
Supplementary Material

S1 Supplementary figures

Figure S1: Time to accumulate a beneficial substitution. Each plot shows the
number of generations to accumulate a beneficial substitution (number of generations
before each cytoplasmic genome carries at least γ = 5 substitutions divided by the mean
substitutions per genome in that generation). Parameter values for A–B: N = 1000,
n = 50, µb = 10−8, and b = 25 (relaxed transmission bottleneck) or b = 5 (tight
transmission bottleneck). A. Selection coefficient of 0.1. B. Selection coefficient of 0.01.
Parameter values for C (unless otherwise stated on the x-axis): N = 1000, n = 50,
µb = 10−8, sb = 0.1, a linear fitness function for beneficial substitutions, and b = n/2
(relaxed transmission bottleneck) or b = n/10 (tight transmission bottleneck). Error
bars are standard error of the mean.
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Figure S2 (previous page): Genetic hitchhiking index. To calculate the genetic hitch-
hiking index (φ), we compare the number of generations separating beneficial and delete-
rious ratchets to the number of generations we expect if the two events are uncorrelated.
We examine all beneficial ratchets except those involving genomes with > 5 beneficial
substitutions (to maintain consistency between the different fitness functions). We map
each beneficial ratchet to a single deleterious ratchet but do not limit the number of
times a single deleterious ratchet can be mapped to (e.g. B and C). The expected sepa-
ration between beneficial and deleterious ratchets for this hypothetical example is shown
at the top of the figure. See below for details of how the index is calculated. A. When
beneficial ratchets are closely followed by deleterious ratchets, φ < 1 and we infer that
genetic hitchhiking has occurred. B. When the mean of the number of generations sep-
arating beneficial and deleterious ratchets are as expected, φ ≈ 1 and we infer that the
beneficial ratchet does not affect the deleterious ratchet. C. When deleterious ratchets
follow beneficial ratchets later than expected, φ > 1 and we infer that genetic hitchhiking
is suppressed. D. When a beneficial ratchet is followed by a deleterious ratchet, we call
it a “paired” ratchet. In some instances, the simulation terminates before a deleterious
ratchet can follow a beneficial ratchet (an “unpaired” ratchet; e.g. the last beneficial
ratchet in D). For unpaired ratchets, we add the number of generations separating the
beneficial ratchet and the end of the simulation. To calculate the mean generations sep-
arating the ratchets, however, we only divide by the number of paired ratchets. Thus,

the equation for the index is φ =

[(
np∑
i=1

(gd(i)− gb(i)) +
nu∑
j=1

(gt − gb(j))

)
/np

]
/E[s]. np

is the total number of paired ratchets, gd(i) is the generation in which the ith paired
deleterious ratchet occurred, and gb(i) is the generation in which the ith paired benefi-
cial ratchet occurred. nu is the total number of unpaired ratchets, gt is the number of
generations in each run (10000), and gb(j) is the generation in which the jth unpaired
beneficial ratchet occurred. E[s] is the expected separation in generations and given by

E[s] =

[(
r∑

k=1

gd (k) /d (k)

)
/r

]
− 1, where d(k) is the number of deleterious ratchets we

considered in the kth simulation, gd(k) is the generation at which the d(k)th deleterious
ratchet occurred in the kth simulation, and r is the number of runs for each set of pa-
rameter values (500). We subtract 1 because the deleterious ratchets can occur in the
same generation as the beneficial ratchet.
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Figure S3: Genetic hitchhiking when beneficial mutations are rare. Parameters:
N = 1000, n = 50, µd = 10−7, and b = 25 (relaxed transmission bottleneck) or b = 5
(tight transmission bottleneck). A shows sb = 0.01, sd = 0.01, and µb = 10−9 while B
shows sb = 0.1, sd = 0.1, and µb = 10−9. C shows sb = 0.01, sd = 0.01, and µb = 10−8

while D shows sb = 0.1, sd = 0.1, and µb = 10−8. The plots show the overall level of
genetic hitchhiking in each population, measured by our genetic hitchhiking index (see
Figure S2 for details). When φ < 1, it indicates the presence of genetic hitchhiking.
Error bars are ± standard error of the mean.
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Figure S4: Ratio of beneficial to deleterious substitutions accumulated under
the two inheritance modes. Parameters: N = 1000, n = 50, µd = 10−7, and b = 25
(relaxed transmission bottleneck) or b = 5 (tight transmission bottleneck). Panels A
and B show selection coefficients of sb = 0.01, sd = 0.01, while panels C and D show
selection coefficients of sb = sd = 0.1. For panels A and C, the beneficial mutation rate
is µb = 10−8, while for panels B and D the beneficial mutation rate is µb = 10−9. In all
cases, uniparental inheritance has a higher ratio of beneficial to deleterious substitutions
than biparental inheritance. Error bars are ± standard error of the mean.
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S2 Supplementary tables

Table S1: Benchmarking the genetic hitchhiking index using randomly simulated data

Parameters Results
inheritance b sb fitness φ± sd

UPI b = 25 0.01 concave up 1.009±0.040
BPI b = 25 0.01 concave up 1.003±0.040
UPI b = 5 0.01 concave up 0.997±0.047
BPI b = 5 0.01 concave up 1.002±0.040
UPI b = 25 0.01 linear 1.000±0.038
BPI b = 25 0.01 linear 1.005±0.033
UPI b = 5 0.01 linear 0.999±0.039
BPI b = 5 0.01 linear 0.997±0.044
UPI b = 25 0.01 concave down 1.002±0.034
BPI b = 25 0.01 concave down 1.000±0.040
UPI b = 5 0.01 concave down 1.001±0.041
BPI b = 5 0.01 concave down 1.001±0.049
UPI b = 25 0.1 concave up 0.996±0.043
BPI b = 25 0.1 concave up 1.002±0.042
UPI b = 5 0.1 concave up 0.995±0.039
BPI b = 5 0.1 concave up 1.000±0.041
UPI b = 25 0.1 linear 0.995±0.040
BPI b = 25 0.1 linear 0.995±0.038
UPI b = 5 0.1 linear 1.004±0.044
BPI b = 5 0.1 linear 1.000±0.042
UPI b = 25 0.1 concave down 0.996±0.045
BPI b = 25 0.1 concave down 1.001±0.044
UPI b = 5 0.1 concave down 0.998±0.046
BPI b = 5 0.1 concave down 1.004±0.052

Parameters: N = 1000, n = 50. φ± sd shows the genetic hitchhiking index for randomly

simulated datasets ± standard deviation. For each set of parameter values, we deter-

mined the expected distance between beneficial and deleterious ratchets. (The expected

distance separating beneficial ratchets is E[db] =

(
r∑
i=1

gb (i) /nb (i)

)
/r, where nb(i) is

the number of beneficial ratchets we considered in the ith simulation, gb(i) is the gener-

ation at which the nb(i)th beneficial ratchet occurred in the ith simulation, and r is the
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number of runs for each set of parameter values (500). The expected distance separating

deleterious ratchets is E[dd] =

(
r∑
i=1

gd (i) /nd (i)

)
/r, where nd(i) is the number of dele-

terious ratchets we considered in the ith simulation, gd(i) is the generation at which the

nd(i)th deleterious ratchet occurred in the ith simulation, and r is the number of runs for

each set of parameter values.) We used these expected values to generate 500 randomly

simulated runs, and for each one, used binomial sampling to generate a random number

of beneficial and deleterious ratchets. (The number of beneficial ratchets is given by the

random variable Rib and the number of deleterious ratchets by the random variable Rid,

where i is the number of the simulated run (out of 500). To obtain Rib and R
i
d, we used

the R function rbinom with parameters n = 1, size = 10000, and prob = 1/E[db] for

beneficial ratchets or prob = 1/E[dd] for deleterious ratchets.) For each run, we uni-

formly sampled Rib beneficial and R
i
d deleterious ratchets over 10,000 generations to get

the locations of our random beneficial and deleterious ratchets. We then calculated φ in

the same way as our model-generated data (Figure S2). For each set of parameter values,

we repeated this process 100 times, giving us 100 estimates of φ. The fifth column shows

the mean and standard deviation of these 100 estimates. As can be seen, when beneficial

and deleterious ratchets are uncorrelated, φ ≈ 1.
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S3 Beneficial mutation model

The model is an individual-based model, in which we track all cells in the population

(and their gametes). It is written in R version 3.1.2 Team (2013). For each set of

parameter values, we ran 500 Monte Carlo simulations. These Monte Carlo simulations

were run using packages that enable R code to be run in parallel (doMC and foreach

(Analytics, 2014; Analytics and Weston, 2014)) and produce reproducible output doRNG

(Gaujoux, 2014)). We ran our simulations on High Performance Computing clusters

at The University of Sydney (“Artemis”) and National Computational Infrastructure,

Australia (“Raijin”).

We store the population of cells in a matrix called C
t,τζ
G that has N rows (each repre-

senting an individual cell) and n columns (each representing a cytoplasmic genome). We

will use the terminology C
t,τζ
G (i, ∗) to refer to the ith row in C

t,τζ
G (equivalently the ith

cell in the population). G represents the inheritance mode and takes values in {U,B},

where U denotes a cell with uniparental inheritance and B denotes a cell with biparental

inheritance. The generation is given by t, while the stage of the life cycle is given by τζ .

Thus,

C
t,τζ
G =



C
t,τζ
G (1, 1) C

t,τζ
G (1, 2) . . . C

t,τζ
G (1, n)

C
t,τζ
G (2, 1) C

t,τζ
G (2, 2) . . . C

t,τζ
G (2, n)

...
...

. . .
...

C
t,τζ
G (N, 1) C

t,τζ
G (N, 2) . . . C

t,τζ
G (N,n)


,

where Ct,τζ
G (i, j) = α represents α beneficial substitutions in the jth cytoplasmic genome

of individual i. Cytoplasmic genomes have l bases, each of which can mutate from a

neutral site to a beneficial site. Initially, all genomes have α = 0 beneficial substitutions.

The first stage of the life cycle is mutation.
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S3.1 Mutation

We only consider forward mutation (i.e. genomes can gain beneficial mutations but

cannot lose beneficial mutations). We assume that the jth cytoplasmic genome in the

ith cell receives mb,t
ij new beneficial mutations in generation t, where mb,t

ij takes values

in {0, 1, 2, 3, 4, 5}. The probability that a cytoplasmic genome receives 5 mutations in a

single generation is equal to the probability that a genome receives 5 or more mutations

(when µb = 10−8 and l = 20000, the probability that a cytoplasmic genome receives

more than 5 mutations in a single generation is calculated by R as 0, so this is a very

accurate approximation).

The probability that a genome mutates depends on the mutation rate per base per

generation (µb), on the number of base pairs available to be mutated (l − α), and on

the number of mutations that occur (mb,t
ij ). To store these probabilities, we generate a

matrix, M , with l+ 1 rows (α can take values in {0, 1...l}) and 5 columns. Thus,

M =



M(0, 0) M(0, 1) M(0, 2) M(0, 3) M(0, 4)

M(1, 0) M(1, 1) M(1, 2) M(1, 3) M(1, 4)

M(2, 0) M(2, 1) M(2, 2) M(2, 3) M(2, 4)

...
...

...
...

...

M(l, 0) M(l, 1) M(l, 2) M(l, 3) M(l, 4)


.

Each generation, we generate a uniformly random number between 0 and 1, rb,tij , which

determines the number of mutations gained by the jth cytoplasmic genome in the ith

cell in generation t (i.e. rb,tij is matched to Ct,τ1
G (i, j)). rb,tij causes mb,t

ij mutations in a

genome that already carries α substitutions according to
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mb,t
ij = 5 if rb,tij <M(α, 0),

mb,t
ij = 5− x if M(α, x− 1) ≤ rb,tij <M(α, x) for 1 ≤ x ≤ 4

mb,t
ij = 0 if rb,tij ≥M(α, 4)

The entries of M are given by

M(α, 0) = 1−
4∑

mb,tij =0

(
l − α
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−m

b,t
ij

and

M(α, x) = 1−
4∑

mb,tij =0

(
l − α
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−m

b,t
ij

+
4∑

y=5−x

(
l − α
y

)
µyb (1− µb)

l−α−y for 1 ≤ x ≤ 4.
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For the jth cytoplasmic genome in the ith cell, we add the mb,t
ij new mutations to the

existing α substitutions according to

Ct,τ2
G (i, j) = Ct,τ1

G (i, j) +mb,t
ij

S3.2 Selection

The next life cycle stage is selection. Here, each cell is assigned a fitness value based on

the number of beneficial cytoplasmic substitutions they carry. The number of beneficial

substitutions carried by the ith cell is given by β(i), where

β(i) =
n∑
j=1

Ct,τ2
G (i, j).

We examine three fitness functions: concave up, linear, and concave down. The fitness

of the ith cell under the concave up fitness function is given by

ωu,b (β (i)) = 1 + sb

[(
β (i)

nγ

)2

− 1

]
,

the fitness of the ith cell under the linear fitness function by

ωl,b (β (i)) = 1 + sb

[
β (i)

nγ
− 1

]
,

and the fitness of the ith cell under the concave down fitness function by

ωd,b (β (i)) = 1 + sb

[√
β (i)

nγ
− 1

]
,
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where γ is the number of beneficial substitutions each cytoplasmic genome must accu-

mulate before the simulation terminates, n is the number of cytoplasmic genomes in each

cell, and sb is the beneficial selection coefficient. We then normalize each cell’s fitness so

that they sum to 1. The 1-by-N vector StG stores the normalized fitness of the popula-

tion, where StG(i) gives the relative fitness of the ith cell in the population. To generate

StG, we first generate a temporary 1-by-N vector, S′ t
G where

S′ t
G(i) = ωf,b (β(i)) .

where f represents the fitness function used. To generate StG, we normalize this vector

according to

StG(i) =
S′ t

G(i)
N∑
z=1

S′ t
G(z)

.

Finally, we feed these probabilities into a multinomial distribution (function rmultinomial

in the multinomRob package (Mebane et al., 2013)) to generate N new cells for the pop-

ulation. Cells can thus die, replace themselves, or produce multiple copies of themselves.

We pass the rmultinomial function the arguments N and the probability vector StG,

which generates a 1-by-N vector, Ot
G, whose sum is N and whose ith entry represents

the number of “offspring” left by the ith cell in the pre-selection population described

by Ct,τ2
G . We then use these offspring to reform the post-selection population described

by Ct,τ3
G , assuming that each offspring is a perfect copy of its parent. For example, if

Ot
G(i) = 2 then in Ct,τ3

G there will be two copies of Ct,τ2
G (i, ∗).
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S3.3 Gameteogenesis

Each cell produces two gametes: one with mating type A and the other with mating type

a.

S3.3.1 Biparental inheritance

To choose which cytoplasmic genomes are passed on, for each mating type we generate

a matrix, Ht
g(i, d) = Y with N rows and b columns populated with uniformly random

positive integers (Y ) in the set {1, 2, ...n}, where g represents the nuclear allele of the

gamete and when inheritance is biparental takes values in {BA, Ba}. Ht
g(i, d) = Y

denotes that the dth genome chosen for the new gamete of type g is derived from the

Y th cytoplasmic genome of the ith cell. Sampling is with replacement and gametes

are stored in a matrix, Gt,τ4
g , which has N rows and b columns. Gt,τ4

BA
(i, d) is produced

by

Gt,τ4
BA

(i, d) = Ct,τ3
B (i,Ht

BA
(i, d) = Y ).

Gt,τ4
Ba

(i, d) is produced by

Gt,τ4
Ba

(i, d) = Ct,τ3
B (i,Ht

Ba(i, d) = Y ).

S3.3.2 Uniparental inheritance

When inheritance is uniparental, g takes values in {UA, Ua}. Gt,τ4
UA

(i, d) is produced

by
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Gt,τ4
UA

(i, d) = Ct,τ3
U (i,Ht

UA
(i, d) = Y ),

and Gt,τ4
Ua

(i, d) is produced by

Gt,τ4
Ba

(i, d) = Ct,τ3
U (i,Ht

Ua(i, d) = Y ).

S3.4 Random mating

S3.4.1 Biparental inheritance

Biparental inheritance simply combines the cytoplasmic genomes of both gametes. For

each of the BA- and Ba-carrying gametes, we generate a 1-by-N vector, T t
g(i) = Z

that contains a random ordering (without replacement) of positive integers from the set

{1, 2, ...N}. We use these vectors to pair up gametes according to

C′t+1,τ1
B (i, ∗) = Gt,τ4

BA
(T t

BA
(i) = Z, ∗)‖Gt,τ4

Ba
(T t

Ba(i) = Z, ∗),

where ‖ indicates that the two vectors are concatenated. C′t+1,τ1
B is a temporary matrix

(to be replaced by Ct+1,τ1
B ), which contains 2b columns (representing the 2b genomes).

Since 2b < n when we impose a transmission bottleneck, the final step for each cell is to

sample n genomes with replacement from these 2b genomes (we include this step even

when the transmission bottleneck is relaxed and 2b = n). This sampling follows the same

approach as described in gameteogenesis, but now instead of choosing b genomes from

a cell with n genomes, we choose n genomes from a cell with 2b genomes. We generate

a matrix, F t
B(i, j) = Q with N rows and n columns populated with uniformly random

positive integers sampled with replacement from the set {1, 2, ...2b}, which we use to
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sample the new genomes according to

Ct+1,τ1
B (i, j) = C′t+1,τ1

B (i,F t
G(i, j) = Q).

S3.4.2 Uniparental inheritance

Under uniparental inheritance, only the gamete with mating type A passes on its cyto-

plasmic genomes. Thus, to pair up gametes we only need to generate one 1-by-N vector,

T t
UA

(i) = Z that contains a random ordering (without replacement) of positive integers

in the set {1, 2, ...N}, giving

Ct+1,τ1
U (i, ∗) = Gt,τ4

UA
(T t

UA
(i) = Z, ∗).

(Note, randomly ordering the UA gametes is not strictly necessary, but we do it to be

consistent with the model of biparental inheritance.) Now Ct+1,τ1
U (i, ∗) only contains b

columns (representing b genomes), so for each cell we sample n genomes with replacement

from these b genomes. We generate a matrix, F t
U (i, j) = Q with N rows and n columns

populated with uniformly random positive integers sampled with replacement from the

set {1, 2, ...b}. We use this to sample the new genomes according to

Ct+1,τ1
U (i, j) = C′t+1,τ1

U (i,F t
U (i, j) = Q).
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S4 Deleterious mutation model

This model differs from the previous model in how it deals with selection. Mutations

are now deleterious, not beneficial. Each cell is assigned a fitness value based on the

number of deleterious cytoplasmic substitutions it carries. The number of deleterious

substitutions carried by the ith cell is given by ρ(i), where

ρ(i) =

n∑
j=1

Ct,τ2
G (i, j).

For deleterious mutations, we examine the concave down (decreasing) fitness function.

The fitness of the ith cell is given by

ωd,d (ρ (i)) = 1− sd
(
ρ (i)

nγ

)2

,

where n is the number of cytoplasmic genomes in each cell, and sd is the deleterious se-

lection coefficient. To maintain consistency with the model that considers only beneficial

mutations, γ is set to the same value as in the first model. If ωd,d (ρ (i)) < 0 we set

ωd,d (ρ (i)) = 0 (as fitness cannot be negative). Everything else proceeds as detailed in

section S3.2.
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S5 Beneficial and deleterious mutation model

In this version of the model, we store the population of cells in a matrix called C
t,τζ
G that

has 2N rows and n columns. C
t,τζ
G (i, j) stores the number of beneficial substitutions

in the jth genome of the ith cell, while C
t,τζ
G (i +N, j) stores the number of deleterious

substitutions in the jth genome of the ith cell. As before, G represents the inheritance

mode and takes values in {U,B}. The generation is given by t, while the stage of the life

cycle is given by τζ . Thus,

C
t,τζ
G =



C
t,τζ
G (1, 1) C

t,τζ
G (1, 2) . . . C

t,τζ
G (1, n)

C
t,τζ
G (2, 1) C

t,τζ
G (2, 2) . . . C

t,τζ
G (2, n)

...
...

. . .
...

C
t,τζ
G (2N, 1) C

t,τζ
G (2N, 2) . . . C

t,τζ
G (2N,n)


,

where C
t,τζ
G (i, j) = α and C

t,τζ
G (i + N, j) = κ represent α beneficial substitutions and

κ deleterious substitutions respectively in the jth cytoplasmic genome of individual i.

Cytoplasmic genomes have l bases, each of which can change from a neutral site to

a beneficial or deleterious substitution. Initially, all genomes have α = 0 beneficial

substitutions and κ = 0 deleterious substitutions. The first stage of the life cycle is

mutation.

S5.1 Mutation

We assume that the jth cytoplasmic genome in the ith cell gains mb,t
ij new beneficial

mutations in generation t, and md,t
ij new deleterious mutations in generation t, where

both mb,t
ij and md,t

ij take values in {0, 1, 2, 3, 4, 5}. We store the probabilities of gaining

mb,t
ij beneficial mutations in a matrix, Mb, with l + 1 rows (representing the possible

states that a cytoplasmic genome can take) and 5 columns. Thus,
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Mb =



Mb(0, 0) Mb(0, 1) Mb(0, 2) Mb(0, 3) Mb(0, 4)

Mb(1, 0) Mb(1, 1) Mb(1, 2) Mb(1, 3) Mb(1, 4)

Mb(2, 0) Mb(2, 1) Mb(2, 2) Mb(2, 3) Mb(2, 4)

...
...

...
...

...

Mb(l, 0) Mb(l, 1) Mb(l, 2) Mb(l, 3) Mb(l, 4)


.

Likewise, we store the probabilities of gaining md,t
ij deleterious mutations in a matrix,

Md, given by

Md =



Md(0, 0) Md(0, 1) Md(0, 2) Md(0, 3) Md(0, 4)

Md(1, 0) Md(1, 1) Md(1, 2) Md(1, 3) Md(1, 4)

Md(2, 0) Md(2, 1) Md(2, 2) Md(2, 3) Md(2, 4)

...
...

...
...

...

Md(l, 0) Md(l, 1) Md(l, 2) Md(l, 3) Md(l, 4)


.

Each generation, we generate two uniformly random numbers between 0 and 1, rb,tij

and rd,tij , where rb,tij determines the number of beneficial mutations gained by the jth

cytoplasmic genome in the ith cell in generation t and rd,tij determines the number of

deleterious mutations gained by the jth cytoplasmic genome in the ith cell in generation

t (i.e. rb,tij is matched to Ct,τ1
G (i, j) and rd,tij is matched to Ct,τ1

G (N + i, j)). rb,tij causes

mb,t
ij beneficial mutations in the jth genome of the ith cell, which already carries α + κ

mutations according to

mb,t
ij = 5 if rb,tij <Mb(α+ κ, 0),
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mb,t
ij = 5− x if Mb(α+ κ, x− 1) ≤ rb,tij <Mb(α+ κ, x) for 1 ≤ x ≤ 4,

mb,t
ij = 0 if rb,tij ≥Mb(α+ κ, 4).

The entries of Mb are given by

Mb(α+ κ, 0) = 1−
4∑

mb,tij =0

(
l − α− κ
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−κ−m

b,t
ij

and

Mb(α+ κ, x) = 1−
4∑

mb,tij =0

(
l − α− κ
mb,t
ij

)
µ
mb,tij
b (1− µb)l−α−κ−m

b,t
ij

+

4∑
y=5−x

(
l − α− κ

y

)
µyb (1− µb)

l−α−κ−y for 1 ≤ x ≤ 4.

rd,tij causes md,t
ij deleterious mutations in the jth genome of the ith cell, which already

carries α+ κ mutations according to
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md,t
ij = 5 if rd,tij <Md(α+ κ, 0),

md,t
ij = 5− x if Md(α+ κ, x− 1) ≤ rd,tij <Md(α+ κ, x) for 1 ≤ x ≤ 4,

md,t
ij = 0 if rd,tij ≥Md(α+ κ, 4).

The entries of Md are given by

Md(α+ κ, 0) = 1−
4∑

md,tij =0

(
l − α− κ
md,t
ij

)
µ
md,tij
d (1− µd)l−α−κ−m

d,t
ij

and
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Md(α+ κ, x) = 1−
4∑

md,tij =0

(
l − α− κ
md,t
ij

)
µ
md,tij
d (1− µd)l−α−κ−m

d,t
ij

+

4∑
y=5−x

(
l − α− κ

y

)
µyd (1− µd)

l−α−κ−y for 1 ≤ x ≤ 4.

For the jth cytoplasmic genome in the ith cell, we add the mb,t
ij new beneficial mutations

to the existing α beneficial mutations and the md,t
ij new deleterious mutations to the

existing κ beneficial mutations according to

Ct,τ2
G (i, j) = Ct,τ1

G (i, j) +mb,t
ij ,

and

Ct,τ2
G (i+N, j) = Ct,τ1

G (i+N, j) +md,t
ij .

S5.2 Selection

The next life cycle stage is selection. Here, each cell is assigned a fitness value based on

the number of beneficial and deleterious substitutions they carry. The number of bene-

ficial substitutions carried by the ith cell is given by β(i) and the number of deleterious

substitutions carried by the ith cell is ρ(i), where

β(i) =

n∑
j=1

Ct,τ2
G (i, j),
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and

ρ(i) =

n∑
j=1

Ct,τ2
G (i+N, j).

We examine concave down fitness (decreasing) for deleterious substitutions, and concave

up, linear, and concave down fitness functions for beneficial substitutions. The fitness of

the ith cell, which carries β(i) beneficial substitutions and ρ(i) deleterious substitutions

under the concave up fitness function for beneficial substitutions is given by

ωu,bd (β (i) , ρ (i)) = 1 + sb

[(
β (i)

nγ

)2

− 1

]
− sd

(
ρ (i)

nγ

)2

,

its fitness under the linear fitness function for beneficial substitutions is given by

ωl,bd (β (i) , ρ (i)) = 1 + sb

(
β (i)

nγ
− 1

)
− sd

(
ρ (i)

nγ

)2

,

and its fitness under the concave down fitness function for beneficial substitutions is given

by

ωd,bd (β (i) , ρ (i)) = 1 + sb

(√
β (i)

nγ
− 1

)
− sd

(
ρ (i)

nγ

)2

,

where n is the number of cytoplasmic genomes in each cell, sb is the beneficial selection

coefficient and sd is the deleterious selection coefficient. To maintain consistency with

the first two models, γ is set to the same value as in the model with beneficial muta-

tions only. If ωf,bd (β (i) , ρ (i)) < 1 we set ωf,bd (β (i) , ρ (i)) = 0 (as fitness cannot be

negative).

The 1-by-N vector StG stores the normalized fitness of the population, where StG(i) gives
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the relative fitness of the ith cell in the population. To generate StG, we first generate

a temporary 1-by-N matrix, S′ t
G where S′ t

G(i) = ωf,bd (β(i), ρ(i)). To generate StG, we

normalize this vector according to

StG(i) =
S′ t

G(i)
N∑
z=1

S′ t
G(z)

.

Finally, we use the probabilities in StG to generate N new cells for the population, using

the process described in section S3.2.

S5.3 Gameteogenesis

S5.3.1 Biparental inheritance

To choose which cytoplasmic genomes are passed on, for each mating type we generate

a matrix, Ht
g(i, d) = Y with N rows and b columns populated with uniformly random

positive integers (Y ) in the set {1, 2, ...n}, where g represents the nuclear allele of the

gamete and when inheritance is biparental takes values in {BA, Ba}. Ht
g(i, d) = Y

denotes that the dth genome chosen for the new gamete of type g is derived from the Y th

cytoplasmic genome of the ith cell. Sampling is with replacement and gametes are stored

in a matrix, Gt,τ4
g which has 2N rows and b columns. Since the beneficial substitutions of

the dth genome of the ith gamete is stored in Gt,τ4
g (i, d) and the deleterious substitutions

of the dth genome of the ith gamete are stored in Gt,τ4
g (i + N, d), both must segregate

together. Gt,τ4
BA

(i, d) is produced by

Gt,τ4
BA

(i, d) = Ct,τ3
B (i,Ht

BA
(i, d) = Y ),

and
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Gt,τ4
BA

(i+N, d) = Ct,τ3
B (i+N,Ht

BA
(i, d) = Y ).

Gt,τ4
Ba

(i, d) is produced by

Gt,τ4
Ba

(i, d) = Ct,τ3
B (i,Ht

Ba(i, d) = Y ),

and

Gt,τ4
Ba

(i+N, d) = Ct,τ3
B (i+N,Ht

Ba(i, d) = Y ).

S5.3.2 Uniparental inheritance

When inheritance is uniparental, Gt,τ4
UA

(i, d) is produced by

Gt,τ4
UA

(i, d) = Ct,τ3
U (i,Ht

UA
(i, d) = Y ),

and

Gt,τ4
UA

(i+N, d) = Ct,τ3
U (i+N,Ht

UA
(i, d) = Y ).

Gt,τ4
Ua

(i, d) is produced by

Gt,τ4
Ua

(i, d) = Ct,τ3
U (i,Ht

Ua(i, d) = Y ),

and
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Gt,τ4
Ua

(i+N, d) = Ct,τ3
U (i+N,Ht

Ua(i, d) = Y ).

S5.4 Random mating

S5.4.1 Biparental inheritance

Biparental inheritance simply combines the cytoplasmic genomes of both gametes. For

each of the BA- and Ba-carrying gametes, we generate a 1-by-N vector, T t
g(i) = Z

that contains a random ordering (without replacement) of positive integers from the set

{1, 2, ...N}. We use these vectors to pair up gametes according to

C′t+1,τ1
B (i, ∗) = Gt,τ4

BA
(T t

BA
(i) = Z, ∗)‖Gt,τ4

Ba
(T t

Ba(i) = Z, ∗),

and

C′t+1,τ1
B (i+N, ∗) = Gt,τ4

BA

((
T t
BA

(i) = Z
)
+N, ∗

)
‖Gt,τ4

Ba

((
T t
Ba(i) = Z

)
+N, ∗

)
.

‖ indicates that the two vectors are concatenated. C′t+1,τ1
B is a temporary matrix (to

be replaced by Ct+1,τ1
B ), which contains 2b columns (representing 2b genomes). Since

2b < n when we impose a transmission bottleneck, the final step for each cell is to

sample n genomes with replacement from these 2b genomes. This sampling follows the

same approach as described in meiosis, but now instead of choosing b genomes from a

cell with n genomes, we choose n genomes from a cell with 2b genomes. We generate

a matrix, F t
B(i, j) = Q with N rows and n columns populated with uniformly random

positive integers sampled with replacement from the set {1, 2, ...2b}, which we use to
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sample the new genomes according to

Ct+1,τ1
B (i, j) = C′t+1,τ1

B (i,F t
B(i, j) = Q),

and

Ct+1,τ1
B (i+N, j) = C′t+1,τ1

B (i+N,F t
B(i, j) = Q).

S5.4.2 Uniparental inheritance

Under uniparental inheritance, only the gamete with mating type A passes on its cyto-

plasmic genomes. Thus, to pair up gametes we only need to generate one 1-by-N vector,

T t
UA

(i) = Z that contains a random ordering (without replacement) of positive integers

in the set {1, 2, ...N}, giving

Ct+1,τ1
U (i, ∗) = Gt,τ4

UA
(T t

UA
(i) = Z, ∗),

and

Ct+1,τ1
U (i+N, ∗) = Gt,τ4

UA

((
T t
UA

(i) = Z
)
+N, ∗

)
.

Now Ct+1,τ1
U (i, ∗) only contains b columns (representing b genomes), so for each cell

we sample n genomes with replacement from these b genomes. We generate a matrix,

F t
U (i, j) = Q with N rows and n columns populated with uniformly random positive

integers sampled with replacement from the set {1, 2, ...b}. We use this to sample the

new genomes according to
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Ct+1,τ1
U (i, j) = C′t+1,τ1

U (i,F t
U (i, j) = Q),

and

Ct+1,τ1
U (i+N, j) = C′t+1,τ1

U (i+N,F t
U (i, j) = Q).

27



S6 Free-living genome model

In our model of free-living genomes, we store the population of cells in a 1-by-NFL vector

(or 1-by-2NFL vector for the model with both beneficial and deleterious mutations),

where NFL = N × n or NFL = N , depending on whether the free-living population size

is matched to the number of cytoplasmic genomes or eukaryote hosts. In the model that

only considers beneficial mutations, Ct,τζ (i) = α indicates that the ith free-living cell

carries α substitutions. In the model that only considers deleterious mutations, Ct,τζ (i) =

κ indicates that the ith free-living cell carries κ substitutions. In the model that considers

both beneficial and deleterious mutations, Ct,τζ (i) = α and Ct,τζ (i+NFL) = κ indicates

that the ith free-living cell carries α beneficial and κ deleterious substitutions.

There are two stages to the free-living life cycle: mutation and selection. Mutation

proceeds in the same way as it does in the model of cytoplasmic genomes (but now the

uniformly random number rti is matched to the ith cell in the population). Selection

now acts directly on free-living genomes rather than on host cells that carry multiple

cytoplasmic genomes. To modulate the degree to which free-living mutations affect fitness

(relative to cytoplasmic genomes), we include an additional parameter, sFL. For example,

the fitness of the ith cell (Ct,τζ (i) = α) under the linear fitness function in the model

that considers beneficial mutations only is

ωl,b
(
Ct,τζ (i)

)
= 1 + sb

[
αsFL
nγ

− 1

]
.

Based on these fitness values, we generate a 1-by-NFL normalized fitness vector, which

we use to choose NFL cells by multinomial sampling for the new population, as described

in section S3.2.
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