
APPENDIX 3 

Description of the hierarchical Bayesian generalized linear model with latent variables 

We fitted a statistical joint species distribution model (Warton et al. 2015), which combines 

information on environmental covariates, species traits and phylogenetic constraints, as well as the 

sampling study design. The modelling framework used here is described in Abrego, Norberg & 

Ovaskainen (2016b), as well as Ovaskainen et al. (2016a, b) and Abrego et al. (2016), where the 

application of the framework with other research questions and organismal groups is also 

demonstrated. As an alteration to Abrego et al. (2016b), the phylogenetic relationships of the taxa 

were accounted for slightly differently. Below we describe the structure of the modelling framework 

(including the deviations from Abrego et al. 2016b), as well as the specific details of each of the 

individual models.  

We denote the sampling unit by the index 𝑖 = 1, … , 𝑛𝑦; the focal species (parasite species or bacterial 

orders; referred to as species in this section) by the index 𝑗 = 1, … , 𝑛𝑠; and the species-specific traits 

by the index 𝑙 = 1, … , 𝑛𝑡; where 𝑛𝑦 is the total number of sampling units (consisting of several samples 

from individual lemurs, obtained at different times points); 𝑛𝑠 is the number of  parasite species or 

bacterial orders, and 𝑛𝑡 is the number of traits. We denote the presence-absence data by 𝑦𝑖𝑗 , so that 

𝑦𝑖𝑗 = 1 if the species 𝑗 was found in sampling unit 𝑖 and otherwise 𝑦𝑖𝑗 = 0. We model the presence 

(and absence) of the species with a probit regression model, where 𝑦𝑖𝑗 = 1𝑧𝑖𝑗>0, and the latent 

occurrence score is modelled as 𝑧𝑖𝑗 = 𝐿𝑖𝑗 + 𝜀𝐻(𝑖)𝑗
𝐻 + 𝜀𝑃(𝑖)𝑗

𝑃 + 𝜀𝐴(𝑖)𝑗
𝐴 + 𝜖𝑖𝑗 . The residual term 𝜖𝑖𝑗~𝑁(0,1) 

corresponds to the probit link function, as it is fixed to 𝜎𝑗
2 = 1. The fixed effects 𝐿𝑖𝑗 are modelled as 

regression parameters 𝐿𝑖𝑗 = ∑ 𝑥𝑖𝑘𝛽𝑗𝑘𝑘 , where terms 𝑥𝑖𝑘 denote the covariate measured for sampling 

unit 𝑖 for condition 𝑘, and the regression parameters 𝛽𝑗𝑘 denote the response of species 𝑗 to 𝑘.  

We assumed that the species-specific regression coefficients 𝛽𝑗𝑘 follow the multivariate normal 

distribution 𝜷𝑗∙~𝑁(𝝁𝑗∙, 𝐕), centred around the expectation 𝝁𝑗∙. As the dot singles out a row/column in 

a matrix, 𝜷𝑗∙ denotes the vector of regression coefficients for species 𝑗, and 𝝁𝑗∙ is a vector of mean 

responses, hence describing the expected environmental niche of species 𝑗. We used the 𝝁𝑗∙ 

parameters to model the influence of species-specific traits on the species’ responses to their habitat 

characteristics: We modelled the expected response as a linear combination of the traits: 𝜇𝑗𝑘 =

∑ 𝑡𝑗𝑙𝛾𝑙𝑘𝑙 , where 𝑡𝑗𝑙  is the value of trait 𝑙 for species 𝑗, and the parameter 𝛾𝑙𝑘 measures the effect of trait 

𝑙 on covariate 𝑘. To account for phylogenetic relationships, the covariance structure of the multivariate 

normal distribution has been modified so, that 𝜷∙∙~𝑁(𝝁∙∙, 𝑉⨂[|𝜌|(1𝜌>0𝐂 + 1𝜌<0𝐂−1) + (1 − |𝜌|)𝐈]), 

where 𝐂 is the phylogenetic correlation matrix, and −1 ≤  𝜌 ≤ 1 measures the strength of the 

phylogenetic signal. If 𝜌 = 0, then the residual variance is independent among the species, but when 𝜌 



approaches 𝜌 = −1 or 𝜌 = 1, species’ environmental niches become fully structured by their 

phylogeny. A positive parameter value 𝜌 > 0 indicates that related species have more similar niches 

than by random, whereas 𝜌 < 0 suggest that closely related species have less similar niches than 

expected. This part of our modelling framework differs from Abrego et al. (2016b), where the 

parameter 𝜌 could only vary between 0 and 1, i.e. 0 ≤  𝜌 ≤ 1, hence not separating for covariance due 

to niche similarity or dissimilarity. 

The random effects 𝜀𝐻(𝑖)𝑗
𝐻 + 𝜀𝑃(𝑖)𝑗

𝑃 + 𝜀𝐴(𝑖)𝑗
𝐴  model variation in species occurrences and co-occurrences 

at the levels of individual lemurs (H), transects (P) and years (A). The indices 𝐻(𝑖), 𝑃(𝑖) and 𝐴(𝑖) 

denote the lemur from which, the transect in which, and the year during which the sample 𝑖 was 

obtained. As in Ovaskainen et al. (2016a, b) and Abrego et al. (2016a; b), we assume that the random 

effects are distributed according to the multivariate normal distributions 𝜀𝐻∙
𝐻 ~𝑁(0, 𝛀𝐻), 𝜀𝑃∙

𝑃 ~𝑁(0, 𝛀𝑃) 

and 𝜀𝐴∙
𝐴~𝑁(0, 𝛀𝐴) where 𝛀𝐻, 𝛀𝑃 and 𝛀𝐴 are taxon-to-taxon variance-covariance matrices to be 

estimated. Here, the diagonal element Ω𝑗𝑗 describes the amount of variation that species 𝑗 shows at the 

level of individual lemurs, whereas the off-diagonal element Ω𝑗1𝑗2
 describes the amount of covariation 

among the species 𝑗1 and 𝑗2. The variance-covariance matrix 𝛀 can be translated into a correlation 

matrix 𝐑 by 𝑅𝑗1𝑗2
= Ω𝑗1𝑗2

/√Ω𝑗1𝑗1
Ω𝑗2𝑗2

, which is the matrix that we will use here to represent species-

to-species associations. The correlation 𝑅𝑗1𝑗2
 measures to what extent species 𝑗1 and species 𝑗2 are 

found together more or less often than expected by random, after controlling for the environmental 

covariates. 

We first modelled parasite associations by using a longer data set from years 2011-2012. We modelled 

the presence and absence of the parasites found in and on the lemurs as a function of the sex, age, 

aggressiveness and general condition of the lemurs, and with males we also accounted for the size of 

their testis (with the assumption that females can be considered as individuals with extremely small 

testis size). We also included the time of sampling (week) and its quadratic form (week2) to account 

for the effect of seasonality. As traits we included whether the parasite has a direct or non-direct life 

cycle and whether it is an endo- or ectoparasite. We constructed the phylogenetic relationships with 

five levels: domain, kingdom, superphylum, phylum and species, assuming equal branch lengths.  

We consequently modelled parasite-to-microbiota association using the data set from 2012, which 

included both microbiota and parasites. Here we modelled the occurrences of both the parasite 

species and the microbial orders as a function of the same characteristics of the lemurs as with the 

parasite model. We transformed the OTU abundance data into presences and absences at the level of 

orders. To avoid overrepresentation of very rare OTUs, we considered OTUs with >9 amplicons as 

presences, and ≤9 as absences. Then to avoid sequencing and OTU picking errors, we considered the 

OTUs present, if there were in total >99 amplicons in at least two lemur individuals. After this, the final 



community matrix was constructed as presence and absence at the level of orders. This results in that 

the occurrence of a microbial order represents a strong presence of this particular order. We included 

latent random effects at the levels of individual lemurs (𝜀𝐻(𝑖)𝑗
𝐻 ) and transects (𝜀𝑃(𝑖)𝑗

𝑃 ), as in this model 

we did not have samples from multiple years. In addition to the traits also used in the parasite model, 

here we included whether the taxon is a parasite or part of the microbiota and microbiota was 

considered as having neither direct nor indirect life cycle. We constructed the phylogenetic 

relationships with five levels: domain, kingdom, phylum, class and order (the level of observations). 

We assumed equal branch lengths, but since the occurrences were modelled at the level of orders for 

the microbiota, but at the level of species for the parasites, we adjusted the phylogenetic correlation 

matrix 𝐶 so, that the phylogenetic distance between the two hymenolepidid species was set to 0.99. 

As a point of comparison, for both data sets, we fitted unconstrained models, where we included only 

sampling unit random effect 𝜀𝑖𝑗
𝑆 , which models the variation in species occurrences and co-occurrences 

at the level of individual samples, obtained from individual lemurs (as there could be multiple samples 

from one individual), and no environmental covariates, phylogenetic constrains, nor traits. Hence, we 

again model the presence (and absence) of the species with a probit regression model, but in the 

unconstrained version the fixed effects 𝐿𝑖𝑗 are modelled simply with an intercept, so that 𝐿𝑖𝑗 = 𝑥𝑖𝛽𝑗, 

and the term 𝑥𝑖 is a vector of ones of length 𝑖, and the regression parameters 𝛽𝑗 model the overall 

prevalence of the species 𝑗. Thus, the variance across sampling units in the species responses is 

explained with the latent variables. By comparing the results for the constrained and unconstrained 

models, we can separate the associations that are solely due to the (dis)similar habitat requirements 

(e.g. when two species share the same habitat preferences, and hence co-occur more often than 

expected by random) or hidden by the (dis)similar habitat requirements (e.g. when two species share 

the same habitat preferences, but even after accounting for this, they still co-occur more often than 

expected by random) from the associations immune to the effects of the explanatory variables (i.e. we 

see the same association patterns regardless of the inclusion of the explanatory variables). This 

approach is analogous to comparing a constrained and an unconstrained ordination, with the 

difference of our approach being model-based (see e.g. Hui et al. 2015, Warton et al. 2015). 

 

Prior distributions used for the hierarchical Bayesian joint species distribution model 

We used the default priors of the Matlab package ‘HMSC’ by Ovaskainen et al. (submitted). For each 

component of the trait parameter 𝛾, we assumed a normal prior with zero mean and unit variance. For 

the matrix 𝐕, which measures the amount of variation among the species-specific regression 

coefficients (the diagonal elements of 𝐕), as well as the amount of covariation among the responses to 



the different covariates (the off-diagonal elements of 𝐕), we assumed an Inverse-Wishart prior with 

𝑛𝑐 + 1 degrees of freedom, and the variance-covariance matrix set to the identity matrix.  

For the latent factors, the priors are as in Bhattacharya and Dunson (2011), except that 𝑎1 = 𝑎2 = 50, 

increasing the level of shrinkage. High amount of shrinkage may result in underestimation the 

influences of the random factors, and in particular miss some of the species-to-species associations, 

but assuming only little shrinkage would increase the risk of overfitting. For the phylogenetic signal 

parameter 𝜌, we assumed a discrete prior, which assigns a probability of 1/3 for 𝜌 = 0 (corresponding 

to independence among species), and the remaining probability of 2/3 uniformly to [-1,1], discretized 

to 200 values to enable the use of a discrete grid sampler. 

We sampled the posterior distribution using the the Gibbs sampler developed by Bhattacharya & 

Dunson (2011) and Ovaskainen et al. (2016a; b), and implemented in Matlab by Ovaskainen et al. 

(submitted). We run the MCMC chains of all the models to 100 000 iterations, out of all of which the 

first half was discarded. 

 

Assessing the model fit 

We assessed the model fit and predictive power by calculating the Tjur 𝑅2 coefficients of 

discrimination (Tjur 2009) for each species. Furthermore, we calculated the Spearman rank 

correlations between the predicted and true occurrences. We calculated the correlations at all spatial 

and temporal scales, (individual lemurs, transects and years). 

For the parasite model, there was a good match between the predicted and true occurrences of 

species, as the mean Tjur 𝑅2 coefficient of discrimination over the species was 0.13 at the level of 

sampling units, and the Spearman rank correlations between the predicted occurrences and the true 

occurrences was 0.53 at the level of sampling units, 0.71 at the level of individual lemurs, 0.98 at the 

transect level and 0.99 at the level of years.  

For the combined model, there was a good match between the predicted and true occurrences of 

species, as the mean Tjur 𝑅2 coefficient of discrimination over the species was 0.12 at the level of 

lemurs, and the Spearman rank correlation between the predicted occurrences and the true 

occurrences was 0.73 at the level of sampling units, 0.79 at the level of individual lemurs, and 0.98 at 

the transect level. 

 

Estimated phylogenetic signal in the species responses to their habitat 



For the parasite data, the posterior mean of the parameter 𝜌 measuring the amount of phylogenetic 

signal in the data was 0.92, indicating a strong phylogenetic signal in the species responses to their 

environment. As there was a strong phylogenetic signal in the community response to the 

environment, we tested whether there is some correlation between the phylogenetic relationships 

between taxa and the covariance structure of the latent factors, represented by the matrix C and the 

residual covariance matrix 𝛀 by using the Mantel test with Pearson correlation. There were no 

significant (based on the empirical significance level from permutations ≤ 0.05) correlations at the 

level of lemurs (𝛀𝐻), transects (𝛀𝑃), nor years (𝛀𝐴). 

For the combined data, the posterior mean of the parameter 𝜌 measuring the amount of phylogenetic 

signal in the data was 0.94, indicating a strong phylogenetic signal in the species responses to their 

environment. At the transect level there was no significant correlation between the phylogenetic 

relationships of taxa, but at the level of individual lemurs we found a significant (p<0.05) correlation 

of r = 0.14.  
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