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1 Supplementary Notes

1.1 Functional analysis of ribosome stalling in the ramp sequences

From previous studies in the literature [1, 2, 3], we expected a gene with a higher interRSS in it
ramp region to be more efficiently translated. To verify this hypothesis, we performed a large-
scale study to investigate the relation between the interRSS of the ramp region and the translation
efficiency of the corresponding gene. We used the logarithm of the protein expression level di-
vided by the corresponding mRNA expression level to measure the translation efficiency (TE) of
each gene. In our analysis, the mRNA and protein expression data of human (lymphoblastoid cell
lines, LCLs) and yeast (S. cerevisiae) were obtained from [4] and [5, 6], respectively. As short genes
may introduce bias to our analysis of the ramp regions, here we only focused on those genes with
more than 300 codons, which in total resulted in 12,734 and 3,590 genes for human and yeast,
respectively. We then divided these obtained genes into two classes: those with the highest 10%
mean interRSSes of the ramp regions were denoted by “ramp+”, while the remaining ones were
denoted by “ramp-”. Our comparison showed that the genes in ramp+ owned stringently higher
translation efficiency than those in ramp- (Supplementary Figs. 4(a) and 4(b); P = 3.85× 10−7 for
human and P = 2.7× 10−3 for yeast, one-sided Wilcoxon rank-sum test).

Furthermore, we investigated the enriched functional categories of those genes with high ri-
bosome stalling potential in their ramp sequences. Specifically, we only focused on the genes with
high translation efficiency (i.e., with top 50% TE) as they may be crucial for supporting the fun-
damental cellular activities, and used all the expressed genes in the dataset as the background for
the gene ontology (GO) analysis (Supplementary Table 2). Interestingly, we found that in yeast,
those genes in ramp+ were significantly enriched with many housekeeping GO terms, such as
translation regulation and amino acid biogenesis, while the others in ramp- showed much weaker
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enrichment or even depletion of these GO categories (Supplementary Fig. 4(c) and Supplementary
Table 3). For human, such a GO enrichment was not significantly observed after correcting the P
values (Supplementary Table 3; P > 0.05). This may be due to the intrinsic expression property
of LCLs, as we also failed to observe a significant GO enrichment even when simply focusing on
those genes of high TE without differentiating their interRSS levels of the ramp sequences (Sup-
plementary Table 3; P > 0.05). Nevertheless, for the cell cycle related GO terms, the corrected
P values of genes in ramp+ with high TE were expectedly smaller than those of genes in ramp-
(Supplementary Table 3). Taken together, these results suggested that interRSS can provide a good
indicator for studying the regulatory functions of the ramp sequences, which may modulate the
translation efficiency of important genes at the elongation level.

1.2 Supplementary analysis results on associations between diverse putative factors
and ribosome stalling

tRNA adaptation In general, the codons recognized by abundant cognate tRNAs have short de-
coding time [7]. However, previous analyses of ribosome profiling data often led to inconsistent
conclusions on the effects of this feature, which may be attributed to experimental bias, method-
ological difference or unknown coregulation factors [8, 9, 10, 11, 12]. In addition to tRNA concen-
tration, the strength of a wobble pairing interaction may also influence the elongation rate [13].
The tRNA adaptation index (tAI) has been proposed to consider both the tRNA concentration
(approximated by the copy number of the corresponding tRNA gene) and the strength of codon-
anticodon pairing (computed according to the Crick wobble rules) [14]. In fact, it has been found
that codon usage bias is often correlated with tRNA abundance [15, 16, 17, 1]. Our analysis also
observed a certain positive correlation between cAI (also %MinMax) and tAI for both human and
yeast datasets (Supplementary Table 1). We reexamined the relation between the tRNA adapta-
tion and ribosome stalling using ROSE, in which the ribosome occupancy sites were quantified by
their tAI scores. In particular, we compared the intraRSSes of the ribosome A- and P-sites enriched
with low tAI scores to those of the background, and our comparative analysis on both yeast and
human datasets supported the conclusion that lower tRNA concentrations and weaker wobble
pairing interactions correlate closely with higher ribosome stalling tendency (Figs. 3(a) and 3(b),
Supplementary Figs. 5(a) and 5(b); P < 10−60 by one-sided Wilcoxon rank-sum test).

mRNA secondary structure During the translation elongation process, the ribosome should first
unwind the locally folded mRNA secondary structures (e.g., stem-hairpin or stem-internal loops)
to move forward [18, 19]. This indicates that in a highly double-stranded region, translation elon-
gation can be slowed down, which thus increases the probability of ribosome stalling [20, 2, 11,
13, 9, 21, 22, 23, 24]. To verify this hypothesis, we first ran RNAfold [25] to predict the secondary
structures of all mRNA sequences in the background dataset, which contained 10,000 randomly-
selected ribosome occupancy sites from the genome. Here, the mRNA sequences covering the
codon sites of interest were 183 nucleotides long, as we extended each putative ribosome occu-
pancy site by 30 codons both upward and downward as input to ROSE. We then measured the
folding level of each sequence by computing its double-stranded ratio (denoted by ds%) in the
local region of a ribosome A-site, and regarded the top 5,000 mRNA sequences with the high-
est ds% scores as highly folded. Next, we compared the intraRSSes of highly-folded mRNAs to
those of the remaining sequences. For both human and yeast, we observed an expected increase
of intraRSS for the mRNAs with highly-folded structures (Supplementary Fig. 5(e); P < 10−8 by
one-sided Wilcoxon rank-sum test), which provided another evidence on the association between
mRNA secondary structure and ribosome stalling.
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RNA-binding proteins Recently, RNA-binding proteins (RBPs) have received broad interests
for their crucial roles in post-transcriptional and translational regulation [26, 27]. By affecting the
stability and the translation process of their target mRNAs, RBPs can act as important regulatory
factors to control gene expression [28, 29]. As a specific RBP, the fragile X mental retardation pro-
tein (FMRP) is essential for neuronal translation regulation, whose transcriptional inactivation has
been known to be involved in many diseases, such as fragile X syndrome and autism [30]. It has
been found that FMRP can associate with polyribosomes and impede the elongation of a peptide
chain [31]. Structural studies have also indicated that FMRP may directly bind to both RNAs and
ribosomal proteins to prohibit ribosome movement (Supplementary Fig. 6(a)) [32]. Therefore, a re-
gion with downstream FMRP binding in the CDS is expected to have a higher chance of ribosome
stalling.

Here, we estimated the FMRP binding affinity of the region downstream the ribosome A-site
based on the known FMRP binding sites identified by the PAR-CLIP experiment [30]. In particular,
suppose that we index the codon position at the ribosome A-site as zero. Then the downstream
region covering positions from +1 to +3 is still protected by the ribosome (Supplementary Fig. 1).
We were particularly interested in estimating the binding affinity of FMRP in the region of next ten
codons after the ribosome protected fragment (i.e., codons from +4 to +13), which was denoted
by R, and then investigating the correlation between this estimated binding affinity score and
ribosome stalling. We mainly used the abundance of the mapped reads of FMRP binding sites
identified by PAR-CLIP [30] to estimate its binding affinity. Specifically, if there were N reads
identified in region [i, i + x], then for any site s ∈ [i, i + x], its FMRP binding affinity, denoted
by aff(s), was estimated by aff(s) = N/x. After that, the overall binding affinity of the region R
right after the ribosome protected fragment was calculated by aff(R) = ∑s∈R aff(s). Here we only
considered the binding sites whose lengths were within one standard deviation from the mean
calculated based on the length distribution of FMRP binding sites, as the extremely long regions
may introduce bias to our analysis. We then calculated the intraRSSes of the codon sites enriched
with FMRP binding downstream, and found that these sites had significantly higher intraRSSes
than the background (Supplementary Fig. 6(b); P = 5.49 × 10−15 by one-sided Wilcoxon rank-
sum test), which confirmed the effectiveness of our model to capture the ribosome stalling events
regulated by this specific RNA-binding protein.

For general RBPs, the estimation of their binding affinity was similar to that for FMRP except
that now we used the E- and Z-scores provided by the CISBP-RNA database [27] instead of the
mapped PAR-CLIP reads. In particular, given a region R and an RBP binding motif set M, for
any 7-mer m, we defined aff-max(R) = maxm∈R(maxm∈M(m)) for the max-score estimation, and
aff-mean(R) = meanm∈R(maxm∈M(m)) for the mean-score estimation, where maxm∈M(m) returns
the maximum E- or Z-score of the 7-mer m within the set M. We hypothesized that it would
be highly probable for ribosomes to stall in an mRNA region enriched with RBP binding motifs
downstream, as the bound RBPs may obstruct ribosome movement. To verify this hypothesis,
we analyzed the intraRSSes of the codon sites with strong RBP binding propensity downstream.
We found that indeed these sites exhibited significantly higher intraRSSes than the background
(Figs. 3(a) and 3(b); max E-score estimation, P = 9.36× 10−82 for human and P = 1.90× 10−4 for
yeast, one-sided Wilcoxon rank-sum test). The increases were significant for human with respect
to all four criteria used to estimate the RBP binding affinity, i.e., max/average E- and Z-scores
(Fig. 3(a) and Supplementary Fig. 5(a)). However, for yeast, the increase was only significant for
the max E-score (Fig. 3(b) and Supplementary Fig. 5(b)), which may be attributed to the limited
number of RBP binding motifs available in yeast (3 motifs in yeast vs. 91 motifs in human). Over-
all, our analysis suggested that RBP binding may act as another factor in influencing ribosome
stalling. Of course, we cannot rule out other unknown factors associated with RBP binding mo-
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tifs that virtually control ribosome stalling, which will certainly require additional experimental
studies and further investigation.

Positively-charged amino acids We also studied the correlation between the amino acid charge
and ribosome stalling, which still remains controversial and unclear. Several studies claimed that
the positively-charged amino acids can slow down the formation of a peptide chain by interacting
with the negatively-charged ribosomal exist tunnel [33, 23, 34, 9, 22]. However, others found no
such correlation by arguing the quality of experimental data and the methodological limitations
in the previous studies [35]. Here, we reexamined this problem based on our method. Indeed, for
those codon sites enriched with the positively-charged amino acids upstream (i.e., with the 10,000
highest ratios of the positively-charged amino acids in the upstream 30 codons) in the genome, we
did not observe a significant increase of intraRSS compared to the background. To probe this prob-
lem in more detail, we further looked into the specific positively-charged amino acids, including
histidine, lysine and arginine, and asked whether any particular amino acid can associate with
ribosome stalling. However, although significant difference of intraRSS was observed between
the sites enriched with a particular amino acid upstream and the background, we cannot reach a
consistent conclusion over human and yeast datasets (Supplementary Fig. 7).
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2 Supplementary Tables

Supplementary Table 1. Spearman correlation coefficients between different putative factors that
may affect ribosome stalling for both human and yeast datasets.

Supplementary Table 2. All expressed genes in LCLs and S. cerevisiae that were used as the back-
ground for GO analysis for both human and yeast. The Ensembl gene ID was used as the gene
identifier.

Supplementary Table 3. The enriched GO terms for genes in ramp+ and ramp- in human and
yeast. The enriched GO terms for genes with high translation efficiency were also provided.

Supplementary Table 4. The hyperparameter values of ROSE calibrated using our antomatic one-
way model selection strategy for both human (Battle15) and yeast (Pop14) datasets.
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3 Supplementary Figures
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Supplementary Figure 1: A schematic illustration of the translation elongation process. During translation
elongation, the ribosome travels along the mRNA and gradually grows the nascent peptide chain, in which
each codon along the mRNA is read and an aminoacyl tRNA is brought into the ribosome A-site to match
the corresponding codon. Next, the bond between the peptide and the aminoacyl tRNA at the ribosome
P-site is broken, and a new bond between this peptide and the amino acid that is just introduced at the
ribosome A-site is formed. Then the ribosome moves forward to the next codon, while the uncharged
tRNA is released from the ribosome E-site. In general, a ribosome covers about 27 nts (i.e., nine codons) of
an mRNA [36]. Here, the position of the codon at the ribosome A-site is indexed as zero.
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(b)

Supplementary Figure 2: The distributions of the normalized ribosome footprint density for (a) human
(Battle15) and (b) yeast (Pop14) datasets.
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Supplementary Figure 3: Comparison of different thresholds for labeling samples to train the CNN clas-
sifier. The mean and the standard deviation of the ribosome footprint density distribution are denoted by
µ and σ, respectively. Pearson correlation coefficient between the normalized footprint densities and the
predicted ribosome stalling probabilities of samples in a separate validation dataset was calculated for each
choice of threshold. More details can be found in Methods.
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Supplementary Figure 4: The intergenic RSS landscape reveals the difference of translation efficiency and
enriched functional categories between genes with high ribosome stalling probabilities in their ramp se-
quences and the background (see Supplementary Notes for more details). (a) The translation efficiency
distributions of genes in ramp+ and ramp- in human. The mRNA levels measured by RNA-Seq were quan-
tified by reads per kilobase transcript per million mapped reads (RPKM), while the protein levels measured
by mass spectrometry were quantified by the SILAC ratio [4]. (b) The translation efficiency distributions of
genes in ramp+ and ramp- in yeast. The mRNA levels measured by RNA-Seq were quantified by fragments
per kilobase of transcript per million mapped reads (FPKM) [6], while the protein levels measured by mass
spectrometry were quantified by the summed ion intensity [5]. The translation efficiency was estimated by
the logarithm of the protein expression level divided by the corresponding mRNA expression level. (c) The
comparison of the enriched GO terms between genes in ramp+ and ramp- in yeast. GO enrichment analysis
was performed using DAVID [37, 38]. Here, the P values were computed after multiple testing correction
according to the Benjamini-Hochberg procedure. For a full list of the functional annotation clustering, see
Supplementary Table 3. *: 5× 10−25 < P < 5× 10−2; one-sided Wilcoxon rank-sum test.
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Supplementary Figure 5: A comprehensive reexamination on the relations between diverse putative reg-
ulatory factors and ribosome stalling using ROSE (supplementary to Fig. 3 in the main text). (a) and (b)
The comparisons of intraRSS between the codon sites enriched with individual factors and the background
for human and yeast, respectively. (c) The comparisons of intraRSS of the background vs. the codon sites
with m6A modification derived from [39] as well as a control dataset, which consisted of 10,000 randomly-
selected codon sites containing adenine but without m6A modification. (d) The comparisons of intraRSS
between the control datasets and the codon sites with m6A modification derived from different sources,
including the Ke15 [40] and Linder15 [39] datasets of human, and the Schwartz13 [41] dataset of yeast.
(e) The comparisons of intraRSS between highly and weakly double-stranded regions for both human and
yeast. *: 5× 10−25 < P < 1× 10−2; **: 5× 10−50 < P ≤ 5× 10−25; ***: 5× 10−100 < P ≤ 5× 10−50; +:
P ≤ 5× 10−100; one-sided Wilcoxon rank-sum test.
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Supplementary Figure 6: A comprehensive reexamination on the relations between diverse putative regu-
latory factors and ribosome stalling using ROSE (supplementary to Supplementary Fig. 5 and Fig. 3 in the
main text). (a) A schematic illustration of the FMRP binding to impede ribosome movement. (b) The com-
parison of intraRSS between the FMRP target regions and the background. *: 5× 10−25 < P < 1× 10−2;
one-sided Wilcoxon rank-sum test.
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Supplementary Figure 7: The comparisons of intraRSS between the background and the codon sites en-
riched with the positively-charged amino acids in the upstream 30 codons for both human and yeast. Here,
we considered both general positively-charged amino acids (which include histidine, lysine and arginine)
and particular amino acids. “-” means that the difference of intraRSS between the codon sites of interest
and the background was significant (P < 1× 10−2) but contrary to our expectation (i.e., a higher ratio of
positively-charged amino acids should yield a larger intraRSS). **: 5× 10−50 < P ≤ 5× 10−25; one-sided
Wilcoxon rank-sum test.
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Supplementary Figure 8: The intragenic RSS landscapes of different protein secondary structure patterns
with window size ten (supplementary to Fig. 4 in the main text). (a) The intraRSS landscapes of the alpha
helix, beta strand and random coil regions. (b) The intraRSS landscapes of the SSE transition regions. “H”,
“E” and “C” stand for alpha helix, beta strand and random coil, respectively, while “X” stands for any
SSE type in the flanking regions on both sides. Polynomial curve fitting of degree four was used to show
the general intraRSS tendency. The Spearman correlation coefficients between human and yeast intraRSS
tendencies were calculated.
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Supplementary Figure 9: The intragenic RSS landscape recovers that the ribosome stalling tendency asso-
ciates with the SRP binding of TM segments (supplementary to Fig. 5 in the main text). (a) The comparison
of the intraRSS tendency between the TM segments with and without SRP binding in yeast, in which all
the protein sequences were aligned with regard to the end of the TM segment, which was indexed as zero.
For those TM segments without SRP binding (termed SRP-), the peak in positions 30–50 downstream the
TM segment, corresponding to the peak in positions 50–70 in Fig. 5(b) of the main text, was significantly
diminished compared to that of the TM segments with SRP binding (termed SRP+; P = 9.8 × 10−5 by
one-sided Wilcoxon rank-sum test). The grey rectangles represent two intraRSS peaks downstream the TM
segment. (b) The intraRSS tendency of the TM segments in human, in which either the TM start or the TM
end position was used as the initial alignment location. A mixed set of TM segments with and without SRP
binding (termed SRP+/-) was considered.
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Supplementary Figure 10: The comparison of the three-fold CV performance between ROSE and gkm-
SVM. (a) and (b) The ROC curves and the corresponding AUROC scores of CV on the human (Battle15)
and yeast (Pop14) training data, respectively. “sROSE” stands for the single version of ROSE (i.e., with one
CNN model).
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