Supplementary Materials

RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach

Xiaoyong Pan and Hong-Bin Shen

1 Methods

1.1 Identifying binding motifs using iDeep

The CNN module in iDeep is able to detect binding motifs using its filters, which recognize the motif in a set of input sequences [Alipanahi et al.,2015, Kelley et al.,2016]. For each sequence S_m and filter with size L, if the activation value A_{mli} of filter f at position i is greater than the cut-off, e.g. 0.5, then this sequence in windows L centring the position i is selected. After selecting the motif sequences, WebLogo is used for alignment and visualization.

$$A_{mfi} = ReLU(\sum_{l=1}^{D} \sum_{d=1}^{D} w_{fld} * s_{m,i+1,d})$$
 (1)

where ReLU(x) = max(0, x), w_f is the weights of filter f, m is the sequence length. D is 4, the dimension of the one-hot encoding of nucleotide sequence.

1.2 The architecture of deep belief network

The architecture of DBN for input modalities clip-cobinding, Structure, Region type and Motif are as follows:

- 1. Fully connected layer
- 2. PReLU layer
- 3. BatchNormalization layer
- 4. Dropout layer
- 5. Fully connected layer
- 6. PReLU layer
- 7. BatchNormalization layer
- 8. Dropout layers

Additional layer for merging outputs from CNNs and DBNs:

- 9. Fully connected layer
- 10. Softmax layer

Protein	# of motifs	protein	# of motifs	protein	# of motifs
1 Ago/EIF	8	12 ESWR1	14	22 Nsun2	15
2 Ago2M	13	13 FUS	11	23 PUM2	8
3 Ago2	13	14 Mut FUS	11	24 QKI	10
4 Ago2	15	15 IGF2.1-3	12	25 SRSF1	7
5 Ago2	8	16 hnRNPC	6	26 TAF15	12
6 eIF4AIII	8	17 hnRNPC	10	27 TDP-43	12
7 eIF4AIII	20	18 hnRNPL	11	28 TIA1	11
8 ELAVL1	15	19 hnRNPL	9	29 TIAL1	13
9 ELAVL1M	11	20 hnRNPL1	10	30 U2AF2	13
10 ELAVL1A	8	21 MOV10	13	31 U2AF2	10
11 ELAVL1	13				

Table S1: The discovered number of known motifs in CISBP-RNA agreeing with 102 filters from CNNs in iDeep for individual experiments.

2 Results

References

[Alipanahi et al.,2015] Alipanahi, B. et al. (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 33, 831-8.

[Kelley et al., 2016] Kelley, D.R. et al. (2016) Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 3.