Species	subspecies	ID	Name	Studbook	Sex	Souce	Geographic Origin	Birth Origin	Sequencing Center	Sequencing coverage
							1st generation by 566 and 530 both wild born			
Gorilla gorilla	gorilla	A930	Sandra	969	F	Blood	Cameroon	Captive born	CNAG	27.7
Gorilla gorilla	gorilla	A931	Banjo	255	М	Blood	Cameroon 1st generation by 856 and 858, both wild born	Wild born	CNAG	31.3
Gorilla gorilla	gorilla	A933	Dian	1091	F	Blood	Cameroon 1st generation of wild African	Captive born	CNAG	42.1
Gorilla gorilla	gorilla	A962	Amani	899	F	Blood	parents	Captive born	CNAG	31
Gorilla gorilla	gorilla	KB3782	Vila	80	F		Unknow	Wild born	Stanford	13.2
Gorilla gorilla	gorilla	KB3784	Dolly	195	F		Congo	Wild born	Stanford	17.5
Gorilla gorilla	gorilla	KB5792	Carolyn	3	F		Congo	Wild born	Stanford	12.7
Gorilla gorilla	gorilla	KB5852	Helen	96	F		Cameroon	Wild born	Stanford	15.6
Gorilla gorilla	gorilla	KB6039	Oko	192	F		Unknown	Wild born	Stanford	16.4
Gorilla gorilla	gorilla	KB7973	Porta	64	F		Unknowm	Wild born	Stanford	13
Gorilla gorilla	gorilla	X00108	Abe	52	F		Unknown	Wild born	CNAG	21.2
Gorilla gorilla	gorilla	X00109	Tzambo	440	F		Unknown West Africa (Cameroon),	Wild born	CNAG	22.5
						Whole	possibly cross			
Gorilla gorilla	delhi	B646	Nyango	9941	F	Blood	river	Wild born	CNAG	23.8
Gorilla gorilla	graueri	A967	Victoria	A967	F	Blood Primary	region, Nord-Kivu DRC - Tulakwa, Northwest of	Wild born	CNAG	36.7
Gorilla gorilla	graueri	9732	Mkubwa	9907	М	fibroblast		Wild born	WashU	18.9

Supplemental Table 1. Sample information

Sample	nple Ancestral N _e		N _e after	Time in past	N _e after
		of first size	first change	of second size	second change
		change (years)		change (years)	
1 st side of cline	side of cline 33,191		50,716	39,023	8,132
(12 haplotypes)					
2 nd side of cline	32,676	743,772	45,321	38,741	10,659
(16 haplotypes)					
2 nd side of cline	32,809	648,295	47,507	48,996	11,808
(downsampled to					
12 haplotypes)					
All western	32,542	746,901	46,144	29,060	9,014
lowland samples					
(downsampled to					
12 haplotypes)					

Table S2: Three-epoch demographic model results from $\partial \alpha \partial i$ for individuals on either side of a putative cline.

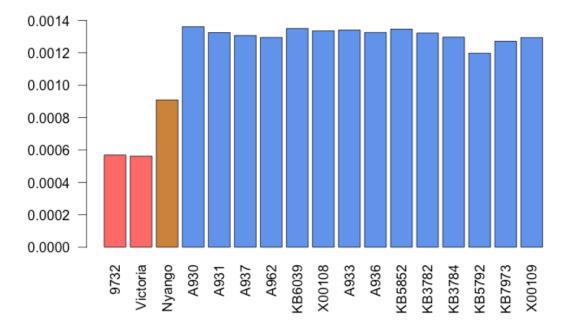
Inferences based on subsets of the western lowland gorilla samples, using the 8x data. Samples on the 1st side of cline: KB3782, KB3784, KB5792, KB5852, KB7973, X00109. Samples on the 2nd side of cline: A930, A931, A933, A936, A937, A962, KB6039, X00108.

Table S3: CLR Window

GO ID	Term	p-value
GO:0035725	sodium ion transmembrane transport	0.00039
GO:0006166	purine ribonucleoside salvage	0.00077
GO:0050909	sensory perception of taste	0.00188
GO:2000736	regulation of stem cell differentiation	0.00512
GO:0030157	pancreatic juice secretion	0.00519
GO:0046541	saliva secretion	0.00519
GO:0090257	regulation of muscle system process	0.00544
GO:0051983	regulation of chromosome segregation	0.00582
GO:0060964	regulation of gene silencing by miRNA	0.00685
GO:0086012	membrane depolarization during cardiac muscle	0.00685
	cell action potential	
GO:0086019	cell-cell signaling involved in cardiac conduction	0.00685
GO:1900153	positive regulation of nuclear-transcribed mRNA	0.00685
	catabolic process, deadenylation-dependent decay	
GO:2000270	negative regulation of fibroblast apoptotic process	0.00685
GO:0030071	regulation of mitotic metaphase/anaphase transition	0.00739
GO:0050709	negative regulation of protein secretion	0.00739
GO:0019319	hexose biosynthetic process	0.00825

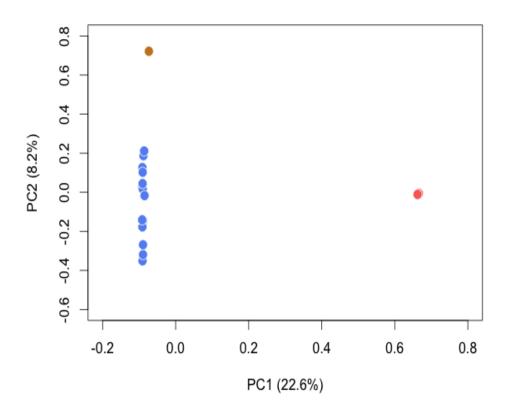
Table S4: Top enriched GO terms from TopGo.

Results based on the Fisher's exact test and the elimination method by Alexa et al. (2006). All genes in regions with $p < 10^{-3}$ were included. The 16 terms with p < 0.01 are listed.


Alexa A, Rahnenfuhrer J, Lengauer T. 2006. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 22(13):1600-1607.

Paper	Method	Data	Cross River- Western split time (kyr)	Cross River- Western split time (kyr, adjusted)	Western -Eastern split time (kyr)	Western- Eastern split time (kyr, adjusted)	Migration
Thalmann et al, 2011	ABC	8 micro- satellite loci	17.8				4.5 migrants per generation, symmetric
Becquet et al, 2007	MIMMAR	15 loci			92	171	M=0.87, symmetric
Scally et al, 2012	Custom- IM	Genome wide, reduced representation			500	429	0.2 migrants per generation, symmetric
Prado- Martinez et al, 2013	PSMC	Genome wide	80	114	150	214	none
Mailund et al, 2012	CoalHMM	95 loci (10Mbp interval between locus)				450	gene flow ended 150kr ago
Thalmann et al, 2007	IM	16 loci			78*	107	more gene flow from eastern to western gorilla after initial split at around 0.9- 1.6 mya, no gene flow until 78 kyr ago
This study	G-PHOCS	25,573 loci		68		261	Western> Eastern, 0.37 migrants per generation

Table S5: Comparison of published estimates of gorilla population split times.


Values from each study are adjusted to match the generation time and mutation rates employed in this study. A mutation rate adjustment is not performed for Thalmann et al (2011), which is based on microsatellites. We note that Thalmann et al (2007) report a range of split time values under several different models, with population split times ranging from 78 kya (without subsequent gene flow) to 1.6 mya, with some models including Eastern to Western migration.

Supplementary Figures

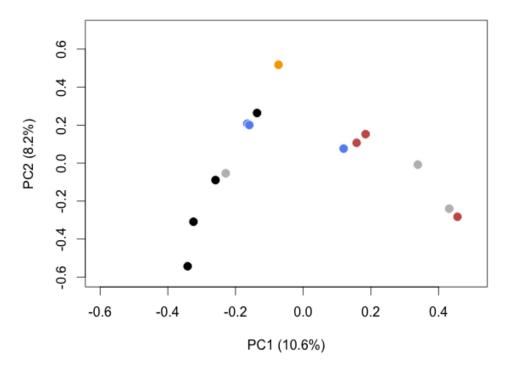


Figure S1: Genome wide heterozygosity values.

Heterozygosity was calculated along the autosomes for each sample based on the 8x coverage masks. Samples are colored based on species: eastern lowland (red), Cross River (yellow), and western lowland (blue).

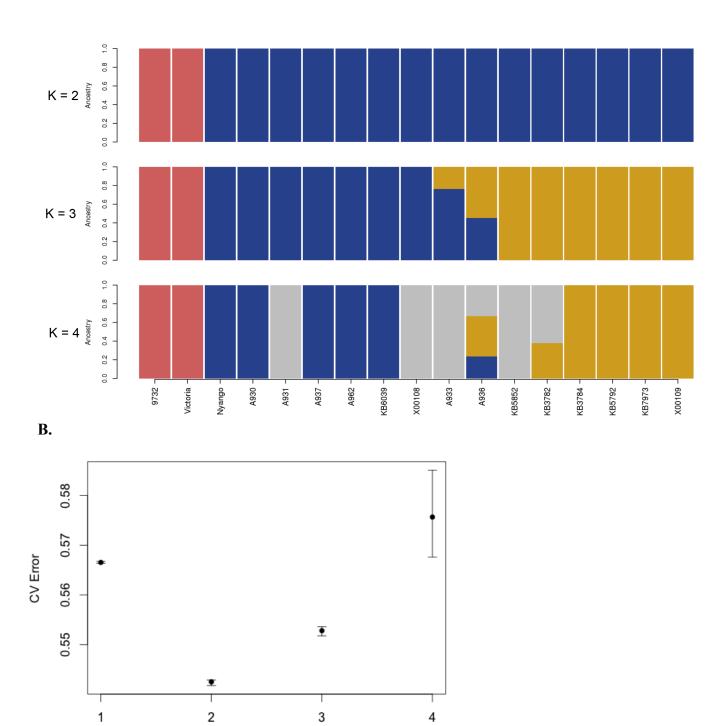
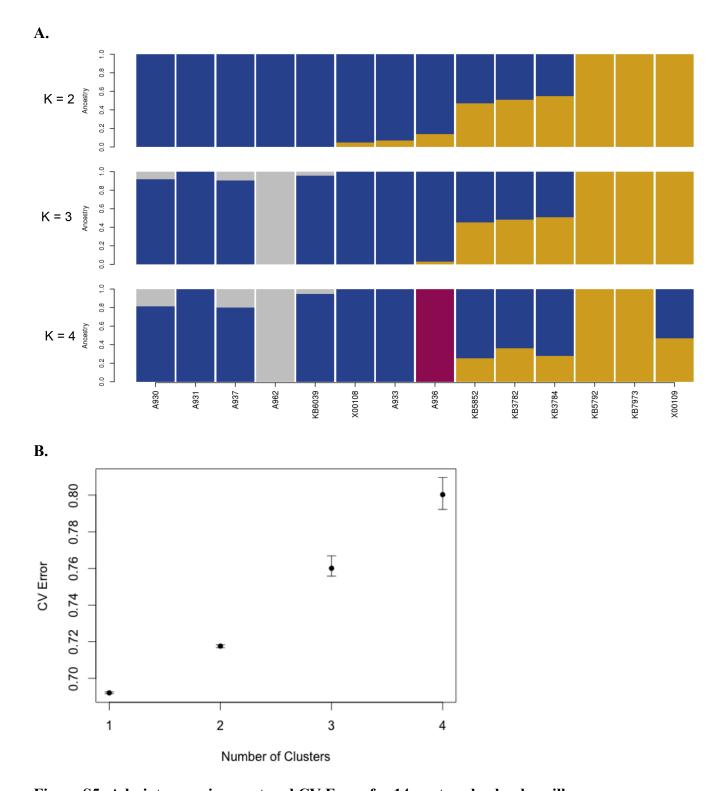
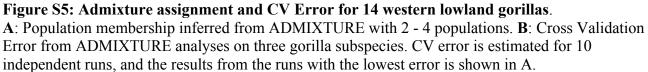


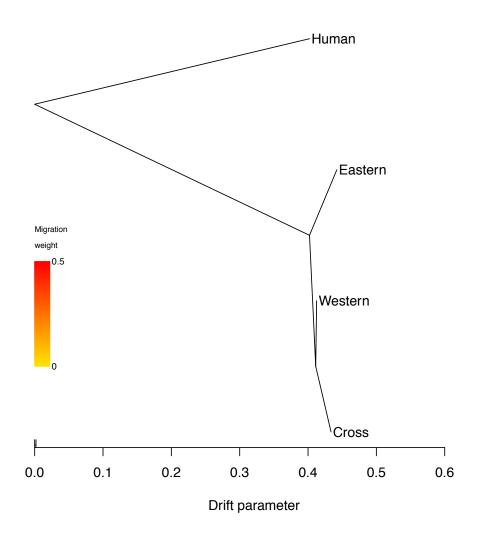
Figure S2: PCA of three gorilla species. Colors indicate species: Cross River (brown), western lowland (blue), and eastern lowland (red). Data was thinned to include 20% of the total number of intersecting SNPs. Percentages indicate the percent of variance explain by each principle component.

Figure S3: PCA of western lowland gorilla.

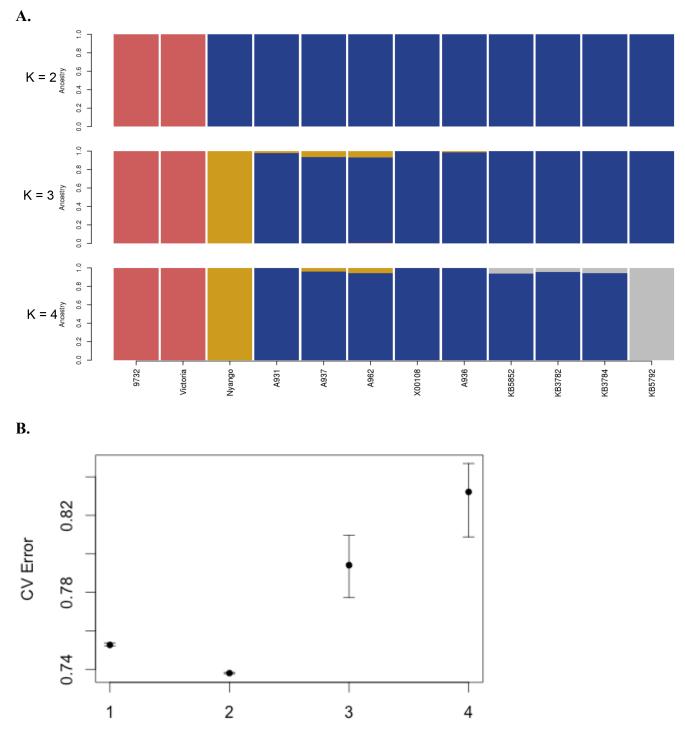
PCA of 14 western lowland gorillas based on 8x sequencing data. Colors indicate geographical origin: Equatorial Guinea (orange), Cameroon (blue), Congo (red), captive born (black), unknown origin (grey). Percentages indicate the percent of variance explained by each principle component.

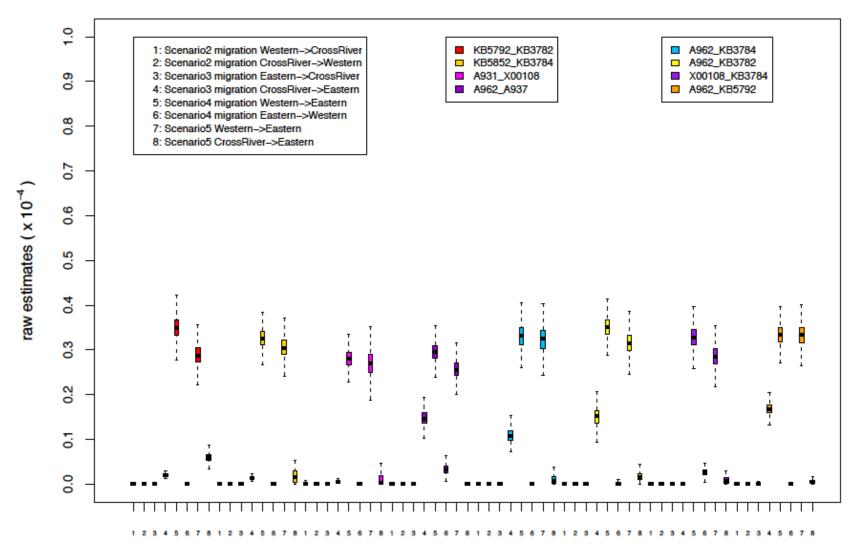



Number of Clusters

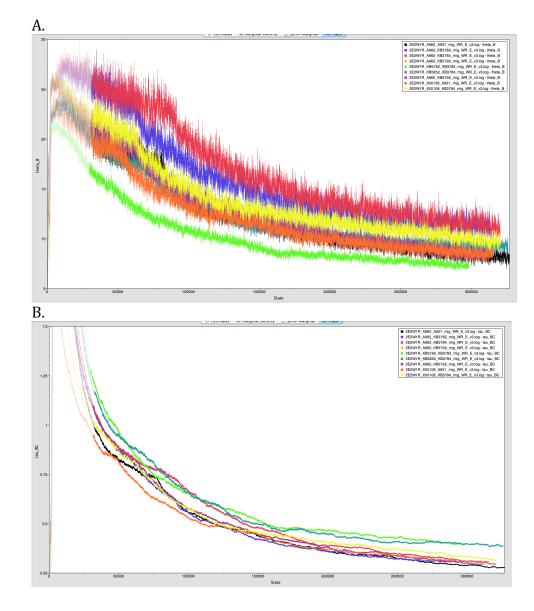

Figure S4: Admixture results for the three gorilla subspecies.

A: Population membership inferred from ADMIXTURE with 2 - 4 populations. **B**: Cross Validation Error from ADMIXTURE analyses on three gorilla subspecies. CV error is estimated for 10 independent runs, and the results from run with the CV error is shown in A.


A.


Figure S6: Four-population phylogeny as inferred by TreeMix (Pickrell and Pritchard, 2012). The tree was inferred using reference-free genotypes obtained using BSNP at putatively unlinked neutrally evolving loci.

Number of Clusters


Figure S7: Admixture analysis for subset of samples used in G-PhoCS analysis. Results are based on reference-free genotypes obtained using BSNP at putatively unlinked neutrally evolving loci.

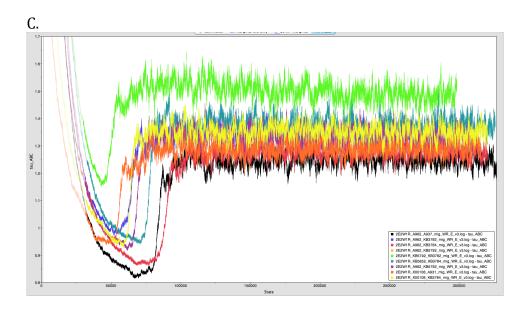
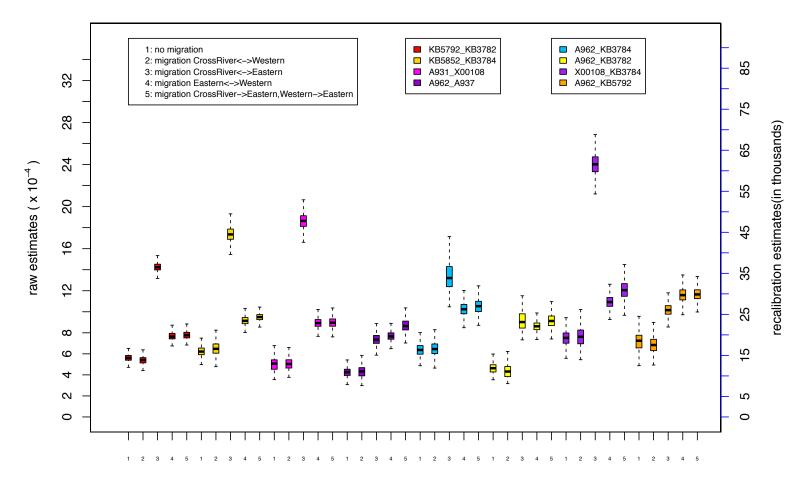

Total migration rate

Figure S8: Total migration rate inferred by G-PhoCS, given by $m_{AB} * \tau_{AB}$.

Along the x-axis values from different migration bands associated with different scenarios (Figure 1) are depicted. The first six migration rate estimates come from a bi-directional migration setting. The last setting is with two migration bands, one from western lowland to eastern lowland gorilla and another from Cross River to eastern lowland gorilla. A strong signal of migration of western to eastern lowland gorillas is observed. Colors correspond to different combinations of western gorilla samples included in the analysis.

Figure S9: MCMC traces for three demographic parameters inferred using G-PhoCS.

Each trace plot (obtained using Tracer) displays 9 combinations of samples including 2 eastern gorillas, 2 western gorillas and 1 Cross River gorilla with migration setting scenario 5 (Figure 1). A. Western gorilla population size **B.** Western-Cross River gorilla split time **C.** Eastern-Western-Cross River ancestral split time


3.0 7.5 KB5792 KB3782 A962 KB3784 1: no migration 2: migration CrossRiver<->Western KB5852 KB3784 A962 KB3782 2.8 A931_X00108 3: migration CrossRiver<->Eastern X00108_KB3784 A962 A937 4: migration Eastern<->Western A962 KB5792 \sim 5: migration CrossRiver->Eastern,Western->Eastern 2.6 ŝ ecalibration estimates(in thousands) <u>ن</u> 2.4 raw estimates (x 10^{-4}) ဖ \sim Ś 5.5 2.0 S Ø 4.5 ÷ 1.6 4 4. 3.5 1.2 e 1.0 S N

Eastern Gorilla Population sizes estimates(T(HG)=12Mya)

Figure S10: Eastern lowland gorilla population size estimates by G-PhoCS.

We include 2 eastern gorilla individuals (Victoria, 9732), different combinations of Western individuals, 1 Cross River gorilla (B646) and always include human reference as an outgroup. Values along the x-axis correspond to five different scenarios depicted in Figure 1. Raw estimates are depicted on the left axis scale, and recalibrated values (effective population size) assuming a human-gorilla divergence time of 12 Mya are depicted on the right axis.

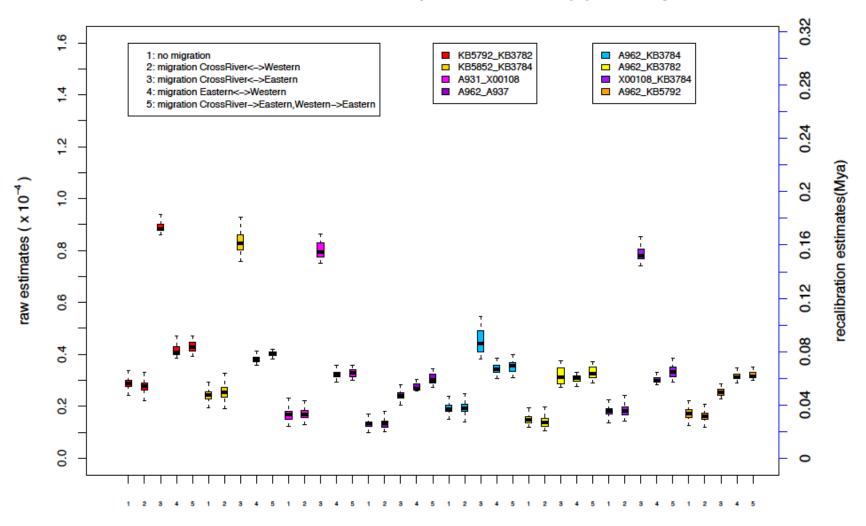
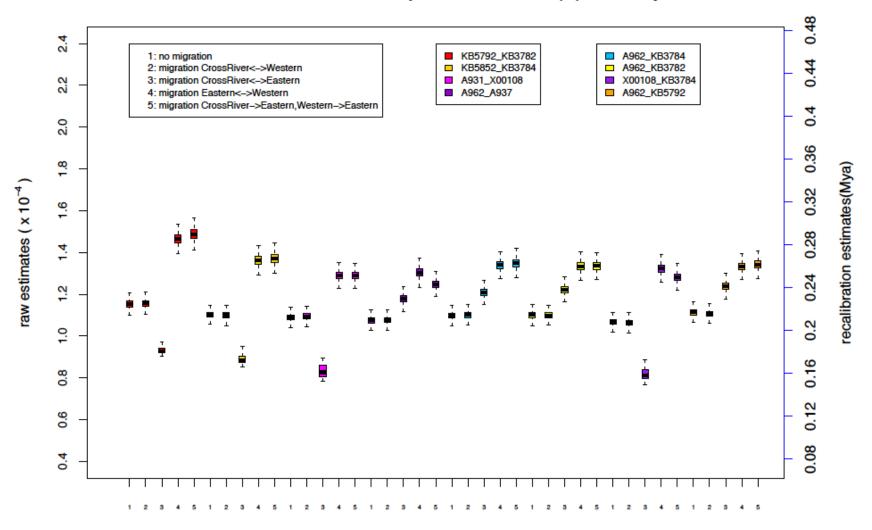
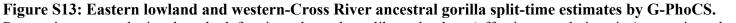
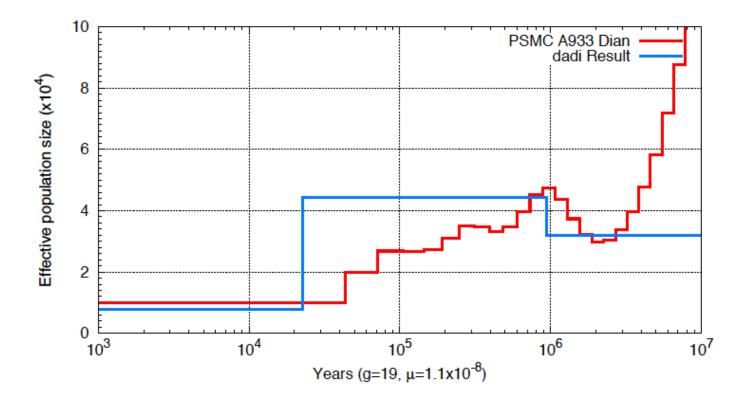

Western Gorilla Population sizes estimates(T(HG)=12Mya)

Figure S11: Western lowland gorilla population size estimates by G-PhoCS.

Values along the x-axis correspond to five different scenarios depicted in Figure 1. Raw estimates are depicted on the left axis scale, and recalibrated values (effective population size) assuming a human-gorilla divergence time of 12 Mya are depicted on the right axis.


CrossRiver-Western Gorilla Split time estimates(T(HG)=12Mya)




Values along the x-axis correspond to five different scenarios depicted in Figure 1. Raw estimates are depicted on the left axis scale, and recalibrated values assuming a human-gorilla divergence time of 12 Mya are depicted on the right axis.

Eastern–Western Gorilla Split time estimates(T(HG)=12Mya)

Raw estimates are depicted on the left axis scale, and recalibrated values (effective population size) assuming a human-gorilla divergence time of 12 Mya are depicted on the right axis.

Figure S14: Comparison of $\partial \alpha \partial i$ and PSMC Models.

The red line indicates population history obtained for a western lowland gorilla using PSMC based on mapping to the gorilla genome and scaled using generation time and mutation rates employed in this paper. The blue line corresponds to the best-fit three-epoch model inferyred for western lowland gorillas using $\partial \alpha \partial i$.