714 SRR972715 SRR972716 SRR972717 

SRR975411 SRR975412    

(*) the data can be found at http://www.ncbi.nlm.nih.gov/sra 
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