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ID Trait N h2ex SEex h2ap SEap

BMI Body mass index 4843 0.277 0.056 0.277 0.056
CRP C-reactive protein 4945 0.269 0.046 0.281 0.048
DBP Diastolic blood pressure 4736 0.118 0.057 0.115 0.056
FGL Fasting glucose 4820 0.165 0.053 0.164 0.053
HDL HDL cholesterol 4843 0.300 0.055 0.307 0.056
HGT Standing height 5025 0.614 0.053 0.610 0.055
HIP Hip circumference 4814 0.185 0.058 0.187 0.058
FIN Fasting insulin 4792 0.146 0.056 0.143 0.056
LDL LDL cholesterol 4828 0.354 0.057 0.350 0.057
SBP Systolic blood pressure 4743 0.127 0.057 0.137 0.056
TC Total cholesterol 4843 0.279 0.056 0.277 0.056
TG Triglyserides 4842 0.192 0.056 0.188 0.056

WHR Waist-hip ratio 4814 0.102 0.053 0.098 0.053
WAI Waist circumference 4815 0.140 0.055 0.140 0.055
WGT Weight 4843 0.238 0.057 0.238 0.057
WAB WHR adjusted for BMI 4812 0.082 0.054 0.080 0.053

Table S1: Sixteen quantitative traits analysed in NFBC1966 data. Heritability
estimate (h2) and its standard error (SE) are from biMM. Exact (ex) analysis
was ran with ti = td = 0 and approximate (ap) analysis was ran with ti = td =
200. N is the number of individuals with a measurement for the trait.

S1 Data used in Example analysis
The Northern Finland Birth Cohort 1966 (NFBC1966) is a birth cohort study
of children born in 1966 in the two northernmost provinces of Finland origi-
nally designed to focus on factors affecting pre-term birth, low birth weight,
and subsequent morbidity and mortality [10]. The blood sample for the DNA
extraction and all phenotype data used in the present study were collected at
a follow-up visit when the participants were 31 years of age. The phenotypes
(Table S1) were adjusted for sex and first ten principal components of genetic
structure. Additionally, blood pressure measurements were adjusted for BMI.
The phenotype data are the same as used by Tukiainen et al. [12].

Genotyping was done using Illumina 370K chip. We computed the genetic
relationship matrix R by using K = 319, 445 genotyped SNPs with minor-allele
frequency (MAF) above 0.01.

S2 Comparison of the methods
Below we show the scatter plots for six pairs of the four methods: biMM (com-
plete, ti = td = 0), GEMMA [19], BOLT-REML [8] and GCTA [16] across 120
trait pairs reported in Example analysis of the main paper, for heritabilities VG,
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Figure S1: Heritability estimates across 120 pairs of traits from NFBC1966
data.

genetic correlations ρG and their standard errors SE(VG) and SE(ρG).

S3 Polygenic model for genome-wide data
To derive the linear mixed model, we consider a polygenic model that assumes
that the genetic component of the traits is distributed among a large number
of individual variants having additive effects. When applied to “unrelated” in-
dividuals (or more precisely, only very distantly related individuals from our
population cohorts), the model decomposes the trait variance into an additive
genetic component (G) that is due to the available panel of SNPs, and the en-
vironmental component (ε) that includes also higher order genetic components
together with the part of the additive component that is not captured by G.
In particular, the bivariate model can be used for estimating a lower bound for
the additive genetic variance for both phenotypes, the correlation between the
additive genetic components of the two phenotypes and the correlation between
the environmental components of the two phenotypes.

For large-scale human genetic studies with a univariate phenotype, the corre-
sponding model was introduced by Yang et al. in their software package GCTA
[15] and further explained by Visscher et al. [13] and Zaitlen and Kraft [17].
The bivariate extension was recently considered by Deary et al. [4], Korte et
al. [6] and Davis et al. [3], and an extension to more than two traits by the
GEMMA algorithm of Zhou and Stephens [19] and BOLT-REML by Loh et al.
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Figure S2: Genetic correlation estimates across 120 pairs of traits from
NFBC1966 data.
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Figure S3: Estimated standard errors of heritability estimates across 120 pairs
of traits from NFBC1966 data.
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Figure S4: Estimates of standard errors of genetic correlation estimates across
120 pairs of traits from NFBC1966 data. Not available for GEMMA.

[8]. A completely new way to estimate some of the parameters of the univariate
and bivariate polygenic model via LD-score regression using summary statistics
from genome-wide association studies was recently intoduced by Bulik-Sullivan
et al. [2, 1].

Next we formulate the univariate (section 3.1) and bivariate (section 3.2)
versions of the model, explain how we do the computation efficiently (section
3.3) and give simulation results to verify that we have a valid interpretation of
the parameter estimates (section 3.4).

S3.1 Univariate polygenic model
We start by describing the model for a univariate phenotype (say phenotype 1).
Let Y 1 be a vector of observed quantitative measurements for n individuals.
Let g∗ik be the standardized genotype of individual i at SNP k, that is,

g∗ik =
gik − 2f̂k√
2f̂k

(
1− f̂k

) ,
where gik is the minor allele count (0,1 or 2) that i carries at locus k and
f̂k = 1

2n

∑n
i=1 gik is the sample allele frequency. The linear model assumes that

yi1 = µi1 +
∑
k

g∗ikβk1 + εi1, (S1)

where βk1 is the effect of SNP k on Y1, εi1 is the environmental term of Y1
for individual i and the sum is over all the SNPs. The term µi1 describes the
expected phenotype of individual i after all the non-genetic covariates (such as
age, sex and cohort) have been taken into account, for example, by considering
residuals from a regression model.

Following [15], we assume that βk1 ∼ N (0, vg1) for each SNP k and εi1 ∼
N (0, Vε1) for each individual i. Then the additive genetic variance of Y1 due to
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the SNPs,

VG1 = Var

(
K∑

k=1

g∗ikβk1

)
≈

K∑
k=1

Var (g∗ikβk1) = Kvg1,

can be estimated by a linear mixed model formulation of the model (S1) [15, 17]:

Y 1 = µ1 +G1 + ε1, (S2)

where ε1 ∼ N (0, Vε1I) and G1 ∼ N (0, VG1R) with the element Rij of the
matrix R being

Rij =
1

K

∑
k

g∗ikg
∗
jk =

1

K

∑
k

(
gik − 2f̂k

)(
gjk − 2f̂k

)
2f̂k

(
1− f̂k

) .

Note that since the variance of the effect size distribution, vg1, is the same for
all standardized SNPs, it follows that the variance of the effect size distribution
for an allele at SNP k, vg1/

(
2f̂k

(
1− f̂k

))
, grows as the minor allele frequency

f̂k decreases. Thus, this model assumes larger per allele effect sizes at rarer
SNPs than at more common SNPs.

S3.2 Bivariate polygenic model
We follow the extension of the linear model to the bivariate case given by [4].
This corresponds to the model Y = µ+G+ ε, where

Y =

 Y 1

Y 2

 , µ =

 µ1

µ2

 , G ∼ N (0,ΣG), and ε ∼ N (0,Σε), (S3)

with

ΣG =

 VG1R VG12R

VG12R VG2R

 and

Σε =

 Vε1I Vε12I

Vε12I Vε2I


expressed as n× n blocks, where n is the number of individuals.

From this model, an estimate of VGt gives a lower bound for the additive
genetic variance of each trait (t = 1, 2) and thus can be used to estimate a lower
bound for the (narrow-sense) heritability. We can also estimate the genetic
correlation ρG = VG12/

√
VG1VG2 which can be interpreted as the correlation of
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the additive genetic components. Similarly we can estimate ρε = Vε12/
√
Vε1Vε2,

the correlation in the environmental terms between the phenotypes.
At the level of individual genetic effects, this model corresponds to the as-

sumption that for all k ≤ K βk1

βk2

 ∼ N2

0,

 vg1 vg12

vg12 vg2


 , (S4)

where vgt is the variance of the individual genetic effect on trait t = 1, 2 and
vg12 is the covariance between the effects of a single variant on the two traits.
We will consider the consequences of this assumption below at section S3.4.

S3.3 biMM algorithm
Our goal is to make an efficient algorithm for estimating (co)variance parameters
in the setting where hundreds of traits have been measured on the same set of
individuals. For this purpose, we extend computational solutions of previous
algorithms on a univariate linear mixed model [18, 7, 9] to the bivariate case.
The biMM algorithm described here has not been published before although M
Pirinen has applied some ideas of biMM’s likelihood computation in an earlier
study of reading and mathematics skills [3].

Recently, general algorithms for multivariate linear mixed models have been
introduced by Zhou and Stephens [19] and Loh et al. [8] with applications to
genome-wide data sets.We see two main contributions of the biMM algorithm
given the existing work in the field: (1) a new and simple way to write down the
likelihood function of bivariate LMM using O(n) operations; and (2) implemen-
tation that is particularly efficient for estimating pairwise variance components
across thousands of trait pairs including the functionality to order traits suit-
ably and to impute or to ignore only some trait values as necessary for efficient
computation.

While an appropriately adjusted version of the GEMMA algorithm of Zhou
and Stephens [19] might also lead to a quick bivariate likelihood computation,
to our knowledge, no publicly available implementationis available to efficiently
handle our setting of hundreds of traits.

BOLT-REML algorithm of Loh et al. [8] is the only existing linear mixed
model implementation that can run on 100,000s of individuals. Since BOLT-
REML bypasses the generation of the explicit relationship matrix, it is based
on very different approximations compared to biMM, GEMMA or GCTA. The
differences in heritability estimates between the methods were a bit larger be-
tween BOLT-REML and the other methods (Figure S1) than among the other
methods themselves. Additionally, BOLT-REML is much slower than biMM
or GEMMA with cohorts of about 5,000 individuals tested in the main paper.
Thus, while BOLT-REML importantly extends the range of linear mixed model
computations to very large cohorts, there are good reasons to still consider the
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approach based on explicit matrix computations when those are feasible to carry
out, i.e., when the cohort size is up to a few tens of thousands of individuals.

S3.3.1 Likelihood computation

The log-likelihood function for model (S3), after the covariates and the popula-
tion mean in µ have been regressed out from Y , is

L(V ) = −n log(2π)− 1

2
log(|Σ|)− 1

2
Y TΣ−1Y , (S5)

where variance parameters V = (VG1, VG2, VG12, Vε1, Vε2, Vε12) are included in
the matrix Σ = ΣG + Σε, and |Σ| denotes the determinant of Σ.

The eigenvalue decomposition of the positive semi-definite matrix R yields
an orthonormal n × n-matrix U of eigenvectors and a diagonal n × n-matrix
D of non-negative eigenvalues for which R = UDUT (see e.g. [5]). Because
UUT = I (orthonormality) it follows that

Σ =

 VG1R+ Vε1I VG12R+ Vε12I

VG12R+ Vε12I VG2R+ Vε2I


=

[
U 0
0 U

] [
VG1D + Vε1I VG12D + Vε12I
VG12D + Vε12I VG2D + Vε2I

] [
UT 0

0 UT

]
=

[
U 0
0 U

] [
∆(ai1) ∆(ai12)
∆(ai12) ∆(ai2)

] [
UT 0

0 UT

]
,

where ∆(ai1) is the diagonal matrix whose diagonal elements are a11, . . . , an1
and we have used notation

ai1 = VG1di + Vε1

ai2 = VG2di + Vε2

ai12 = VG12di + Vε12,

where di is the ith eigenvalue of R, that is, the element (i, i) of D = ∆(di).
To compute the determinant, we use the fact [11] that if B3B4 = B4B3 for

a block matrix

B =

[
B1 B2

B3 B4

]
, then det(B) = det(B1B4 −B2B3).

det(Σ) = det(UU − 00)

× det (∆(ai1)∆(ai2)−∆(ai12)∆(ai12))

× det(UTUT − 00)

= 1×
n∏

i=1

(
ai1ai2 − a2i12

)
× 1

=

n∏
i=1

ci,

8



where

ci = ai1ai2 − a2i12, for i = 1, . . . , n.

To compute the inverse Σ−1 we use a formula for block matrices:[
B1 B2

B3 B4

]−1

=

[ (
B1 −B2B

−1
4 B3

)−1 −
(
B1 −B2B

−1
4 B3

)−1
B2B

−1
4

−
(
B4 −B3B

−1
1 B2

)−1
B3B

−1
1

(
B4 −B3B

−1
1 B2

)−1

]
.

By applying this to matrix

A =

[
∆(ai1) ∆(ai12)
∆(ai12) ∆(ai2)

]
,

we have that

A−1 =

[
∆( 1

ci
) 0

0 ∆( 1
ci
)

] [
∆(ai2) ∆(−ai12)

∆(−ai12) ∆(ai1)

]
.

By transformation

Ỹ =

[
UT 0

0 UT

]
Y

the log-likelihood (S5) becomes

L(V ) = −n log(2π)− 1

2
log(|Σ|)− 1

2
Y TΣ−1Y

= −n log(2π)− 1

2

n∑
i=1

log(ci)−
1

2
Ỹ

T
A−1Ỹ

= −n log(2π)− 1

2

n∑
i=1

log(ci)−
1

2

n∑
i=1

ỹi1
2
ai2 + ỹi2

2
ai1 − 2ỹi1ỹi2ai12
ci

.

For each set of values of the parameters V , the evaluation of the log-likelihood
requires O(n) basic operations, where n is the number of individuals. Note that
a naive evaluation of the likelihood would require O(n3) operations for each set
of parameters due to computational complexity of the determinant and matrix
inversion.

To optimize the likelihood we use a combination of Nelder-Mead and BFGS
algorithms as implemented in the optim function of the R software package. For
BFGS we need the gradient of the log-likelihood.
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Derivatives

With the notation defined above we have:

∂L

∂VG1
= −1

2

n∑
i=1

dici

(
ai2 + ỹi2

2
)
− diai2bi

c2i

∂L

∂VG2
= −1

2

n∑
i=1

dici

(
ai1 + ỹi1

2
)
− diai1bi

c2i

∂L

∂Vε1
= −1

2

n∑
i=1

ci

(
ai2 + ỹi2

2
)
− ai2bi

c2i

∂L

∂Vε2
= −1

2

n∑
i=1

ci

(
ai1 + ỹi1

2
)
− ai1bi

c2i

∂L

∂VG12
= −1

2

n∑
i=1

−2dici (ai12 + ỹi1ỹi2) + 2diai12bi
c2i

∂L

∂Vε12
= −1

2

n∑
i=1

−2ci (ai12 + ỹi1ỹi2) + 2ai12bi
c2i

where
bi = ỹi1

2
ai2 + ỹi2

2
ai1 − 2ỹi1ỹi2ai12, for i = 1, . . . , n.

S3.3.2 Ordering pairs, imputing and dropping values

To make eigendecomposition as reusable as possible biMM orders the trait pairs
(or traits in the univariate case) to maximize the sample overlap between con-
secutive pairs.

Given the first pair, we greedily choose the next pair from among the pairs
having the smallest distance to the current pair. Here the distance between
the pairs means the number of individuals for which one of the trait pairs has
complete data and the other pair does not have complete data. After the second
pair is chosen, the same process continues through the subsequent trait pairs
until the full ordering is determined. If the first pair is not given, biMM iterates
over all possible starting values and chooses the one that leads to the smallest
number of eigendecompositions given the parameters ti and td.

The input values ti and td determine, respectively, for how many individuals
biMM is allowed to impute the missing trait values and for how many individuals
biMM is allowed to set the trait values missing, i.e., to drop the individuals
from the analysis. The current implementation allows the user to specify how
many (most correlated) traits are used for imputing the missing values from the
multivariate normal distribution. The default value is 0 and corresponds to the
mean value imputation.
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S3.4 Testing biMM
Assume that there are S shared variants that affect both traits and T1 and
T2 variants that affect only trait 1 and trait 2, respectively. Assume further
that the effect sizes for all these variants follow the normal distribution with
zero mean and variances vg1 for trait 1 and vg2 for trait 2, and that for each
shared variant j, cor(βj1, βj2) = ρS . Then the covariance between the genetic
components of individual i is

Cov(Gi1, Gi2) = SρS
√
vg1vg2

and the genetic variances are VG1 = (S + T1)vg1 and VG2 = (S + T2)vg2. It
follows that the genetic correlation is

ρG =
SρS√

S + T1
√
S + T2

=
ρS√

1 + T1/S
√

1 + T2/S
. (S6)

In particular, if T1 = T2 = 0 (all variants shared), then ρG = ρS , but if
max{T1, T2} � S (most variants trait-specific), then ρG ≈ 0, independent
of ρS . In general, the genetic correlation ρG is an average property of all vari-
ants affecting the traits that results from shrinking the shared correlation ρS by
(harmonic mean of) the proportion of the shared genetic effects.

We hope that by the linear mixed model we could get unbiased estimates
of genetic variances VG1 and VG2 as well as correlation parameters ρG and ρε.
However, this is not self-evident, because the model makes an assumption that
every one of the K variants in the genome comes from the non-zero bivariate
effect size distribution, which is clearly violated whenever only a minority of the
variants truly have a non-zero effect. Thus, to validate our interpretation of the
variance parameters in a realistic scenarios, and to verify our implementation of
biMM, we did some simulation studies. Recently, some theoretical conditions
for unbiasedness of univariate variance parameters have been listed by Yang et
al. [14].

Simulations: We chose 5,000 individuals from the NFBC1966 data and
used the R matrix of K = 319, 445 genotyped SNPs with minor-allele frequency
(MAF) above 0.01. We further extracted from the total set of SNPs a subset
of 20,000 approximately equally spaced SNPs from which we picked those that
truly affected the phenotypes. We generated 1,000 data sets under each of the
six scenarios by varying values for the parameters at columns 2 to 8 in Table
S2, which uniquely determine ρG and ρε given in the last two columns of Table
S2. We always kept the total variance of both traits at 1 and sampled the effect
sizes for the variants from the Gaussian distribution with variance VGt/(S+Tt)
for trait t, and with the correlation ρS for the shared variants.

Results: The distribution of the maximum likelihood estimates over the
1,000 data sets for four parameters VG1, VG2, ρG and ρε are given in Figure S5.
Figure S5 shows that biMM gives (nearly) unbiased estimates of the parameters
in all six scenarios that vary in the heritability, in the sign and magnitude of
the correlations as well as in the proportion of the variants shared.
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Scenario VG1 VG2 S T1 T2 ρ ρS ρG ρε

1 0.2 0.5 200 200 800 0.5 0.8 0.25 0.66
2 0.2 0.5 200 200 800 -0.4 0.8 0.25 -0.76
3 0.2 0.5 400 0 600 0.4 -0.6 -0.38 0.82
4 0.3 0.8 100 100 1900 0.0 0.6 0.09 -0.12
5 0.2 0.3 2 198 1998 -0.5 0.0 0 -0.67
6 0.2 0.5 1000 1000 1000 0.0 0.8 0.4 -0.2

Table S2: Parameters for data simulation. VGt is the total genetic variance for
trait t = 1, 2, S is the number of shared variants, Tt is the number of variants
specific to trait t = 1, 2, ρ is the total correlation between the traits, ρS is the
correlation of the effect sizes of the shared variants, ρG is the genetic correlation
between the traits, ρε is the environmental correlation between the traits.

−1.0 −0.5 0.0 0.5 1.0

Scenario 1

VG1

VG2

ρG

ρε

−1.0 −0.5 0.0 0.5 1.0

Scenario 2

−1.0 −0.5 0.0 0.5 1.0

Scenario 3

−1.0 −0.5 0.0 0.5 1.0

Scenario 4

−1.0 −0.5 0.0 0.5 1.0

Scenario 5

−1.0 −0.5 0.0 0.5 1.0

Scenario 6

Figure S5: Distribution of maximum likelihood estimates for four parameters
(legend top-left) from biMM across 1,000 simulated data sets for each of the six
scenarios of Table S2. The vertical lines show the values used in the simulation.
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VG1 VG2 ρG ρε
Scenario SD SE SD SE SD SE SD SE

1 0.055 0.053 0.055 0.056 0.12 0.11 0.042 0.041
2 0.055 0.052 0.053 0.055 0.16 0.15 0.048 0.046
3 0.053 0.052 0.052 0.055 0.17 0.16 0.05 0.046
4 0.059 0.054 0.050 0.057 0.08 0.079 0.11 0.11
5 0.056 0.053 0.054 0.054 0.18 0.16 0.035 0.034
6 0.054 0.053 0.056 0.056 0.13 0.13 0.06 0.061

Table S3: Uncertainty of parameters for data simulation. VGt is the total genetic
variance for trait t = 1, 2, ρG is the genetic correlation between the traits, ρε is
the environmental correlation between the traits. For each scenario, SD is the
empirical standard deviation of the point estimates and SE is the median of the
analytically calculated standard errors.

These results give confidence that we can interpret the estimates from biMM
according to the heritability and correlation parameters of the polygenic model,
even when the polygenic assumption is violated by a large majority of the vari-
ants having no effect on the traits at least as long as the variants with effects
are a random sample from all variants included in the model.

The second derivatives allow analytic estimation of standard error for each
parameter. If the sampling distribution of the parameter estimate were Gaus-
sian, then the standard error would estimate the standard deviation of that
sampling distribution. Table S3 shows empirical standard deviation of the pa-
rameter estimates over the simulations together with the median of the standard
errors over the same simulations. In general, the results show that the estimated
standard error gives a good estimate of the magnitude of the empirical standard
deviation. It seems that the standard errors typically underestimate slightly the
standard deviations for the correlation parameters and for smaller heritability
values (VG1) whereas for larger heritability values (VG2) the standard errors
overestimate slightly the standard deviations. We note that the sampling dis-
tributions for these parameters might not follow a Gaussian near the boundary
values of the parameter (0 for variances, and ±1 for correlations) and the inter-
pretation of standard error is not as straightforward there.
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