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Supplementary Tables 
 
Supplementary	 Table	 1	 |	 Parameter	 values	 for	 simulated	 datasets. We 
considered variable degrees of overlap between factors, increasing the 
numbers of simulated annotated- and unannotated (confounding) factors, 
different false negative/false positive rates for the simulated annotation 
(FNR/FPR), simulated swapped assignments of genes to factors, increasing 
numbers of simulated cells, gene sets of different sizes, and alternative 
parameter values for simulating dropout effects. The default setting for each 
parameter is highlighted in bold. Parameter were varied one at a time with the 
other parameters held at the default value unless otherwise stated. Left: 
Simulation parameters for standard log Gaussian noise. Right: Parameter 
settings when dropout effects were simulated.  
 

Gene set 
overlap 

Annotated 
factors 

Unannot
ated  
factors 

FN 
[%] 

FP 
[%] 

Gene 
swap 
[%] 

Cell  
count 

Gene set 
size 

Expression 
quantile 

Drop 
(!) 

0 2 0 1 1 0 50 20-50 0.01 0.4 

0.1 3 1 5 2 1 100 50-100 0.02 0.6 

0.3 4 2 10 3 5 200 100-200 0.04 0.8 
0.5 5 3 15 5 10 500 20-950 0.1 1.0 

0.7 7 4 25 10 25   0.5 1.2 

 9 7 50      1.5 

 
 
 
 
Supplementary table 2 | Residual gene expression levels for the retina 
cells. Residual gene expression levels for 2,145 retina cells considered in Fig. 
4d-f. The residual data were obtained by regressing out the most relevant 
unannotated factor as inferred by f-scLVM (Supp. Fig. 8a) from the pseudo-
observations # . This table is provided as supplementary dataset 
SuppData2_retina.xlsx. 
 
 
Supplementary table 3 | Differentially expressed genes and factors 
between the astrocyte sub populations. Differentially expressed genes and 
factors between the identified astrocyte subpopulations (using f-scLVM 
residuals, Fig. 4e). This table is provided as supplementary dataset 
SuppData3_DEastrocytes.xlsx. 
 
 
Supplementary table 4 | GO enrichment for differentially expressed genes 
between the astrocyte sub populations. Shown are the 20 most significantly 
enriched GO terms (using the R package topGO and the elim algorithm) based 
on the set of 1,024 significant differentially expressed genes between the 
astrocyte populations (FDR<10%).  
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GO.ID Term Significant p-value
1 GO:0006954 inflammatory response 28/39 0.0049
2 GO:0090092 regulation of transmembrane receptor pro... 16/21 0.0138
3 GO:0031334 positive regulation of protein complex a... 14/18 0.0161
4 GO:0030509 BMP signaling pathway 12/15 0.0183
5 GO:0071772 response to BMP 12/15 0.0183
6 GO:0071773 cellular response to BMP stimulus 12/15 0.0183
7 GO:0032273 positive regulation of protein polymeriz... 10/12 0.0200
8 GO:0030510 regulation of BMP signaling pathway 10/12 0.0200
9 GO:0018107 peptidyl-threonine phosphorylation 8/9 0.0202
10 GO:0018210 peptidyl-threonine modification 8/9 0.0202
11 GO:0030514 negative regulation of BMP signaling pat... 8/9 0.0202
12 GO:0001837 epithelial to mesenchymal transition 8/9 0.0202
13 GO:0007498 mesoderm development 8/9 0.0202
14 GO:0007009 plasma membrane organization 15/20 0.0215
15 GO:0009952 anterior/posterior pattern specification 13/17 0.0255
16 GO:0032924 activin receptor signaling pathway 5/5 0.0321
17 GO:0006368 transcription elongation from RNA polyme... 5/5 0.0321
18 GO:0006970 response to osmotic stress 5/5 0.0321
19 GO:0019882 antigen processing and presentation 5/5 0.0321
20 GO:0050766 positive regulation of phagocytosis 5/5 0.0321

1
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Supplementary Figures 
	

	
Supplementary Figure 1 | Analysis for the set of 182 cell-cycle staged 
mouse embryonic stem cells, considering alternative normalization 
strategies and different methods for inferring biological drivers of gene 
expression variability. (a) Comparison of independent and joint factor 
inference on mouse embryonic stem cells (mESC) staged for the cell cycle. 
Shown are pair-wise correlation coefficients of inferred factors, either 
considering scLVM independently applied to each of 44 gene sets derived from 
the core molecular signature database (MSIGDB; left) or when considering the 
subset of eight active factors identified by f-scLVM (right). While the factors 
identified by the independent model were correlated (average |r|=0.45), f-
scLVM retrieved largely uncorrelated components, suggesting these factors tag 
distinct biolgoical processes (average |r|=0.09). (b) Factor relevance and gene 
set augmentation results from f-scLVM. Bottom pannel: size and relevance of 
the 5 annotated factors identifeid by the model. Top pannel: number of genes 
added to individual factors by the model. Right panel: cumulative relevance of 
annotated and unannotated factors. (c-d) Results analogous to those shown in 
a,b, however when considering a normalization strategy based on size factors 
calculated using ERCC spike-ins, which retains absolute variation in gene 
expression levels between cells. (e) Scatterplot of the G2M cell cycle factor, 
comparing the factor inference of f-scLVM when applied to data normalized 
using either of the two strategies. f-scLVM consistently recovered the main 
drivers of gene expression heterogeneity (G2M checkpoint, P53 pathway), 
irrespective of the choice of data normalization (b,d,e).  
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Supplementary Figure 2 | Additional analyses for the set of 182 cell-cycle 
staged mouse embryonic stem cells using PAGODA. (a) Raw factor 
relevance determined using the weighted PCA approach in PAGAODA, 
identifying a large number of putatively active pathways. (b) Pairwise 
correlation analysis of the inferred factors, revealing strong correlations similar 
to the SVD-based scLVM model (cf. Supp. Fig. 1a). (c) Reduced set of factors 
following PAGODA post-processing steps, resulting in clusters of factors that 
include G2M Checkpoint and the P53 pathway as main components. (d) 
Predictive accuracy to classify true G2/M cells, using either the G2M checkpoint 
factor inferred when using PAGODA (cyan) or f-scLVM (red). The f-scLVM 
factor more accurately discriminates the cells into two populations. (e,f) 
Correlations of factors inferred using PAGODA, (e) bivariate visualization using 
the G2M checkpoint and P53 factor; (f) pairwise correlation of all PAGOA 
factors. When compared to f-scLVM factors (cf. Supp. Fig. 1a,c), PAGODA 
yielded factors that covary more strongly, which is because the states of 
individual factors are learnt independently. In contrast, f-scLVM performs joint 
inference of annotated and unannotated factors yielding fewer factors that 
capture independent components of variation.  
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Supplementary Figure 3 | Additional results using simulated data. (a-e) 
Area under the receiver operating characteristics (ROC), comparing the 
accuracy of f-scLVM and alternative methods to recover true simulated drivers 
of gene expression heterogeneity when varying different simulation parameters:  
(a) increasing gene set overlap between simulated pathway factors, (b) 
increasing numbers of simulated annotated factors, (c) increasing dataset sizes 
(number of cells), (d) when varying the number of simulated dense 
unannotated (confounding) factors and (e) when considering gene sets of 
different size. (f,g) Accuracy of f-scLVM and alternative methods when 
simulating dropout effects, which are typical for sparse sequencing datasets 
(see Supp. Table 1). Shown are results for the same models as considered in 
(a-e), and additionally a variant of scLVM with a Gaussian likelihood model that 
does not account for dropout (f-scLVM-Gauss). (f) Results for increasing lower 
quantiles of the expression distribution for which dropout effects are simulated. 
(g) Results for increasing values of the dropout rate parameter ($ ), which 
determines the dependency of the dropout rate and the mean expression 
values. (h) Accuracy of f-scLVM for recovering true simulated drivers when 
fitting increasing numbers of unannotated factors in the model (default is 3), 
when two factors are simulated. The model accuracy saturates when at least 
two factors are fit, which confirms that the model is robust to considering too 
many unannotated dense factors. Individual bars show aggregate results from 
50 repeat experiments per setting, with their height corresponding to the 
median AUC and the error bars corresponding to 25% and 75% quantiles. In 
each simulation experiments all parameters except for the parameter under 
consideration were retained at their default values (see Supp. Table 1). 
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Supplementary Figure 4 | Model accuracy when simulating errors in the 
gene set annotation. (a-c) Area under the receiver operating characteristics 
(ROC), comparing the accuracy of f-scLVM and alternative methods, for 
recovering true drivers of expression heterogeneity (a) when simulating false 
positive assignments of genes to gene sets in the annotation, (b) when 
simulating false negative assignments of genes to gene sets and (c) when 
permutation increasing fractions of genes between gene sets of active factors. 
(d-f) Accuracy of f-scLVM for augmenting the provided gene set annotation for 
the corresponding simulations, considering separately the accuracy for 
including and excluding genes from the corrupted annotation, based on the 
model posterior distribution over the indicator variable that assigns genes to 
factors (Methods). Individual bars show aggregate results from 50 simulations 
with their height corresponding to the median AUC and the error bars 
corresponding to 25% and 75% quantiles. In each simulation experiments all 
parameters except for the parameter under consideration were retained at their 
default values (see Supp. Table 1). 
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Supplementary Figure 5 | Additional analyses for the Zeisel dataset, 
including comparative results when using PAGODA. (a) Heatmap showing 
the top 30 processes identified by PAGODA after collapsing redundant factors 
(Methods). (b) Corresponding Heatmap for the top annotated factors identified 
by f-scLVM, which includes factors that were also identified by PAGODA, such 
as Chemokine Receptors Bind Chemokines, as well as factors outside the 
PAGODA set, including Innate immune system. (c) Aditional dense and sparse 
unannoatated factors identified by f-scLVM for the same data. While annotated 
factors predominantly resolved intra-cell type variation, unannotated factors 
tended to capture inter-cell type variation that cannot be readily captured by the 
annotated factors.  
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Supplementary Figure 6 | Additional analyses for the Zeisel dataset, 
including gene-set completion and cell state variation captured by 
different factors. (a-c) t-SNE visualization of the single-cell variation catpured 
by annotated factors (a), as well as dense (b) and sparse (c) unannotated 
factors. While annotated factors predominantly resolved intra-cell type variation, 
unannotated factors tended to capture inter-cell type differences that cannot be 
readily captured by the annotated factors. (d) Relative weight of annotated and 
genes added by the model for the innate immune system factor. Several genes 
with a known implication in innate imunity were identified, including Apoe 1 and 
Hexb 2. (e-h) Effect of adjusting for unwanted varaition by regressing out the 
most relevant dense unannotated factor. (e) t-SNE on unadjusted data. (f) t-
SNE on adjusted data, revealing additional substructure in the neuronal cell 
population. The identified cell clusters (g) correspond to three well-
characterized groups of neurons 3. An ANOVA on gene expression using the 
cell clusters revealed 782 significant marker genes (FDR<10%), with Sst being 
the most significant gene. Sst is a canonical marker gene for the 
aforementioned subpopulations  3 (h). 
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Supplementary Figure 7 | Additional results for the runtime comparisons, 
considering additional methods. Comparison of the empirical runtime when 
fitting f-scLVM and alternative methods based on factor analysis (RUV, SVA, 
scLVM, PAGODA, ZIFA, IBP). Considered are datasets with increasing 
numbers of cells. Shown are empirical runtimes obtained when fitting these 
models using 8 cores of an Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz. 
None of the existing methods could be applied to the largest dataset. 
  

Comparison of the empirical runtime when fitting f-scLVM and alternative models 
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Supplementary Figure 8 | Additional results for the retina cells profiled 
using drop-seq. (a) Factor relevance, for the top 20 factors (annotated and 
unannotated factors) identified by f-scLVM for the subset of 2,145 cells 
considered in Fig. 4c,d and in (b). The most relevant factor was a dense 
unannotated factor, which was regressed out to obtain residual datasets ((b) 
and Fig. 4e). (b) Visualization of aforementioned subset of cells using non-
linear t-SNE embedding applied to the residual dataset (see (a)). Colors 
correspond to the cell types identified in 4. Red and blue circles annotate two 
subpopulations of microglia cells that could only be detected on the adjusted 
data (cf. Fig. 4d). (c) GO term enrichment for the set of 992 differentially 
expressed genes (FDR<1%) between the microglia subpopulations identified in 
(b). (d) Several of the most differentially expressed genes play important roles 
in microglia activation, including Cd83	 5, and genes from the Il-6 family such as 
Il-17d, Il-17dr and Il-23a	 6-8. The discovered gene sets were implicated in 
processes related to activation of T-cells and B-cells, which are hallmarks of 
microglia activation, suggesting that one subpopulation consists of activated 
microglia. (e,f) Relationship between the most relevant unannotated factor used 
to calculated residual datasets (cf. (a)) and experimental batch (e) and cellular 
detection rate (f). 
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Supplementary Figure 9 | Associations between inferred unannotated 
dense factors and technical covariates. (a) Left: Correlation coefficients 
beween unannotaed dense factors inferred by f-scLVM and technical 
covariates across different scRNA-seq datasets. Right: Cumulative variance 
explained when considering all available technical covariates. Unannotated 
factors were frequently associated with covariates with known relevance for 
scRNA-seq, including the number of reads mapped to spike-ins (sumERCC), 
ERCC-derived size factor (sfERCC), PC1 derived from ERCC spike-ins 
(PC1ERCC), the number of expressed genes/cellular detection rate 
(nExpressed), the total number of mapped reads (sumTotal) and DE-seq size 
factor derived from reads mapped to endogenous genes (sfMmus). (b) 
Cumulative proportion of variance explained by all unannotated factors for 
individual technical covariates.  
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Supplementary Figure 10 | Robustness of f-scLVM factor relevance. 
Robustness was assessed using random sampling, repeatedly using a random 
subset of 80% of the cells to fit the model. Shown are the mean factor 
relevance and plus or minus one standard deviation confidence estimates 
derived from 10 sampling repetitions. Results for the cell-cycle staged mESC 
dataset (a), the mESC dataset profiled using parallel DNA-methylation and 
transcriptome sequencing, (b) the T-cell dataset (c) and the Zeisel neuron data 
(d).  
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Supplementary analyses 

	

Human	preimplantation	embryos	

		
We applied f-scLVM to 1,529 human cells from 88 male and female embryos at 
different developmental stages ranging from E3 to E7. Consequently, the major 
drivers of expression variation are expected to be associated with 
developmental processes and sex-specific effects between embryos 9. f-scLVM 
was fit using the MSigDB annotations, additional modelling unannotated sparse 
factors, which were required to fully capture variation outside the gene 
annotation (Methods). The most relevant annotated factors identified, such as 
TGF-Beta signaling or epithelia mesenchymal transition, primarily captured 
variation within developmental stages (Fig. SN1a-d). Interestingly, the factor 
oxidative phosphorylation accurately differentiated cells with different sexes 
(Fig. SN1a,d), which is consistent with documented differences in glucose and 
amino acid utilization between female and male preimplantation embryos 10. 
Notably, 8 of the top 20 genes pre-annotated to this factor (largest weights, Fig. 
SN1e-f) were also identified as differentially expressed between sex in the 
primary analysis of the data, including NDUFA1 (p = 5.2e-20), SLC25A5 (p = 
2.6e-37) and HSD17B10 (p = 7.5e-20). Additionally, f-scLVM identified 7 genes 
not in the annotation that were added to the gene set. These genes showed 
consistent changes between sex and were correlated to the pre-annotated 
genes. Several of these genes are known to be sex-linked genes such as XIST 
(Fig. SN1f).  
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Figure SN1 | Application of f-scLVM to 1,529 cells from Human 
Preimplantation Embroys. (a) Relevance of individual factors as determined 
by f-scLVM based on the REACTOME annotation (left) and cumulative 
relevance of annotated and unannotated factors (right). (b-c) Heatmaps for 
most relevant annotated (b) and unannotated (c) factors identified by the 
model. The colour bar indicates developmental stages. Annotated factors 
tended to resolve intra-stage variation, whereas unannotated factors primarily 
captured inter-stage variation. (d,e) Bivariate visualization of cells using the 
inferred annotated factor oxidative phosphorylation and a sparse unannotated 
factor, considering cells labeled by sex (d) or developmental stage (e). The 
Oxidative phosphorylation factor separates cells by sex while the unannotated 
sparse factor separates cells by developmental stage. (e) Relative weight of 
annotated and genes added by the model for the top 20 genes associated to 
the oxidative phosphorylation factor, including 7 genes added by f-scLVM. (f) 
Newly identified genes were correlated to pre-annotated genes, suggesting that 
the factor identity related to oxidative phosphorylation is maintained (columns 
correspond to cells ordered by sex: red = male, blue = female; rows correspond 
to members of the relevant gene set: black = pre-annotated, red = added by f-
scLVM).  
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Parallel	DNA-methylation	and	transcriptome	profiled	mouse	ES	cells		
	
We applied f-scLVM to a set of 61 serum-cultured mESCs in G0/G1 phase 
profiled using parallel DNA methylation and transcriptome sequencing (scM&T-
seq) 11. We followed the preprocessing, QC and normalization described in the 
primary publication 11 and considered log-transformed normalized gene 
expression data of 61 cells for analysis using f-scLVM. Following the primary 
analysis, we included a set of 86 literature-curated pluripotency genes as an 
additional candidate gene set to augment the MSigDB annotation. The model-
based factor relevance of f-scLVM identified this pluripotency factor as the most 
relevant diver of expression variation (Fig. SN2a). This is consistent with the 
expected cell-to-cell heterogeneity in pluripotency of serum-grown mESCs, 
manifesting in heterogeneous expression of key pluripotency marker genes 12, 

13. Next, we explored links between the inferred pluripotency factor and DNA 
methylation in the same set of cells. We observed a clear correlation between 
pluripotency and genome-wide methylation rate (P<1e-5, Fig. SN2b). This 
global effect is consistent with previous studies based on ensembles of cells, 
which reported an association between genome-wide methylation rate and 
pluripotency 14. Additionally, we considered using the inferred pluripotency 
factor to test for associations with gene body methylation of individual genes 
genome-wide, which is conceptually similar to the approaches taken in 
epigenome-wide association analyses in population studies 15. This revealed 
8,124 genes where gene body methylation was significantly associated with 
pluripotency (FDR < 10%, Fig. SN2c). For comparison, we also considered 
associations with the first PC on gene expression levels (3,907 associations; 
FDR 10%, Fig. SN2d) as well as a single-gene methylation-expression 
association as in 11 (43 associations; FDR<10%, Fig. SN1e). These alternative 
strategies yielded markedly fewer significant associations. We also considered 
alternative genomic contexts (Fig. SN2g) and observed similar trends. The 
increase in power when using the inferred factor in association analyses shows 
that using latent variables is an effective approach for reducing noise in the 
experimental assay. This has clear advantages when analyzing single-cell 
transcriptome data, which are inherently prone to noise and technical sources 
of variation 16, 17. At the same time, the inferred factors have a clear 
interpretation, unlike factors such as those derived using conventional SVD-
based methods. 
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Figure SN2 | Application of f-scLVM to 61 mouse embryonic stem cells 
profiled using parallel DNA methylation & transcriptome sequencing. (a) 
Factor relevance of individual factors as determined by f-scLVM. (b) Scatter 
plot between the inferred pluripotency factor (Pluripotency) and genome-wide 
methylation rate in the same cells. The black solid line denotes a linear trend. 
(c) Genome-wide analysis of associations between gene-body methylation of 
individual genes and the inferred pluripotency factor, resulting in 8,124 
significant associations (FDR<10%). Annotated pluripotency genes are marked 
in red. (d,e) Analogous association analysis when either considering the first 
PC on gene expression (d) or the expression level of the corresponding genes 
individually (e), resulting in 3,907 and 43 significant associations respectively. 
The blue line corresponds to the 10% FDR threshold. (f) Association between 
methylation rate and PC1 and PC2 were weaker than those with the 
pluripotency factor. (g) Significant associations between methylation and 
expression for different genomic contexts. Applying f-scLVM consistently yields 
the highest number of associations.  
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T-cells	
We considered a dataset of differentiating T-cells, where the cell cycle is known 
to influence heterogeneity in gene expression	 18. The data were normalized as 
described previously in 18, resulting in 7,073 variable genes, which were used 
for analysis. We augmented the MSigDB gene sets with the set of 121 Th2 
marker genes introduced in the primary publication 18. f-scLVM was applied 
using the log-transformed normalized gene expression matrix for 81 cells. 
Again f-scLVM, identified factors with plausible annotations (Fig. SN3a), 
including processes related to the cell cycle (G2M Checkpoint and E2F targets) 
and to T-cell development (IL2/Stat5 signaling, Myc targets and Th2 genes). 
Reassuringly, the Th2 factor differentiated two previously identified 
subpopulations	18 of differentiating Th2 cells (Fig. SN3b). 
 
 
 
 
 

 
Figure SN3 | Application of f-scLVM to 81 Th2 cells. a) Pathway factor 
relevance as identified by the f-scLVM model (using MSIGDB and an additional 
Th2 factor based on the gene set considered in Buettner et al., 201518). The top 
ranked factors were the cell cycle (G2M checkpoints and E2F targets) and 
factors related to Th2 differentiation (Myc targets and Th2 differentiation). b) 
Bivariate visualization of all cells using the inferred factors G2M checkpoint (cell 
cycle) and Th2 differentiation. The Th2 factor separated two cell populations 
that correspond to less differentiated cells (blue, GATA 3 low) and further 
differentiated cells (grey, GATA 3 high). These annotated differentiation states 
are taken from the analysis reported in Buettner et al., 2015	18. 
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Supplementary methods

The factorial scLVM model (f-scLVM) builds on sparse factor analysis, a linear latent variable model
for dimensionality reduction. In Section 1, we derive the generative model that underlies f-scLVM and
present an e�cient inference scheme using deterministic variational Bayesian approximations. In Section 2
we provide an overview of f-scLVM in the context of other factor analysis models. Finally, in Section 3 we
discuss further details on the presented experiments, including the parameter values we use and additional
robustness experiments.

1 The f-scLVM model

We here derive f-scLVM starting from the perspective of conventional factor analysis. Let Y by the N ⇥G
matrix of log-count expression levels for G genes observed in each of N samples (cells). We start with a
bivariate linear model that factorizes the expression matrix into the sum of known covariates, annotated
factors and unannotated factors:

Y =
CX

c=1

ucV
T

c

| {z }
cell covariates

+
AX

a=1

paR
T

a

| {z }
annotated factors

+
HX

h=1

shQ
T

h

| {z }
unannotated factors

+  |{z}
residuals

. (1)

Here, the vectors uc,pa and sh are known cell covaraites, as well as facto states for annotated and unan-
notated factors and Vc, Ra and Qh are the corresponding regulatory weights of a given factor on all genes.
To simplify the derivation we will collapse the factors and weights, definingX = [u

1

, . . . ,uC , r
1

, . . . , rA, s
1

, . . . , sH ]
and a corresponding concatenated weight matrix W, resulting in

Y = X ·WT + . (2)

Here, W denotes a G⇥K weight matrix that determines the regulatory a↵ect of each factor k 2 (1, . . . , K)
on gene g 2 (1, . . . , G). The N ⇥K dimensional matrix X denotes the activity of each of K = C +A+H
factors in each sample and  is residual noise.

We start by assuming Gaussian distributed residuals, which is similar to conventional factor analysis [18]
(see Section 1.3 where we discuss generalizations to count-based and dropout noise models)
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 ⇠ N (0, diag(⌧�1)). (3)

Here, diag(⌧�1) denotes the diagonal covariance matrix formed of the inverse elements of the noise pre-
cisions for each dimension (gene) ⌧ = (⌧

1

, . . . , ⌧G). Together with Eq. (1) this noise model implies a
Gaussian marginal likelihood of the form

P (Y|W,X, ⌧ ) =
NY

n=1

N �
yn | xn ·WT , diag(⌧�1)

�
. (4)

We introduce a conjugate prior on the noise precisions

P (⌧ ) =
GY

g=1

Gamma(⌧g | a⌧ , b⌧ ), (5)

where Gamma denotes the gamma distribution. The prior on the factor activities X is an independent
normal distribution with unit variance

P (X) =
NY

n=1

KY

k=1

N (xn,k | 0, 1) . (6)

Depending on the specific choice of the prior distribution for the weight matrix W, di↵erent factor
models can be derived, including independent component analysis or conventional factor analysis [18]. We
employ a structured sparsity prior that jointly models gene set annotations.

1.1 Modeling annotated and unannotated factors using a structured sparsity prior

An important di↵erence between f-scLVM and conventional factor analysis is the two-level regularization
onW, inducing structured sparsity on the weights and thereby interpretabilty of the corresponding factors.
Specifically, we first use a gene-level sparsity prior on the elements of individual columns of W [16, 21]. As
a second level of sparseness we employ a relevance prior on the level of factors, corresponding to columns
of W, thereby deactivating factors that are unused [15].
We start by describing the structured sparsity prior for annotated factors.

1.1.1 Modeling annotated factors

Sparseness of the factors weights is encouraged via a slab and spike prior

P (wg,k | zg,k) =

(
N (wg,k | 0 , 1/↵k) if zg,k = 1

�
0

(wg,k) otherwise.
. (7)

Here, �
0

(wg,k) denotes the Dirac delta function centered on zero (inactive links) and 1/↵k is the prior
variance of weights for active links (factor specific; see also Section 1.1.3). The indicator variable zg,k

determines whether factor k has as a regulatory e↵ect on gene g (zg,k = 1) or not (zg,k = 0).
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To achieve identifiability of the fitted factors as pathways, we link the binary indicator zg,k to binary
gene set annotations by explicitly modelling them as observed data

P (In
g,k | zg,k) =: ⇢g,k =

(
Bernoulli(In

g,k = 1 | 1� FPR) if zg,k = 1

Bernoulli(In
g,k = 1 |FNR) otherwise

. (8)

Here, the observed binary indicator In
g,k determines whether gene g is annotated to a given pathway

(factor) k in the annotation. The annotations are replicated such that for each sample n a complete an-
notation is available. Technically, this approach is equivalent to scaling the likelihood component of the
annotation with the number of cells. Since the likelihood component that links the indicator zg,k to ob-
served expression data (Eq. (7)) scales with the number of cells, this ensures that the relative contribution
of the annotations is independent of dataset size.
The rate parameter FPR corresponds to the probability of false-positive annotations in the annotation
and FNR denotes the probability of false-negative assignments.

Finally, for annotated factors the indicator variables zg,k are a priori Bernoulli distributed

P (zg,k) = Bernoulli(zg,k |⇡). (9)

For annotated factors the sparseness structure is determined by the annotation and hence we choose an
uninformative prior ⇡ = 0.5. The joint probability of all observed and unobserved data then follows as

P (Y, I,X,W,Z, ⌧ ) =
NY

n=1

N �
yn | xn ·WT , diag(⌧�1)

�Y

g,k

p(wg,k | zg,k)P (In
g,k | zg,k)P (zg,k)P (⌧g). (10)

Here In
g,k is identical for all cell copies, i.e. In

g,k = Ig,k8n. A graphical model representation of the full
model is shown in Figure M1.

1.1.2 Modelling unannotated factors and known covariates

The e↵ect of factors that are not included in the pathway annotation is modeled within the same frame-
work. For unannotated factors, there exists no prior information, which means that the likelihood com-
ponent for the annotation prior (Eq. (8)) is omitted. The prior probability of a regulatory e↵ect for
unannated factors ⇡ determines the expected sparseness level (see Eq. (9)). In the experiments, we con-
sider two di↵erent types of factors. For sparse factors we set ⇡ = 0.1, which corresponds to the belief that
10% of the genes are regulated by these factors. Additionally, we model dense factors at a sparseness level
of 0.99 (⇡ = 0.99). Sparse factors tend to explain biological variation that is not well captured by the
pre-annotated gene sets, whereas dense factors frequently correspond to confounding factors. These prin-
ciples of sparse versus dense e↵ects are similar to ideas that have previously been considered in population
genomics [14, 22].
For details and guidelines on how to set model parameters for learning unannotated factors, see Sec-

tion 3.3.
Finally, cell covariates (e.g. the number of expressed genes [7], size factors, etc.) are treated analogously

to dense factors. However, importantly their factor states xk are observed and do not need to be inferred
during training.
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In
g,k

wg,k

↵k

zg,k

⌧gyn,g

xn,k

n=1…N
g=1…G

k=1…K

fn,g

Supp. Meth. Figure M1: Graphical model representation of f-scLVM . Circled variables are random
and unobserved. Double-circled variables denote observed data, including gene
expression profiles yn,g and the annotation data In

g,k. Statistical dependencies
between all variables are indicated using arrows. The filled circles linking wz,k

and zg,k denote the sparsity likelihood. For simplicity we have omitted an explicit
representation of unannotated factors and cell covariates, for which no prior
annotations are provided.

1.1.3 Automatic relevance determination for identifying relevant factors

A conventional spike and slab prior (Eq. (7)) is based on the assumption that each factor explains the
same prior variance, although the set of active genes may di↵er between factors.
In particular for large annotations with hundreds of factors this assumption is likely false, as only a

subset of the pathways will be active in a given dataset. To model di↵erent overall regulatory importance
across factors we use a second regularization based on the automatic relevance determination (ARD)
prior [15]. The ARD prior has been shown to be e↵ective for shrinking factors with low relevance, for
example in the context of conventional FA models (e.g. [22, 6]). This factor level regularization is achieved
by placing a hierarchical Gamma prior on the precision parameters of the regulatory prior for each factor k
(see Eq. (7))

P (↵k | a↵, b↵) = Gamma(↵k | a↵, b↵). (11)

For factors that do not explain variation in the data the precision ↵k will be large, which corresponds to
a small prior variance for the corresponding factor weights. The posterior distribution over the relevance
parameters ↵k can also be used to deduce the importance of individual factors; see Section 3.6.
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1.2 Parameter inference

Closed-form inference in sparse factor analysis is not tractable and hence, in general, computationally
expensive Monte Carlo simulations or other approximate inference schemes are required. To enable the
application of f-scLVM to large datasets with up to hundreds of thousands of cells and genome-wide ex-
pression counts, we here use e�cient deterministic approximations instead of Monte Carlo schemes. This
fully-factorized Variational Bayesian approximation scales linearly in the number of cells and genes, which
renders the applications to larger datasets feasible.

Briefly, in variational Bayesian inference, the true intractable posterior distribution of the latent (un-
observed) model parameters P(H |D) is approximated by a simpler (partially) factorized form Q(H) =Q

i Q(Hi |✓i). Here, D denotes the observed data and ✓i are variational parameters that parametrize the
distribution of variation factors Q(Hi |✓i).
The objective of variational Bayesian inference is to determine variational parameters ✓i such that the

Kullback-Leibler (KL) divergence between the true posterior P (H |D) and the variational approximation
Q(H) is minimized. The use of the KL divergence as a measure of distributional distance lends itself to
an iterative algorithm for updating the variational parameters of individual factors sequentially. Under
this approximation the log marginal likelihood is then bounded by

F =

Z Y

i

Q(Hi |✓i) log
P (H |D)

Q(Hi |✓i)
dHi. (12)

This algorithm is guaranteed to minimize the KL divergence in each iteration and generalizes the widely
used Expectation Maximization algorithm. For a comprehensive overview of Variational Bayesian approx-
imate inference, see for example [5]. In each iteration, the parameters of individual variational factors ✓i

are updated in turn, given the current state of all other factors [11, 2, 3]. For any chosen factorization
Q(H) = ⇧iQ(Hi |✓i), it can be shown that the optimal update for each factor can be obtained from the
average log likelihood under all other Q-distributions

Q(Hi |✓i) / exp(hlogP (H)iQ\Hi
). (13)

These updates of individual Q-distributions are performed sequentially, until convergence is reached. If the
chosen factorization matches the prior factorization of the model, it can be shown that the step in Eq. (13)
corresponds to updating the variational parameters ✓i, whereas the functional form of the approximate
Q-distribution remains in the same class as the corresponding prior distributions. For brevity, we will in
the following omit the explicit dependency of each variational factor on the respective parameters ✓i.

Variational factorization of the model The first step to derive a variational inference algorithm for
f-scLVM is to re-parameterize the model without the Dirac function (Eq. (7)). To this end, the elements
wg,k are modeled as an (element wise) product of a Bernoulli random variable zg,k and a Gaussian random
variable w̃g,k [25]

P (w̃g,k |↵k) = N (w̃g,k | 0 , 1/↵k)

P (zg,k |⇡) = Bernoulli(zg,k |⇡). (14)
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The joint prior distribution of these two new random variables follows as

P (w̃g,k, zg,k) = N (w̃g,k | 0 , 1/↵k)⇡zg,k(1� ⇡)1�zg,k . (15)

This re-parameterization then allows us to define a suitable factorization of the unobserved variables
W̃, Z, X, ⌧ and ↵. Variational inference is most e�cient if the Q distribution is factorized, which implies
independence assumptions on the approximate posterior. Such approximations are generally problematic
for strongly coupled parameters. In f-scLVM this concern applies in particular to the regulatory weights
W̃ and the binary indicator variables Z. While a factorizing assumptions, i.e. Q(W̃,Z) = Q(W̃)Q(Z) has
been considered elsewhere [25, 24], such an approach will lead to poor convergence, as the true factor with
2K modes is approximated by a single unimodal factor [13]. In other words, two highly coupled random
variables (W̃ and Z) are inferred assuming approximate independence, which leads to poor results. To
circumvent this, we here adapt the scheme proposed by Lazaro-Gredilla & Tsitas (2011) [13], who derived
an e�cient and accurate variational inference for the spike and slab prior, however in the context of
Multi-Task and Multiple Kernel Learning. Briefly, the key idea is to treat each pair {w̃g,k, zg,k} as a single
unit, choosing a joint factorization of the form Q(W̃,Z) =

Q
k

Q
g Q(w̃g,k, zg,k). This approach yields an

approximate marginal distribution with 2K components, which better captures the multinomial posterior
distribution of W. For all remaining model parameters we choose a fully factorized variational distribu-
tion, which delivers an overall linear runtime complexity of f-scLVM. The full approximate variational
distribution follows as

Q(W̃,X, ⌧ ,↵) = Q(W̃,Z)Q(X)Q(⌧ )Q(↵)

=

 
GY

g=1

KY

k=1

Q(w̃g,k, zg,k)

! 
NY

n=1

KY

k=1

Q(xn,k)Q(↵k)

! 
GY

g=1

Q(⌧g)

!
. (16)

The corresponding variational lower bound F of this model can be written as:

F = hlogP (Y |X,W̃,Z,↵, ⌧ )iQ(

˜W,Z)Q(X)Q(⌧ )Q(↵)

(17)

�hlogP (I |ZiQ(

˜W,Z)

�KL(Q(X)||P (X))� hKL(Q((W̃,Z)||P (W̃,Z |↵))iQ(↵)

�KL(Q(↵)||P (↵ | a↵, b↵))� KL(Q(⌧ )||P (⌧ | a⌧ , b⌧ )),

with hiQ()

denoting the expectation under the Q-distributions Q().

1.2.1 Variational update equations

Sequential updated equations for individual factors are calculated using the expectation under all remain-
ing factors using Eq. (13). We start with the joint variational distribution for Q(w̃g,k, zg,k), which we
rewrite by explicitly conditioning on the binary indicator zg,k

Q(w̃g,k, zg,k) = Q(w̃g,k | zg,k)Q(zg,k). (18)

26



This allows decomposing Q(w̃g,k, zg,k) into Q(zg,k) and the Q distribution for the corresponding weight,
conditional on zg,k. Both Q distributions retain the functional form of their respective priors (i.e. Bernoulli
and Normal; Eq.(14)-(15))

Q(zg,k = 1) =
1

1 + exp(�ug,k)
= �g,k. (19)

The Q distribution for the weight conditioned on zg,k follows as:

Q(w̃g,k | zg,k = 0) = N �
w̃g,k | 0 , ↵�1

k

�
(20)

Q(w̃g,k | zg,k = 1) = N
⇣
w̃g,k | µw̃g,k , �2

w̃g,k

⌘
, (21)

with variational parameters (�g,k, µw̃g,k , �w̃g,k). Furthermore this decomposition also allows us to re-write
the second term in Eq. 17 as hlogP (I |Z)iQ(

˜W,Z)

= hlogP (I |Z)iQ(Z)

. Update equations for these varia-

tional parameter are given below, where hi denotes the expectation under all remaining Q distributions.

�g,k =
1

1 + exp(�ug,k)
with (22)

ug,k = log
⇡

1� ⇡
+

NX

n=1

log
⇢g,k

1� ⇢g,k
+ 0.5 log

h↵ki
h⌧gi � 0.5 log

✓XN

n=1

hx2

n,ki+
h↵ki
h⌧gi

◆

+
h⌧gi
2

✓XN

n=1

yn,ghxn,ki �
P

m 6=khzg,mw̃g,mi
XN

n=1

hxn,ki hxn,ki
◆

2

XN

n=1

hx2

n,ki+ h↵ki
h⌧gi

(23)

µw̃g,k =

XN

n=1

yn,ghxn,ki �
P

m 6=khzg,mw̃g,mi
XN

n=1

hxn,kihxn,ki
XN

n=1

hx2

n,ki+ h↵ki
h⌧gi

(24)

�2

w̃g,k
=

h⌧gi�1

XN

n=1

hx2

n,ki+ h↵ki
h⌧gi

(25)

Taken together, this means that we can update Q(w̃g,k, zg,k) using

Q(w̃g,k|zg,k)Q(zg,k) = N
⇣
w̃g,k | µw̃g,kzg,k , zg,k�2

w̃g,k
+ (1� zg,k)↵

�1

k

⌘
�

zg,k

g,k (1� �g,k)
1�zg,k . (26)

Consequently, the expectation of (w̃g,kzg,k) under its Q distribution can simply be written as hw̃g,kzg,kiQ =
�g,kµw̃g,k .
For the remaining variational factors, we can use standard update equations for a conventional varia-

tional factor analysis model, e.g. [9, 22]. The approximate posterior distribution for the factor activations
X (c.f. Eq. (6)) follows as

Q(X) =
KY

k=1

NY

n=1

Q(xn,k) = N
⇣
xn,k | µxn,k , �2

xn,k

⌘
, (27)
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with variational parameters (µxn,k , �2

xn,k
). The corresponding update equations for the variational param-

eters are:

�2

xn,k
=

 
GX

g=1

hzg,kw̃2

g,ki
⌧�1

g

+ 1

!�1

(28)

µxn,k = �2

xn,k

GX

g=1

hzg,kw̃g,ki⌧g

0

@yn,g �
X

m 6=k

hzg,kw̃g,kihxn,ki
1

A . (29)

Similarly, the Q-distribution of the ARD factor relevance parameters ↵ have the same functional form
as their Gamma prior (Eq. (11))

Q(↵) =
KY

k=1

Q(↵k) =
KY

k=1

Gamma(↵k | â↵k , b̂↵k), (30)

with variational parameters (â↵k , b̂↵k) and update equations

â↵k = a↵k +

PG
g=1

�g,k

2
(31)

b̂↵k = b↵k +

PG
g=1

�g,k

⇣
µ2

w̃g,k
+ �2

w̃g,k

⌘

2
. (32)

Similarly, the Q-distribution of the noise precision values ⌧ can be written as

Q(⌧ ) =
GY

g=1

Q(⌧g) =
GY

g=1

Gamma(⌧g|â⌧g , b̂⌧g ), (33)

with variational parameters (â⌧g , b̂⌧g ). The associated update equations follow as:

â⌧g = a⌧g +
N

2
(34)

b̂⌧k = b⌧k +
1

2

NX

n=1

h(yg,n �
X

k

zg,kw̃g,kxn,k)
2i. (35)

1.3 Non-Gaussian noise models for (low-coverage) sequence data

The model presented so far assumes Gaussian distributed residuals. In order to appropriately account for
zero inflation, a consequence of dropout e↵ects in sparsely sequenced single-cell data, f-scLVM can also
be used in conjunction with a Hurdle noise model, which explicitly accounts for dropout.
This is achieved by introducing a separate Bernoulli observation noise model for the subset of obser-

vations with zero counts in the expression matrix. For all remaining observations, the standard Gaussian
noise model on a logarithmic scale is retained (see also Section 3). More formally, we introduce the matrix
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factorization model on latent variables F = XW

T = [fn,g], which is coupled to the observed expression
count data Y using the likelihood model:

P (yn,g|fn,g) =

(
1/(1 + exp(fn,g)) if yn,g = 0

N (yn,g | fn,g , 1/g) otherwise
. (36)

To achieve e�cient inference in conjunction with this non-Gaussian likelihood model, we adapt prior
work by Seeger et al. [20], who have proposed using local variational bounds for non-Gaussian likelihood
functions in a di↵erent context. Briefly, additional variational parameters ⌅ = Q(X)Q(W)T = [⇠n,g] are
introduced which determine pseudo-observations Ỹ based on the zero inflated data Y, which in turn are
modelled using a Gaussian noise model with precision g. In the following we outline how the update
equations for these pseudo-observations and g can be derived.

Let g(fn,g) = � log(P (yn,g|fn,g)). If g(fn,g) is twice di↵erentiable and bounded by g such that
g00(fn,g) < g 8n, g we can use a Taylor expansion to approximate g(fn,g)

g(fn,g)  g/2(fn,g + ⇠n,g)
2 + g0(⇠n,g)(fn,g � ⇠n,g) + g(⇠n,g) =: qn,g(fn,g, ⇠n,g). (37)

For non-zero observations with Gaussian noise model, this approximation is exact since g00(fn,g) = g for
all non-zero observations. For the Bernoulli noise model the Taylor approximation holds for  = 1/4 since
g00(fn,g) < 1/4 for all zero observations.

We then further follow [20] and update ⌅ = Q(X)Q(W)T = [⇠n,g] with Q(W) and Q(X) denoting
the Q-distributions of weights and latent variables as before. In order to derive the update equations for
Q(W)Q(X) we bring the Taylor approximation of g(fn,g), qn,g, in a quadratic form and note that

qn,g(fn,g, ⇠n,g) / g/2(fn,g � (⇠n,g � g(⇠n,g))/g)
2 =: � logN (ỹn,g | fn,g , 1/g) (38)

with ỹn,g = ⇠n,g � g0n,g(⇠n,g)/g. Consequently, for fixed [⇠n,g], the update of Q(X)Q(W) is equivalent to

f-scLVM with pseudo-data Ỹ = [ỹn,g] and noise precision g.
When using the dropout-noise model, we can thus derive updates for the pseudo-observations as

ỹn,g =

(
⇠n,g � g/(1 + exp(fn,g)) if yn,g = 0

yn,g otherwise
. (39)

Note that the pseudo-observations equal the observations Y for non-zero expression values.

We update g - which corresponds to ⌧g in the case of a Gaussian noise model - using Eq.(33)-(35),
using only cells with non-zero expression values

g = max(0.25, ⌧g). (40)

Specifically, â⌧g = a⌧g + |Ng|
2

and b̂⌧k = b⌧k + 1

2

P
n2Ng

h(ygn �P
k zg,kw̃g,kxnk)2i, where Ng corresponds

to the number of cells with observed expression values for gene g.
The updates for W̃, X and ↵ are implemented as described in Section 1.2.1, however with pseudo-

observations instead of Y. This allows allows us to iteratively update the pseudo-observations Ỹ based
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on ⌅ = Q(X)Q(W)T as well as Q(X) and Q(W) using Ỹ. The variational parameter update for the
ARD prior to identify relevant factors and the spike-and-slab prior to regularize pathway components are
unchanged. This extends the approach suggested in [20] as we allow for di↵erent forms of observation
noise gn,g as well as gene-specific precision g, reflecting that the variance varies highly between genes
and perform inference for g.

1.3.1 Poisson noise model for count data

The analogous modeling strategy can also be employed to model count observations using a Poisson noise
model. Again, variational parameters ⇠n,g are introduced which determine pseudo-observations Ỹ based
on the observed count data Y, which in turn are modeled using a Gaussian noise model. In contrast to
the dropout-noise model, Y now correspond to the raw count data. More specifically, we write the Poisson
likelihood with link function � as

P (yn,g|fn,g) = �(fn,g)
y
n,ge

��(fn,g). (41)

As before, g(fn,g) = � log(P (yn,g | fn,g)) needs to be twice di↵erentiable and bounded. We therefore
choose a gene-specific link function �g(fn,g) = log(1 + exp(fn,g)), resulting in an upper bound of the
second derivative

!g = 1/4 + 0.17ymaxg , ymaxg = max(yg). (42)

We then update the pseudo-observations Ỹ as ỹn,g = ⇠n,g � g0n,g(⇠n,g)/!g with ⇠n,g as defined above

ỹn,g = ⇠n,g � ⇡(fn,g)(1� yn,g/�(fn,g))

!g
, ⇡(fn,g) = 1/(1 + exp(fn,g)). (43)

Analogously to the dropout noise-model, updates for W̃, X and ↵ are performed as described in Sec-
tion 1.2.1, with pseudo-observations instead of Y. However, unlike the Hurdle noise model there is no
need to infer !g (corresponding to g) as it is determined by Eq. (42).

2 Relationship to existing factor analysis models

The f-scLVM model is related to a number of existing variants of factor analysis, all of which are based
on a linear additive model. These methods can be broadly grouped into parametric and non-parametric
approaches. Non-parametric methods [12] infer the number of active factors, in principle allowing an
infinite number of factors to be used in the model. In contrast, parametric models need the user to specify
the number of latent factors before inference. One strategy to mitigate the need to specify the precise
number of factors in the model is the use of an ARD prior, which was first applied in the context of
probabilistic principal component analysis [4] and later for factor analysis models, including PEER [22].
This approach is also applied in f-scLVM, where a much larger number of annotated and unannotated
factors are included in the model and the ARD prior deactivates unused ones.
A second aspect of regularization in factor analysis are sparsity priors to encourage element-wise sparse-

ness of the factor loadings. f-scLVM employs a spike and slab prior, which has previously been used to
achieve sparsity for this purpose, e.g. [8]. Our model additionally uses prior annotations to inform this
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Table 1: Feature comparison of alternative factor models related to f-scLVM. IBP=Indian Bu↵et Process,
TBP=Three parameter Beta Prior, EM=Expectation Maximisation, VB=Variational Bayes.

Feature

Method Elementwise sparsity Annota-
tions

Noise model Model
selection

Infer-
ence

PCA [23] – – homoscesdatic None/ARD VB

VBFA [1] – – heteroscedatic ARD VB

PEER [22] – – hetroscedatic ARD VB

f-scLVM spike-and-slab, sparse and
dense factors

yes heterosce-
datic/nonGaussian

ARD VB

Seeger et
al. [20]

– – homoscedatic/non-
Gaussian

None VB

ZiFA [17] – – heteroscedatic w/
zero inflation

None EM

NSFA [12] – – hetroscedatic IBP VB

Gao et al.
[8]

TBP, sparse and dense
factors

– hetroscedatic TBP EM

Biswas et
al. [19]

spike-and-slab yes heteroscedatic None MCMC

sparsity prior in conjunction with an ARD prior to infer which annotated factors are most relevant. Fac-
tor analysis with prior information has been utilized in early methods to reconstruct gene regulatory
networks [19] Additionally, f-scLVM models the annotation as observed data that scales with the size of
the expression dataset (Section 1.1.1), rather than using it to define a regulatory prior. This approach
yields additional robustness across a wide range of di↵erent expression datasets (Fig. M3).
A third key aspect of factor analysis models is the noise model employed, ranging from simple ho-

moscedastic Gaussian noise models [18, 22] to more complex approaches for modeling non-Gaussian noise,
i.e. to account for over-dispersion [17]. To the best of our knowledge there is currently no existing method
that combines non-Gaussian likelihood models and sparse factor analysis models. f-scLVM provides flex-
ible likelihood models either modeling the observed data on a log Gaussian scale, as Poisson counts or
using a Hurdle model.
Finally, factor analysis models use di↵erent inference schemes to fit model parameters. Many approaches

employ accurate but slow MCMC methods, which tend to scale poorly to larger datasets. f-scLVM employs
approximate Bayesian inference to achieve linear runtime complexity, thereby enabling its application to
large datasets. For a tabular comparison of alternative methods, see Table 1.
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3 Practical considerations, parameters and implementation

Variational Bayesian inference can be sensitive to implementation details such as parameter initialization
and the update order. In the following we describe the specific strategy we use in f-scLVM .

3.1 Preprocessing

In the experiments we consider normalized single-cell RNA-seq dataset, following the primary analysis
used in the respective source publication; see also Online Methods. When applying f-scLVM with the
standard Gaussian noise model, we fit it on raw log count values (log(count + 1)) using mean centred
expression values (per gene). When applying f-scLVM with the dropout noise-model, we employed the
identical strategy, however without mean centring the data, such that observations with zero counts retain
their value. When using f-scLVM in conjunction with the Poisson noise model, no log transformation was
performed and the model is applied to the raw count values.
For each dataset, we reduced gene set annotations and only considered terms with at least 20 (expressed)

assigned genes (15 for the more carefully curated MSigDB). Additionally, we reduced the set of genes and
considered only expressed genes that were annotated to at least one pathway term.

3.2 Model initialisation, VB update schedule and convergence

Initialization of variational parameters The variational parameters of the regulatory weights W̃ are
initialized randomly by sampling from a unit variance normal distribution, scaled by 1p

K
, with K being

the number of factors. The variational parameters of latent factors (columns of X) that correspond to
annotated factors are initialized using the first principal component calculated on the prior gene set of the
corresponding factor. Dense unannotated factors without pathway information are initialized randomly
by sampling from the prior (unit variance normal). Sparse unannotated factors are initialised using the
first principal component of 20 randomly chosen highly variable genes (sampled from the top 100 most
variable genes, sorted by variance).
The variational parameters of the regulatory sparsity prior �g,k are initialized with the prior (Bernoulli

prior with success probability [⇢g,k]); for sparse unannotated factors, we initialise �g,k corresponding to
the 20 randomly chosen genes to 0.9. When a non-Gaussian noise model (dropout or Poisson noise model)
is used, the pseudo-observations (Ỹ) are initialized using the observed data Y.

Parameter update schedule The variational schedule updates Q(W̃,Z) first, followed by Q(↵),Q(X)
and finally Q(⌧ ). For the non-Gaussian noise models an additional update step for the pseudo observations
Ỹ is included. As the individual factors X

:,k should capture variation due to a particular biological
process, it is important to minimize the risk of label switching, whereby the factor states do not match
the regulatory annotation (see also [10]). This problem is specific to sparse factor models that incorporate
prior information, where unlike standard FA the order of the factors is meaningful. To mitigate possible
biases, we update the Q distributions of individual factors Q

:,k in a randomized order, using di↵erent
permutations in each model iteration. While this approach reduced ordering e↵ects, we observed that
the final solution is still a↵ected by the update order of individual factors in the first iteration. To
address this, we used a heuristic to determine the initial update order rather than random permutations
for the first update cycle. This initial order is determined using a pre-training approach, for which we
consider 50 update iterations: factors are ordered in increasing and decreasing order to correlation with
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the first principal component on all annotated genes and the consensus order after 50 updates is used as
initial permutation for updating f-scLVM . Empirically, we observed that this heuristics leads to improved
convergence and more accurate estimates of the final factor relevance (Fig. M2).
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Supp. Meth. Figure M2: Impact of pretraining to determine an initial factor update order.

a,b) Comparison of the inferred factor relevance for the cell-cycle staged mESC
dataset (see also Supp. Fig. 4), using a bootstrap approach to assess robustness
of the factor relevance. Results with pre-training are shown in (a), analogous
results without pre-training in (b). In general, pre-training resulted in reduced
variability across boot strap repeats, but with overall consistent interpretation.
c) Comparison of the accuracy of f-scLVM on simulated data with default pa-
rameter settings (see Supplementary Table 1), either with or without (Rand.)
pre-training (analogous to the results reported in main paper Fig. 2b). The pre-
training approach resulted in slightly improved accuracy.

Monitoring convergence Model updates are performed until convergence, which was monitored using
the reconstruction error. Alternatively, it is also possible to monitor the variational lower bound of the
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marginal likelihood (Eq. (12)). However, this approach would increase the computational cost as an
explicit evaluation of the bound almost doubles the per-iteration compute cost. In practice, we observed
that monitoring the reconstruction error is su�cient. We considered up to 2,000 iterations of variational
updates or until convergence of the reconstruction error (✏ < 10�6 for 50 consecutive iterations) was
achieved, whatever occurred first.

3.3 Learning unannotated factors

Similarly, f-scLVM has the ability to learn sparse unannotated factors, which can, for example, capture
variation between cell types, that are not readily reflected in pathway annotations provided to the model.
We model these factor by setting ⇡ to 0.1, reflecting our prior belief that roughly 10% of genes should be
active in a sparse hidden factor. To facilitate e�cient learning, we initialize our model by seeding each
factor with 20 highly variable genes for which we set ⇡ to 0.99.

3.4 Applying f-scLVM to very large datasets

We implemented a series of additional measures to improve the practical performance and convergence
rate of f-scLVM. Fist, our software implementation makes use of parallel processing capacities, if executed
using a modern Python interpreter. Second, to facilitate inference on datasets with 10,000 cells or more,
as well as when using larger numbers of pathway factors (e.g. > 200 in the REACTOME database), we
provide support for a pre-scoring heuristic to reduce the number of factors that need to be fitted jointly.
Specifically, we first fit factors independently using SVD on the prior annotated gene sets per factor. We
then retain the 50 terms for which the first eigenvector explains most of the observed variance. While
this approach is likely to overestimate the importance of individual factors (cf. Supp. Fig. 1), is e↵ective
for pruning pathways that are highly unlikely to be relevant. Third, the model allows deactivation of
individual factors once they have extremely low relevance (using ↵k/var(xk) > 1010 as a criterion). This
early stopping approach is motivated by the observation that factors, once deactivated by the ARD prior,
are unlikely to be reactivated in later stages of training.

3.5 Hyperparameter settings

In the experiments, we considered the following hyperparameters. For the spike-and-slab prior for anno-
tated factors we choose an uninformative prior of ⇡ = 0.5. To model the annotation we set 1 � FPR to
99% and FNR to 0.1%, reflecting the belief that annotations are specific but include genes that are not
necessary relevant in a given study. For the Gamma prior on ↵k and ⌧g, we chose the hyperparameters
a = 10�3 and b = 10�3, which correspond to uninformative prior settings.

Scaling the gene set annotations with gene set size An additional parameter is n
e↵

, which corresponds
to the e↵ective number of cells based on which the annotation size is scaled to larger datasets. Technically,
the likelihood term for the annotations P (I |Z) (Eq. (8)) is scaled by N/n

e↵

. This approach is equivalent
to modeling a full set of gene set annotations for each n

e↵

cells in the dataset. In the experiments, we
use n

e↵

, which means that the FNR and FPR settings for the prior annotations are relative to a dataset
with 200 cells. Empirically, we confirmed the expected e↵ect of scaling the annotation likelihood with the
data likelihood (see also Sec. 1.1.1). When using a fixed annotation prior, the number of false positive
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augmentations of gene sets (using the posterior on Z) scaled approximately linear with the dataset size,
which reflects that the inferred factors are increasingly decoupled from the annotation. In contrast, the
likelihood scaling yielded robust and accurate results across a wider range of datast sizes (Fig. M3).

Determining the number of unannotated factors The number of unannotated factors to include in the
model is in principle a hyperparameter that needs to be set by the user. First, for unannotated dense
factors, we observe that the model is insensitive to the total number of such factors included. This is
because the ARD prior is able to deactivate those factors that are not needed, leading to results that are
robust across a larger range (see also Supp. Fig. 3h). In the experiments, we include 3 unannotated dense
factors throughout.
The number of unannotated sparse factors requires further considerations, however. Because these

factors are sparse and there exists no prior annotation to constrain the gene sets they e↵ect, we find that
the ARD prior less e↵ectively regularizes their relevance. Consequently, sparse unannotated factors should
only be activated if they are needed to explain the variation in the data. Empirically, we observed that
if larger numbers of genes are activated in the annotated factors (more than 100%, see Sec. 3.6), this
indicates that the annotation is not able to appropriately capture the variation in the data. This situation
applied to the Zeisel data set as well as the human preimplentation Embroys (Supp. analyses Fig. SN1).
To address this we fit 5 sparse hidden factors for these two datasets. Sparse hidden factors tend to capture
variation between cell types, which are typically not well captured by annotated factors (Supp. Fig. 6).

3.6 Downstream analyses

The trained f-scLVM model can be used for di↵erent downstream analyses.

Factor relevance First, the posterior mean of the ARD score (factor-wise precision) ↵̂k is used as a
measure for the relevance of an individual factor to drive expression variability. The inverse of this ARD
score can be interpreted as the expected explained variance of the factor for the subset of genes with a
regulatory e↵ect. Larger values of 1/↵̂k, which correspond to the expected variance explained by factor
k, indicate larger relevance of factor k. When analysing the drivers of variability for selected subsets of
cells only, the factor relevance can be mapped onto this subset without the need to recompute the model.
This is achieved by re-weighting 1/↵̂k with the relative variance of the corresponding factor k within the
subset of cells under consideration. To exclude factors that may be driven by outlying cells, we filtered
the reconstructed factors based on the mean absolute deviation (mad) and excluded factors with mad less
than .4 before calculating the relevance score. For the retina and Zeisel datasets, no such filtering was
applied, due to the known presence of very small cell populations.

Visualization Second, the posterior distribution over annotated and unannotated factors X

:,k can be
used to visualize cell states.

Gene set refinement By comparing the posterior distribution over the gene assignment to factors zg,k to
the prior annotation Ig,k, it is possible to identify individual genes that were added to or removed from a
given pathway factor k. In practice, we consider the posterior threshold .5 for annotating genes to factors.
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Supp. Meth. Figure M3: Impact of the scaling of the annotation likelihood by the number of

cells in the data. Shown are results for di↵erent models using simulated path-
way corruptions as shown in Supp. Fig. 4, considering increasing dataset sizes
(cell count). (a,b) Number of false positive (a) and true positive (b) augmen-
tations to pathway annotations without rescaling. (c,d) Analogous results when
using the annotation likelihood rescaling described in Sec. 1.1.1. Without scal-
ing the annotation likelihood, the inferred factors become decoupled for large
dataset, which results in large numbers of false positive augmentations to the
annotation ((a)). In contrast, the scaled annotation likelihood retains its rele-
vance across datasets of di↵erent size, yielding decreased false positive (c) and
increased true positive (d) augmentations for larger datasets.

Model residuals Finally, the inferred annotated and unannotated factors can also be used to estimate
residual dataset. Residual data adjusted for the e↵ect of a given factor k are derived using Y

residual

=
Y �X

:,kW
T

k When the model was trained using the dropout noise model, the residuals were calculated
using the pseudo-counts Ỹ. This approach performs an implicit imputation of zero count values.
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