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APPENDIX A: THEORETICAL DERIVATION OF RSS
A.1. Proofs of propositions in main text. We first summarize the assumptions that are

made for the propositions in main text.

• The centered genotypes of n individuals x1, . . . ,xn
i.i.d.∼ x, where x := (x1, . . . , xp)ᵀ, E(x) = 0,

Var(x) = Σx = diag(σx)Rdiag(σx) is finite, |E(xjxkxlxm)| < ∞ for any j, k, l, m ∈ [p]. Note that
these moment assumptions are satisfied by default for genotype data.
• The additive errors ε1, . . . , εn

i.i.d.∼ ε, where E(ε) = 0 and Var(ε) = τ−1 < ∞.
• The centered phenotypes of n individuals y1, . . . , yn

i.i.d.∼ y, where y = xᵀβ + ε. For each indi-
vidual i ∈ [n], yi = xᵀi β+ εi, where xi, β and εi are mutually independent.

For all the asymptotic results, the convergence is established with n→ ∞ and p fixed.

A.1.1. Proof of Proposition 2.1. Notice that β̂ = D−2Xᵀy, Ŝ =
√

n−1yᵀy · D−1. If τ−1 = n−1yᵀy
and R̂ = R̂sam, then Ŝ−2β̂ = τXᵀy and Ŝ−1R̂Ŝ−1 = τXᵀX. When n > p, the matrix X is full column
rank and thus R̂ = R̂sam is non-singular, the full data and summary data likelihood are given by

−2 log Lmvn(β; y, X, τ) = p log(2πτ−1) + τyᵀy− 2τyᵀXβ+ τβᵀXᵀXβ,
−2 log Lrss(β; β̂, Ŝ, R̂) = p log(2π) + log |ŜR̂Ŝ|+ β̂ᵀ(ŜR̂Ŝ)−1β̂− 2β̂ᵀŜ−2β+ βᵀŜ−1R̂Ŝ−1β,

respectively, and their difference does not depend on the parameter of interest β,

(A.1) − 2[log Lrss(β; β̂, S, R)− log Lmvn(β; y, X)] = log |D−1R̂D−1| − τyᵀ[I − X(XᵀX)−1Xᵀ]y,

implying that these two likelihoods of β are equivalent.

A.1.2. Proof of Proposition 2.2. First define the statistic Tn ∈ R2p×1,

(A.2) Tn := n−1
(

∑n
i=1xi1yi, . . . , ∑n

i=1xipyi, ∑n
i=1x2

i1, . . . , ∑n
i=1x2

ip

)ᵀ
.

The asymptotic distribution of Tn is given by the multivariate Central Limit Theorem

(A.3)
√

n(Tn −µT)
d→ N (0, ΣT),

where µT := E(t), ΣT := Var(t) and t := (x1y, . . . , xpy, x2
1, . . . , x2

p)
ᵀ. Note that ΣT has finite entries

because τ−1, Σx and E(xjxkxlxm) are finite.
Next, for any ξ ∈ R2p×1, define the following function g(ξ) ∈ Rp×1:

(A.4) g(ξ) := (ξ1/ξp+1, . . . , ξp/ξ2p)
ᵀ.

Note that g(Tn) = β̂ and g(µT) = diag−2(σx)µxy = diag−1(σx)Rdiag(σx)β.
Use the multivariate Delta method to show that

(A.5)
√

n(g(Tn)− g(µT))
d→ N (0,∇ᵀg(µT)ΣT∇g(µT))

where ∇g(µT) ∈ R2p×p is the gradient matrix of g at µT. A straightforward calculation yields that

(A.6) ∇ᵀg(µT)ΣT∇g(µT) = σ2
y diag−1(σx)(R + ∆(c))diag−1(σx).

The explicit form of ∆(c) is given by

(A.7) ∆(c) := diag−1(σx) · [G1(c) + G2(c) + Gᵀ
2 (c) + G3(c)] · diag−1(σx),
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where functions Gi(c) : Rp×1 7→ Rp×p are defined as follows:

G1(c) := −(cᵀR−1c)Σx − diag(σx)ccᵀdiag(σx) + E[(xᵀdiag−1(σx)R−1c)2xxᵀ],
G2(c) := diag−1(σx)diag(c)W(c), [W(c)]ij := σx,iσ

2
x,jci − cᵀR−1diag−1(σx)E(xix2

jx),

G3(c) := diag−1(σx) diag(c) Σxx diag (c) diag−1(σx), [Σxx]ij := Cov(x2
i , x2

j ).

Notice that Gi(c) are continuous functions of c, Gi(0) = 0, and Gi(c) = O(maxj c2
j ) for i = 1, 2, 3.

A.1.3. Proof of Proposition 2.3. First note that SRS−1 = diag−1(σx)Rdiag(σx). Hence,

logN (β̂; SRS−1β, SRS)− logN (β̂; diag−1(σx)Rdiag(σx)β, n−1Σ)

=
1
2

{
log |R + ∆(c)| − log |R|+ σ−2

y λᵀdiag(σx)[(R + ∆(c))−1 − R−1]diag(σx)λ
}

,(A.8)

where λ :=
√

n(β̂− SRS−1β). Since the determinant and inverse of a matrix are both continuous,
we invoke Proposition 2.2, essentially, λ = Op(1) and ∆(c) = O(maxj c2

j ), to complete the proof.

A.1.4. Proof of Proposition 3.1. Since the matrix X is column-centered,

(A.9) V(Xβ) = n−1∑n
i=1(x

ᵀ
i β)

2 = n−1trace[(Xβ)(Xβ)ᵀ] = n−1βᵀXᵀXβ,

and therefore,

(A.10) E[V(Xβ)|S, X] = µᵀ
β · (n

−1XᵀX) ·µβ + trace[(n−1XᵀX) · Σβ],

where µβ := E(β|S) = 0 and Σβ := Var(β|S) = (πσ2
B + σ2

P) · Ip. Hence,

E[V(Xβ)] = E[E[V(Xβ)|S, X]] = (πσ2
B + σ2

P) ·∑
p
j=1E[V(Xj)] =

h
∑

p
j=1n−1s−2

j
·∑p

j=1E[V(Xj)].

From the definition of {sj} we can see that E[V(Xj)] = n−1s−2
j E[V(y)], implying that

(A.11) E[V(Xβ)] =
h

∑
p
j=1n−1s−2

j
·∑p

j=1n−1s−2
j E[V(y)] = h · E[V(y)].

A.2. Extension of RSS: data on different individuals. The RSS likelihood assumes that
the univariate summary data are computed from the same set of individuals, but this assumption
is often violated in GWAS (Section 5.1, main text). Here we modify the RSS likelihood for the
summary data generated from different individuals.

Suppose that for each SNP j, its single-SNP summary statistics {β̂ j, σ̂2
j } are computed on a pre-

defined, nonempty subset of individuals Ij ⊆ [n]:

β̂ j(Ij; Xj, y) :=
(

∑i∈Ij
x2

ij

)−1 (
∑i∈Ij

xijyi

)
,(A.12)

σ̂2
j (Ij; Xj, y) :=

(
|Ij| ·∑i∈Ij

x2
ij

)−1 [
∑i∈Ij

(
yi − xij β̂ j

)2
]

,(A.13)

where | · | denotes the cardinality of a set. Let I := {I1, . . . , Ip} and β̂(I ; X, y) ∈ Rp, whose jth
element is β̂ j(Ij; Xj, y).
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Let F̂(I ; X, y) := diag
(

f̂(I ; X, y)
)
, f̂ ∈ Rp, whose jth element is

f̂ j(Ij; Xj, y) :=

√(
∑i∈Ij

x2
ij

)−1 (
∑i∈Ij

y2
i

)
.(A.14)

Note that f̂ 2
j is the estimated ratio of phenotypic and genotypic variance at SNP j (i.e. σ2

y /σ2
x,j), and

it can be computed from the single-SNP summary statistics (A.12, A.13),

(A.15) f̂ 2
j (Ij; Xj, y) = |Ij| · σ̂2

j (Ij; Xj, y) + β̂2
j (Ij; Xj, y).

We omit the index I labeling subsets in the following discussion.
Finally we introduce a matrix H to reflect the proportions of sample overlap among different

SNPs. Specifically, the (i, j)-entry of H is defined as Hij := (|Ii| · |Ij|)−
1
2 |Ii ∩ Ij|. Note that the

diagonals of H are all 1; the other entries are between 0 and 1. For any pair of SNPs (i, j), Hij = 1
if and only if Ii = Ij (the same set of individuals); Hij = 0 if and only if Ii ∩ Ij = ∅ (two disjoint
sets of individuals).

With this in place, the modified RSS likelihood of β is given by:

(A.16) Lsubset
rss (β) := N (β̂; F̂R̂F̂−1β, N−

1
2 F̂(H ◦ R̂)F̂N−

1
2 ).

where N := diag (n), n := (|I1|, . . . , |Ip|)ᵀ, and H ◦ R̂ is the Hadamard product. Note that the
modified likelihood (A.16) includes the original RSS likelihood as a special case. To see this, when
Ij = [n] for all SNP j, F̂ =

√
nŜ, N = nIp and H is an all-one matrix, yielding

general form simple form
F̂R̂F̂−1β = ŜR̂Ŝ−1β (mean vector),(A.17)

N−
1
2 F̂(H ◦ R̂)F̂N−

1
2 = ŜR̂Ŝ (covariance matrix).(A.18)

However, the relations (A.17, A.18) do not hold when the summary data are not generated from the
same sample. These differences, especially in the mean (A.17), are often omitted by previous work.

The likelihood (A.16) is derived from the Propositions A.1 and A.2 below. Similar to the RSS like-
lihood, (A.16) is obtained by replacing the nuisance parameters {F, R} with the estimates {F̂, R̂}.

Proposition A.1. Let π := (π1, . . . , πp)ᵀ, where πj := |Ij|/n. Assume that both H and π are
non-random and do not depend on n. For any subsets I := {I1, . . . , Ip},

(A.19)
√

n(β̂(I ; X, y)− FRF−1β)
d→ N (0, Σ∗).

where Σ∗ := (Π−
1
2 F) · [H ◦ (R + ∆(c))] · (Π− 1

2 F)ᵀ, F := σydiag−1(σx), Π := diag(π) and ∆(c) is
defined by (A.7).

Proof. First define the statistic T∗n ∈ R2p×1,

(A.20) T∗n := n−1
(

∑n
i=1mi1xi1yi, . . . , ∑n

i=1mipxipyi, ∑n
i=1mi1x2

i1, . . . , ∑n
i=1mipx2

ip

)ᵀ
,

where mij := 1{i ∈ Ij}, indicating whether the genotype of Individual i is used to compute the
summary statistics of SNP j. Here we assume that the subsets {Ij} are pre-defined so that the
indicators {mij} are non-random constants.

Notice that T∗n = n−1∑n
i=1t∗i , where

t∗i := (mi1, . . . , mip, mi1, . . . , mip)
ᵀ ◦ ti(A.21)

ti := (xi1yi, . . . , xipyi, x2
i1, . . . , x2

ip)
ᵀ(A.22)
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From the proof of Proposition 2.2 (Section A.1.2), we know that ti’s are i.i.d. draws from t with
mean µT and covariance matrix ΣT. Hence, T∗n is a sum of independent but non-identical random
vectors, and its asymptotic distribution is given by the multivariate Lindeberg-Feller Central Limit
Theorem [e.g. Appendix D, Greene (2012)]

(A.23)
√

n(T∗n −µ∗T)
d→ N (0, Σ∗T),

where the asymptotic mean and covariance matrix are given by

(A.24) µ∗T := (I2 ⊗Π) ·µT, Σ∗T :=
(

J2 ⊗
(

Π
1
2 · H ·Π 1

2

))
◦ ΣT,

with I2 and J2 denoting the 2× 2 identity and all-ones matrix respectively, and ⊗ denoting their
Kronecker product.

Next, use the multivariate Delta method and to show that

(A.25)
√

n(g(T∗n )− g(µ∗T))
d→ N (0,∇ᵀg(µ∗T)Σ

∗
T∇g(µ∗T)),

where the function g(·) is defined in (A.4) and∇g(µ∗T) is the gradient of g at µ∗T. A straightforward
calculation yields that g(T∗n ) = β̂(I ; X, y), g(µ∗T) = FRF−1β and

(A.26) ∇ᵀg(µ∗T)Σ
∗
T∇g(µ∗T) = (Π−

1
2 F) · [H ◦ (R + ∆(c))] · (Π− 1

2 F)ᵀ,

where ∆(c) is defined by (A.7).

Proposition A.2. For each β ∈ Rp,

logN (β̂; FRF−1β, N−
1
2 F(H ◦ R)FN−

1
2 )− logN (β̂; FRF−1β, n−1Σ∗) = Op(maxjc2

j ).

Proof. A straightforward calculation yields that

logN (β̂; FRF−1β, N−
1
2 F(H ◦ R)FN−

1
2 )− logN (β̂; FRF−1β, n−1Σ∗)

=
1
2

{
log |H ◦ (R + ∆(c))| − log |H ◦ R|+ λᵀΠ

1
2 F−1[(H ◦ (R + ∆(c)))−1 − (H ◦ R)−1]F−1Π

1
2λ
}

,

where λ :=
√

n(β̂− FRF−1β). Since the determinant and inverse of a matrix are both continuous,
we invoke Proposition A.1, essentially, λ = Op(1) and ∆(c) = O(maxj c2

j ), to complete the proof.

A.3. Extension of RSS: imputation error. The RSS likelihood assumes that the GWAS sum-
mary data are computed at fully observed genotypes. In GWAS, however, not all SNPs are directly
assayed, and the (missing) genotypes of untyped SNPs are obtained by imputation. Here we modify
the RSS likelihood for the summary data generated from imputed genotypes.

We first outline the assumptions used in later derivations.

• The true (centered) genotypes of n individuals x∗1 , . . . ,x∗n
i.i.d.∼ x∗, where x∗ := (x∗1 , . . . , x∗p)ᵀ,

E(x∗) = 0, Var(x∗) = Σ∗x = diag(σ∗x)R∗diag(σ∗x), and σ∗x := (σ∗x,1, . . . , σ∗x,p)
ᵀ.

• The imputed (centered) genotypes of n individuals x1, . . . ,xn
i.i.d.∼ x, where x := (x1, . . . , xp)ᵀ,

E(x) = 0, Var(x) = Σx = diag(σx)Rdiag(σx), and σx := (σx,1, . . . , σx,p)ᵀ.
• The imputed and true genotypes follow the measurement error model: x = x∗ + η, where

E(η) = 0 and Var(η) = Ση. Note that the diagonal elements of Ση (i.e. variances of η) reflect
the imputation quality of each SNP. Large variance indicates that the SNP is poorly imputed.
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• The (centered) phenotypes of n individuals y1, . . . , yn
i.i.d.∼ y, where y = (x∗)ᵀβ + ε, E(ε) = 0

and Var(ε) = τ−1. Note that the coefficients β are the effects of each SNP on phenotype based
on the true genotypes, not the imputed genotypes.
• The true genotype x∗, measurement error η and residual error ε are mutually independent.
• The summary statistics {β̂, Ŝ} are computed from the imputed genotypes {xi}.

With this in place, the modified RSS likelihood of β is given by:

(A.27) Limpute
rss (β) := N (β̂; (ŜR̂Ŝ−1 − diag−2(σ̂x)Ση)β, ŜR̂Ŝ),

where R̂ and σ̂x are the estimates of R and σx respectively. Note that the modified likelihood (A.27)
includes the original RSS likelihood as a special case. This is because when all SNPs are directly
genotyped, Ση is an all-zero matrix (i.e. the measurement error η is zero).

The modified likelihood (A.27) is derived from the Propositions A.3 and A.4 below. Similar to
the RSS likelihood, the new likelihood (A.27) is obtained by replacing the nuisance parameters
{S, R,σx} with their estimates {Ŝ, R̂, σ̂x}.

Proposition A.3. Let Σ̃ := σ2
y diag−1(σx)(R + ∆̃(c))diag−1(σx).

(A.28)
√

n(β̂− diag−2(σx)(Σx − Ση)β)
d→ N (0, Σ̃),

where ∆̃(c) ∈ Rp×p is a continuous function of c and ∆̃(c) = O(maxj c2
j ).

Proof. The proof is almost identical to the proof of Proposition 2.2 (Section A.1.2). Here we only
highlight the differences.

First, g(µT) is different from Proposition 2.2. Specifically,

(A.29) g(µT) = diag−2(σx)Σ∗xβ = diag−2(σx)(Σx − Ση)β,

where the last equation holds because x∗ and η are mutually independent.
Second, ∇ᵀg(µT)ΣT∇g(µT) also has a different analytic form:

(A.30) ∇ᵀg(µT)ΣT∇g(µT) = σ2
y diag−1(σx)(R + ∆̃(c))diag−1(σx).

The explicit form of ∆̃(c) is given by

(A.31) ∆̃(c) := diag−1(σx) ·
[

G̃1(c) + G̃2(c) + G̃ᵀ
2 (c) + G̃3(c)

]
· diag−1(σx),

where functions G̃i(c) : Rp×1 7→ Rp×p are defined as follows:

G̃1(c) := −(cᵀdiag(σx)(Σ∗x)
−1diag(σx)c)Σx − diag(σx)ccᵀdiag(σx) + E[((x∗)ᵀ(Σ∗x)

−1diag(σx)c)2xxᵀ],
G̃2(c) := diag−1(σx)diag(c)W̃(c), [W̃(c)]ij := σx,iσ

2
x,jci − cᵀdiag(σx)(Σ∗x)

−1E(xix2
jx
∗),

G̃3(c) := diag−1(σx) diag(c) Σxx diag (c) diag−1(σx), [Σxx]ij := Cov(x2
i , x2

j ).

Notice that G̃i(c) are continuous functions of c, G̃i(0) = 0, and G̃i(c) = O(maxj c2
j ) for i = 1, 2, 3.

Proposition A.4. Let S := n−
1
2 σydiag−1(σx). For each β ∈ Rp,

logN (β̂; (SRS−1 − diag−2(σx)Ση)β, SRS)− logN (β̂; diag−2(σx)(Σx − Ση)β, n−1Σ̃) = Op(maxjc2
j ).

Proof. The proof is the same as the proof of Proposition 2.3; see Section A.1.3.
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APPENDIX B: DETAILS OF POSTERIOR SAMPLING SCHEME
We describe the Markov chain Monte Carlo (MCMC) algorithms in terms of {S, R}, and then

replace the unknown {S, R} with their estimates {Ŝ, R̂} in practice. This is similar to the likelihood
derivation and prior specification in main text.

B.1. Rank-based strategy. When locally updating the SNP-specific parameters (e.g. genetic
effect β j and sparsity indicator γj for each SNP j) in the MCMC algorithms, we allocate more
computational resources to SNPs with larger marginal association signals, using the rank-based
strategy (Guan and Stephens, 2011). In particular, we first rank all the variants based on the
single-SNP p-values and draw one SNP to update according to some probability distributions with
decreasing probability. In our current implementation, we use a mixture distribution qp = 0.3up +
0.7gp, where up is a discrete uniform distribution and gp is a geometric distribution truncated to
1, . . . , p with its parameter chosen to give a mean of 2000.

Based on qp, we introduce Q(·|γ), a proposal for the indicator γ. To propose a new value γ∗ given
the current value γ, we start by setting γ∗ = γ and then randomly choose one of the following:

1. With probability Pa, draw SNP r according to qp until γr = 0 and set γ∗r = 1.
2. With probability Pr, draw SNP r uniformly from {j : γj = 1} and set γ∗r = 0.
3. With probability Pe, sample two SNPs by the above two steps and switch their indicators.

The default setting in our software is Pa = Pr = 0.4, Pe = 0.2.

B.2. BVSR prior. For RSS with BVSR prior, we use Metropolis-Hastings (MH) algorithm to
obtain posterior samples of (γ, π, h) on the product space of {0, 1}p × (0, 1)× (0, 1),

(B.1) p(γ, π, h|β̂, S, R) ∝ p(β̂|S, R,γ, π, h)p(γ|π)p(π)p(h).

Here we are exploiting the fact thatβ can be integrated out analytically to compute p(β̂|S, R,γ, π, h):

(B.2) β̂|S, R,γ, π, h ∼ N (0, SRS + σ2
B MγMᵀ

γ),

where M := SRS−1 and Mγ denotes the sub-matrix of M restricted to those columns j for which
γj = 1. We update γ using the rank-based proposal Q(·|γ). We update log π by adding a random
number from U (−0.05, 0.05) to the current value, and update h by adding a random number from
U (−0.1, 0.1) to the current value. New values of log π and h outside boundaries are reflected back.

For each simulated posterior draw of (γ, π, h), we sample β according to its conditional distribu-
tions given (γ, π, h) and (β̂, S, R):

βγ |β̂, S, R,γ, π, h ∼ N (µ, Ω−1),(B.3)
β−γ |β̂, S, R,γ, π, h ∼ δ0,(B.4)

where βγ and β−γ denote the subsets of β corresponding to the entries that γj = 1 and 0 respec-
tively, δ0 denotes the point mass at zero and,

Ω := Mᵀ
γ(SRS)−1Mγ + σ−2

B (γ, π, h)I|γ|,(B.5)
µ := Ω−1Mᵀ

γ(SRS)−1β̂.(B.6)

The marginal likelihood (B.2), up to some constant, can be written in terms of (Ω,µ),

(B.7) p(β̂|S, R,γ, π, h) ∝ σ
−|γ|
B |Ω|−1/2 exp{µᵀqγ/2},

where qγ denotes the subset of q := S−1β corresponding to the entries that γj = 1. The matrix
computation in a single step of the MCMC algorithm above involves one Cholesky decomposition of
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Ω and three triangular linear systems. Hence, the computational cost for each iteration of MCMC
is O(|γ|3 + 3|γ|2), where |γ| denotes the number of non-zero entries in γ.

To improve precision, we can use Rao-Blackwellized estimates (Casella and Robert, 1996; Guan
and Stephens, 2011). For SPIP, we have

Pr(γj = 1|β̂, S, R) = E(Pr(γj = 1|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1Pr(γj = 1|β̂, S, R, ξ(i)−j)

where ξ−j stands for
{
β−j,γ−j, π, h

}
, γ−j and β−j denote the vectors γ and β excluding the jth

coordinate and ξ(i)−j denotes the ith MCMC sample from the posterior distribution of ξ−j. For the
posterior mean of the multiple-SNP effect at SNP j, we have

E(β j|β̂, S, R) = E(E(β j|β̂, S, R, ξ−j)) ≈ M−1∑M
i=1E(β j|β̂, S, R, γj = 1, ξ(i)−j)Pr(γj = 1|β̂, S, R, ξ(i)−j).

To obtain the Rao-Blackwellized estimates, we only need p(γj|β̂, S, R, ξ−j) and p(β j|β̂, S, R, γj, ξ−j):

Pr(γj = 1|β̂, S, R, ξ−j)

Pr(γj = 0|β̂, S, R, ξ−j)
=

π

1− π

√√√√ s2
j

s2
j + σ2

B
exp

 1
2(σ−2

B + s−2
j )

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)2


β j|β̂, S, R, γj = 1, ξ−j ∼ N
(

1
σ−2

B + s−2
j

(
β̂ j

s2
j
−∑

i 6=j

rijβi

sisj

)
,

1
σ−2

B + s−2
j

)
β j|β̂, S, R, γj = 0, ξ−j ∼ δ0

where rij is the (i, j)-th entry of R.

B.3. BSLMM prior. We propose a component-wise MCMC algorithm for RSS with BSLMM
prior. First, we re-parameterize the multiple-SNP effect sizes β j as follows

β j|γj = 1, π, h, ρ, S =
√

σ2
B + σ2

P · β̃ j(B.8)
β j|γj = 0, π, h, ρ, S = σP · β̃ j(B.9)

where the standardized effect sizes β̃ j
i.i.d.∼ N (0, 1), for j ∈ {1, . . . , p}. Equivalently,

(B.10) β = Bβ̃, β̃ ∼ N (0, Ip)

where the scaling matrix B is diagonal with the jth diagonal bj defined as

(B.11) bj = σP1{γj = 0}+
√

σ2
B + σ2

P1{γj = 1}.

The new parameterization could help speed up the convergence of MCMC, since β̃ are independent
with (γ, π, h, ρ) a priori. We then draw posterior samples of (β̃,γ, π, h, ρ) iteratively.
• Given (β̃, π, h, ρ), we update γ by a standard MH algorithm, where the proposal is Q(·|γ).
• Given (γ, π, h, ρ), we update β̃ by a mixture of global and local moves. With probability Pg, we

draw a new value of β̃ from its full conditional,

(B.12) β̃|β̂, S, R,γ, π, h, ρ ∼ N ((BS−1RS−1B + I)−1BS−2β̂, (BS−1RS−1B + I)−1).

With probability 1− Pg, we randomly pick a SNP j according to the distribution qp and draw
β̃ j from its full conditional

(B.13) β̃ j|β̂, S, R, β̃−j,γ, π, h, ρ ∼ N
(

bjsj`j

s2
j + b2

j
,

s2
j

s2
j + b2

j

)
, `j :=

β̂ j

sj
−∑

i 6=j

rijbi β̃i

si
.
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• Given (β̃,γ, h, ρ), we update π by a Metropolis algorithm, where the proposal is symmetric
Gaussian random walks on log((π − p−1)/(1− π)).
• Given (β̃,γ, π, ρ), we update h by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(h/(1− h)).
• Given (β̃,γ, π, h), we update ρ by a Metropolis algorithm, where the proposal is symmetric

Gaussian random walks on log(ρ/(1− ρ)).
The most computationally intensive step is drawing β̃ from a p-dimensional multivariate nor-
mal distribution (B.12). For each draw, one Cholesky decomposition of BS−1RS−1B + I and two
triangular linear systems are required. Since matrix R is banded with some bandwidth w (Wen
and Stephens, 2010), the matrix BS−1RS−1B + I also has the same bandwidth and therefore, the
per-iteration cost of the algorithm above is at most O(pw2 + 2p2). For all the simulations, we set
Pg = 0.051. For the analysis of height data, we set Pg = 0.001 (the default value in our software).

B.4. Small world proposal. To improve the convergence rate of the MCMC schemes, we use
the “small-world” proposal (Guan and Krone, 2007) as an add-on for every Metropolis step in our
main algorithms above. Specifically, with probability 0.3 in each iteration, a long-range move is
made by compounding randomly many (from 2 to 20) local proposals.

APPENDIX C: CONNECTION WITH LD SCORE REGRESSION
The LD score regression model (Bulik-Sullivan et al., 2015) is given by,

(C.1) E(χ2
j |`j) = nh2`j/p + na + 1,

where n is the sample size, p is the number of SNPs, h2/p is the heritability per SNP, a is the
contribution of confounding biases per individual, χ2

j := (β̂ j/sj)
2 is the single-SNP association χ2

statistic and `j := ∑
p
k=1r2

jk is the “LD score” of SNP j (rjk is the pairwise LD between SNP j and k).
To draw the connection between the LD score regression and RSS, we consider

(C.2) β̂|S, R,β ∼ N (SRS−1β, SRS + na · S2),

which is a generalization of RSS accounting for possible over-dispersion in real data. When a = 0,
model (C.2) becomes the original RSS. Let z = (z1, . . . , zp)ᵀ, where zj := β̂ j/sj is the single-SNP
z-score of SNP j and z2

j = χ2
j . Noting that z = S−1β̂, we rewrite (C.2) in terms of z-scores,

(C.3) z|S, R,β ∼ N (RS−1β, R + na · Ip).

Next, we specify the following prior on β:

(C.4) p(β|S, R) = ∏
p
j=1 p(β j|S, R), E(β j|S, R) = 0, Var(β j|S, R) = nh2s2

j /p.

Since sj := (
√

nσx,j)
−1σy, the the prior variance of β j is (pσ2

x,j)
−1(h2σ2

y ) and thus prior (C.4) does not
depend on the sample size n.

Integrating out β under prior (C.4), we obtain the LD score regression model:

E(z2
j |S, R) = E(Var(zj|S, R,β)) + E(E2(zj|S, R,β))

= 1 + na + ∑
p
k=1r2

jks−2
k E(β2

k|S, R) + ∑k 6=`rjkrj`s−1
k s−1

` E(βkβ`|S, R)

= 1 + na + (nh2/p)∑p
k=1r2

jk.(C.5)
1The large value of Pg in simulations increases the computation time of RSS-BSLMM; see Supplementary Figure 5.
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APPENDIX D: LEAVE-ONE-OUT RESIDUAL IMPUTATION
We define the marginally standardized error of β̂ as e := S−1(β̂ − SRS−1β). When the RSS

likelihood is correctly specified, e ∼ N (0, R). For each i ∈ [p], the univariate complete conditional
distribution of the ith entry of e is also normal:

(D.1) ei|e−i ∼ N
(
−v−1

ii ∑i 6=jvijej, v−1
ii

)
,

where vij is the (i, j)-entry of matrix V, V := R−1. The conditional distribution (D.1) provides us a
way to impute the error of SNP i based on the errors of other SNPs. Furthermore, we can evaluate
the quality of imputation using the z-score:

(D.2) zi(e) :=
ei − E(ei|e−i)√

Var(ei|e−i)
=
√

vii

(
ei + v−1

ii ∑i 6=jvijej

)
∼ N (0, 1).

The error e is not observed because of the unknown true effect β. Instead, we can only calculate
the marginally standardized residual of β̂, ẽ := S−1(β̂− SRS−1β̃), where β̃ is the posterior estimate
of β obtained from the MCMC. We perform the leave-one-out imputation (D.1) on the residual ẽ.
The corresponding z-scores {zi(ẽ)} empirically measure the goodness of fit, and thus can be used
to filter out SNPs that may be misspecified in the RSS likelihood.
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APPENDIX E: SUPPLEMENTARY TABLES AND FIGURES
Supplementary Table 1. Full names, abbreviations and the corresponding references of the

GWAS phenotypes that are listed in main text (Table 1).

Phenotype (abbreviation) Reference
Adult human height Lango Allen et al. (2010)
Adult human height Wood et al. (2014)
Body mass index (BMI) Locke et al. (2015)
Waist-to-hip ratio adjusted for BMI (WHRadjBMI) Shungin et al. (2015)
High-density lipoprotein (HDL) Teslovich et al. (2010)
HDL Global Lipids Genetics Consortium (2013)
Low-density lipoprotein (LDL) Teslovich et al. (2010)
LDL Global Lipids Genetics Consortium (2013)
Total cholesterol (TC) Teslovich et al. (2010)
TC Global Lipids Genetics Consortium (2013)
Triglycerides (TG) Teslovich et al. (2010)
TG Global Lipids Genetics Consortium (2013)
Cigarettes per day Tobacco and Genetics Consortium (2010)
Smoking age of onset Tobacco and Genetics Consortium (2010)
Ever versus never smoked Tobacco and Genetics Consortium (2010)
Current versus former smoker Tobacco and Genetics Consortium (2010)
Years of educational attainment Rietveld et al. (2013)
College completion or not Rietveld et al. (2013)
Depressive Okbay et al. (2016)
Neuroticism Okbay et al. (2016)
Schizophrenia Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014)
Alzheimer Lambert et al. (2013)
Coronary artery disease (CAD) Schunkert et al. (2011)
Type 2 diabetes (T2D) Morris et al. (2012)
Haemoglobin van der Harst et al. (2012)
Mean cell haemoglobin (MCH) van der Harst et al. (2012)
Mean cell haemoglobin concentration (MCHC) van der Harst et al. (2012)
Mean cell volume (MCV) van der Harst et al. (2012)
Packed cell volume (PCV) van der Harst et al. (2012)
Red blood cell count (RBC) van der Harst et al. (2012)
Fasting glucose adjusted for BMI (FGadjBMI) Manning et al. (2012)
Fasting insulin adjusted for BMI (FIadjBMI) Manning et al. (2012)
Heart rate Den Hoed et al. (2013)
Serum urate Köttgen et al. (2013)
Gout Köttgen et al. (2013)
Rheumatoid arthritis (RA) Okada et al. (2014)
Inflammatory bowel disease (IBD) Liu et al. (2015)
Crohn’s disease (CD) Liu et al. (2015)
Ulcerative colitis (UC) Liu et al. (2015)
CAD Nikpay et al. (2015)
Myocardial infarction (MI) Nikpay et al. (2015)
Age at natural menopause (ANM) Day et al. (2015)
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Supplementary Table 2. Linear relationship between the estimated PVE (SNP heritability)
of each chromosome and the chromosome length (unit: Mb) for adult human height (Wood et al.,
2014). Shown are the simple linear regression analyses with and without intercept.

Estimate Std. Error t value p value
Intercept −6.505× 10−3 5.022× 10−3 −1.295 0.21
Length 2.379× 10−4 3.581× 10−5 6.644 1.81× 10−6

(a) RSS-BVSR
Estimate Std. Error t value p value

Intercept 2.189× 10−4 2.639× 10−3 0.083 0.94
Length 1.854× 10−4 1.882× 10−5 9.853 4.06× 10−9

(b) RSS-BSLMM
Estimate Std. Error t value p value

Length 1.961× 10−4 1.574× 10−5 12.460 3.62× 10−11

(c) RSS-BVSR
Estimate Std. Error t value p value

Length 1.868× 10−4 7.943× 10−6 23.520 < 2× 10−16

(d) RSS-BSLMM
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Supplementary Table 3. Estimated PVE (SNP heritability) of each chromosome for human
adult height (Wood et al., 2014). The chromosome length is defined as the distance between the first
and the last analyzed SNPs on each chromosome, in Megabases (Mb). The restricted maximum
likelihood (REML) estimates h2

C were obtained from the individual-level data of three GWAS of
height (number of SNPs: 593,521-687,398; sample size: 6,293-15,792); see Supplementary Table 2
of Yang et al. (2011). The RSS results were summarized as the posterior median and 95% credible
intervals (C.I.s).

Chr. Length (Mb) REML RSS-BVSR RSS-BSLMM
h2

C se(h2
C) Median 95% C.I. Median 95% C.I.

1 246.42 0.0377 0.0088 0.0633 [0.0600, 0.0678] 0.0489 [0.0395, 0.0511]
2 242.56 0.0513 0.0094 0.0438 [0.0417, 0.0475] 0.0459 [0.0408, 0.0583]
3 199.30 0.0354 0.0084 0.0334 [0.0308, 0.0402] 0.0362 [0.0294, 0.0394]
4 191.11 0.0310 0.0079 0.0687 [0.0656, 0.0716] 0.0322 [0.0305, 0.0338]
5 180.54 0.0233 0.0078 0.0254 [0.0191, 0.0289] 0.0270 [0.0249, 0.0336]
6 170.64 0.0314 0.0079 0.0334 [0.0311, 0.0361] 0.0363 [0.0298, 0.0383]
7 158.67 0.0147 0.0069 0.0386 [0.0309, 0.0414] 0.0345 [0.0328, 0.0363]
8 146.11 0.0166 0.0068 0.0178 [0.0153, 0.0197] 0.0240 [0.0199, 0.0257]
9 140.15 0.0160 0.0067 0.0186 [0.0153, 0.0312] 0.0318 [0.0292, 0.0336]
10 135.19 0.0196 0.0071 0.0146 [0.0112, 0.0172] 0.0205 [0.0185, 0.0225]
11 134.25 0.0181 0.0064 0.0147 [0.0117, 0.0165] 0.0191 [0.0170, 0.0207]
12 132.26 0.0199 0.0067 0.0332 [0.0294, 0.0361] 0.0319 [0.0281, 0.0339]
13 96.18 0.0139 0.0061 0.0098 [0.0075, 0.0112] 0.0120 [0.0109, 0.0131]
14 87.01 0.0183 0.0060 0.0157 [0.0141, 0.0198] 0.0144 [0.0130, 0.0160]
15 81.88 0.0284 0.0064 0.0239 [0.0194, 0.0319] 0.0245 [0.0225, 0.0260]
16 88.66 0.0129 0.0058 0.0113 [0.0089, 0.0132] 0.0131 [0.0120, 0.0143]
17 78.61 0.0190 0.0060 0.0195 [0.0169, 0.0211] 0.0253 [0.0198, 0.0270]
18 76.11 0.0080 0.0054 0.0046 [0.0039, 0.0055] 0.0069 [0.0060, 0.0079]
19 63.57 0.0067 0.0045 0.0109 [0.0095, 0.0120] 0.0150 [0.0136, 0.0162]
20 62.37 0.0185 0.0058 0.0098 [0.0082, 0.0109] 0.0111 [0.0100, 0.0155]
21 36.88 0.0000 0.0037 0.0036 [0.0029, 0.0045] 0.0044 [0.0038, 0.0051]
22 35.13 0.0080 0.0040 0.0042 [0.0033, 0.0049] 0.0057 [0.0044, 0.0067]
Total 0.4487 0.0290 0.5238 [0.5035, 0.5449] 0.5209 [0.5027, 0.5390]
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Supplementary Table 4. Summary of results of analyzing human height summary data
(Wood et al., 2014) via RSS methods.

(a) Total PVE (SNP heritability) estimates and 95% credible intervals.

RSS-BVSR RSS-BSLMM
All SNPs 52.4%, [50.4%, 54.5%] 52.1%, [50.3%, 53.9%]
Filtered SNPs, LOO |z|-score ≤ 2 34.0%, [32.9%, 35.0%] 45.3%, [44.7%, 46.0%]
Filtered SNPs, LOO |z|-score ≤ 3 35.3%, [34.2%, 36.3%] 48.2%, [47.5%, 48.9%]

(b) The number of ±40-kb regions around the genome-wide significant SNPs (GWAS hits) re-
ported in Wood et al. (2014) that are identified by RSS-BVSR (estimated ENS ≥ 1).

All 697 GWAS hits Included 384 GWAS hits
All SNPs 531 371
Filtered SNPs, LOO |z|-score ≤ 2 532 373
Filtered SNPs, LOO |z|-score ≤ 3 540 370

(c) The number of ±40-kb regions in the whole genome that are identified by RSS-BVSR (esti-
mated ENS ≥ 1), and the putatively new regions (estimated ENS ≥ 1, and at least 1 Mb away from
the 697 previously reported GWAS hits).

All regions Putatively new regions
All SNPs 5194 2138
Filtered SNPs, LOO |z|-score ≤ 2 6426 2798
Filtered SNPs, LOO |z|-score ≤ 3 6848 3079
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Supplementary Table 5. Putatively new loci identified by RSS-BVSR analyses that were as-
sociated with adult human height (estimated ENS > 3). Table columns from left to right are: (1)
chromosome number; (2) starting position of the ±40-kb region; (3) ending position of the region;
(4) estimated ENS; (5) the nearest genome-wide significant SNP reported by Wood et al. (2014); (6)
the physical distance to the nearest GWAS hit, in Megabases (Mb); (6) the nearest neighbor genes;
(7) the relationship between the region and the nearest gene. The nearest genes to genomic regions
are found and annotated by the function matchGenes in the package bumphunter (Jaffe et al., 2012).
All SNP information and genomic positions are based on Human Genome Assembly 19 (Genome
Reference Consortium GRCh37).

(a) Using summary data of all SNPs (1,064,575).

Chr. Start End ENS Nearest Hit Distance (Mb) Nearest Gene Annotation
5 86116344 86196344 5.22 rs6894139 2.13 COX7C downstream
5 86156344 86236344 4.74 rs6894139 2.09 MIR4280 downstream
16 10715041 10795041 4.03 rs1659127 3.59 TEKT5 covers
16 78795041 78875041 3.83 rs4243206 2.71 WWOX inside intron
16 78835041 78915041 3.83 rs4243206 2.67 WWOX inside intron
22 43637135 43717135 3.78 rs11090631 2.13 SCUBE1 covers exon(s)
22 43597135 43677135 3.71 rs11090631 2.17 SCUBE1 overlaps 3’
12 85911619 85991619 3.67 rs17783015 4.24 RASSF9 downstream
19 57923127 58003127 3.55 rs2059877 9.73 ZNF419 overlaps 5’
8 6364984 6444984 3.54 rs4875421 1.54 MCPH1 inside intron
19 15723127 15803127 3.50 rs8103068 1.72 CYP4F12 overlaps 5’
20 821795 901795 3.41 rs7273787 3.20 FAM110A covers
16 73755041 73835041 3.39 rs11640018 1.49 LINC01568 downstream
16 19275041 19355041 3.33 rs2023693 1.52 CLEC19A covers
16 80315041 80395041 3.31 rs4243206 1.19 DYNLRB2 upstream
12 85871619 85951619 3.31 rs17783015 4.28 ALX1 downstream
20 50181795 50261795 3.31 rs6020202 1.55 ATP9A overlaps 3’
17 14612467 14692467 3.25 rs8069300 2.63 CDRT7 upstream
19 52003127 52083127 3.16 rs2059877 3.81 SIGLEC6 covers
19 57963127 58043127 3.10 rs2059877 9.77 ZNF419 covers
12 30791619 30871619 3.05 rs10843390 1.29 CAPRIN2 overlaps 3’
16 19235041 19315041 3.04 rs2023693 1.56 CLEC19A overlaps 5’
16 55075041 55155041 3.02 rs8058684 1.56 IRX5 downstream
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(b) Using summary data of filtered SNPs based on LOO residual imputation.

Using the 938,798 SNPs with absolute LOO imputation |z|-score ≤ 2
Chr. Start End ENS Nearest Hit Distance (Mb) Nearest Gene Annotation
22 43637135 43717135 4.23 rs11090631 2.13 SCUBE1 covers exon(s)
16 73755041 73835041 3.93 rs11640018 1.49 LINC01568 downstream
22 43597135 43677135 3.91 rs11090631 2.17 SCUBE1 overlaps 3’
19 54683127 54763127 3.61 rs2059877 6.49 LILRA6 overlaps 3’
19 723127 803127 3.58 rs11880992 1.37 PTBP1 overlaps 5’
15 91561372 91641372 3.45 rs2238300 1.71 VPS33B overlaps 5’
16 79275041 79355041 3.43 rs4243206 2.23 WWOX downstream
17 10852467 10932467 3.13 rs8069300 1.05 PIRT upstream
21 41206282 41286282 3.09 rs2211866 1.52 PCP4 overlaps 5’
17 50252467 50332467 3.09 rs4605213 1.01 CA10 upstream
16 79315041 79395041 3.08 rs4243206 2.19 WWOX downstream
17 71092467 71172467 3.07 rs10083886 1.17 SSTR2 covers
19 15723127 15803127 3.07 rs8103068 1.72 CYP4F12 overlaps 5’
16 55075041 55155041 3.04 rs8058684 1.56 IRX5 downstream
17 17052467 17132467 3.02 rs4640244 4.15 MPRIP covers

Using the 1,018,617 SNPs with absolute LOO imputation |z|-score ≤ 3
Chr. Start End ENS Nearest Hit Distance (Mb) Nearest Gene Annotation
22 43597135 43677135 4.57 rs11090631 2.17 SCUBE1 overlaps 3’
22 43637135 43717135 4.44 rs11090631 2.13 SCUBE1 covers exon(s)
16 73755041 73835041 4.08 rs11640018 1.49 LINC01568 downstream
19 52123127 52203127 4.02 rs2059877 3.93 SIGLEC5 overlaps 5’
17 75492467 75572467 3.97 rs1552173 1.15 SEPT9 overlaps 3’
19 1043127 1123127 3.97 rs11880992 1.05 POLR2E covers
19 15723127 15803127 3.93 rs8103068 1.72 CYP4F12 overlaps 5’
19 54683127 54763127 3.85 rs2059877 6.49 LILRA6 overlaps 3’
16 78835041 78915041 3.82 rs4243206 2.67 WWOX inside intron
19 52163127 52243127 3.80 rs2059877 3.97 MIR99B covers
16 78795041 78875041 3.75 rs4243206 2.71 WWOX inside intron
8 3564984 3644984 3.70 rs4875421 1.18 CSMD1 inside intron
17 1612467 1692467 3.59 rs870183 1.01 MIR22HG covers
21 41246282 41326282 3.58 rs2211866 1.56 PCP4 overlaps 3’
10 5978481 6058481 3.57 rs4332428 1.01 FBXO18 overlaps 3’
14 94785431 94865431 3.45 rs7154721 2.36 SERPINA6 overlaps 5’
17 9092467 9172467 3.42 rs8067165 1.06 STX8 overlaps 3’
19 14923127 15003127 3.42 rs8103068 2.52 OR7A10 covers
16 79035041 79115041 3.40 rs4243206 2.47 WWOX inside intron
17 3932467 4012467 3.40 rs870183 3.33 ZZEF1 overlaps 3’
19 51283127 51363127 3.39 rs2059877 3.09 ACPT covers
19 1083127 1163127 3.37 rs11880992 1.01 POLR2E covers
17 5692467 5772467 3.34 rs9217 1.59 LOC339166 covers exon(s)
15 96121372 96201372 3.30 rs7181724 1.57 LINC00924 downstream
19 15763127 15843127 3.25 rs8103068 1.68 CYP4F12 covers
16 12635041 12715041 3.22 rs1659127 1.67 SNX29 overlaps 3’
16 12675041 12755041 3.18 rs1659127 1.63 CPPED1 overlaps 3’
8 3524984 3604984 3.16 rs4875421 1.22 CSMD1 covers exon(s)
21 41206282 41286282 3.15 rs2211866 1.52 PCP4 overlaps 5’
17 35172467 35252467 3.15 rs2338115 1.68 LHX1 upstream
17 6252467 6332467 3.13 rs9217 1.03 AIPL1 overlaps 3’
17 1652467 1732467 3.10 rs870183 1.05 SERPINF2 overlaps 3’
22 34197135 34277135 3.09 rs2413143 1.14 LARGE covers exon(s)
17 75532467 75612467 3.08 rs1552173 1.11 LOC100507351 covers
17 14612467 14692467 3.06 rs8069300 2.63 CDRT7 upstream
17 75012467 75092467 3.05 rs1552173 1.63 SCARNA16 covers
16 65875041 65955041 3.04 rs1966913 1.43 LINC00922 upstream
17 52932467 53012467 3.04 rs11867943 1.22 TOM1L1 overlaps 5’
17 55852467 55932467 3.00 rs1401795 1.01 MRPS23 covers
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Supplementary Table 6. Computation time (hour:minute:second) of RSS-BVSR and RSS-
BSLMM in the analyses of adult human height data (Wood et al., 2014). Computations were per-
formed on a single core of Intel E5-2670 2.6GHz or AMD Opteron 6386 SE, with 2 million MCMC
iterations per chromosome.

Chr. # of SNPs RSS-BVSR RSS-BSLMM
1 86924 08:50:41 18:49:15
2 94042 16:27:26 31:33:12
3 76481 01:34:58 34:30:41
4 67627 05:42:59 15:02:51
5 67452 15:01:51 29:39:41
6 60268 03:39:18 24:32:09
7 59740 02:59:43 17:06:43
8 58361 14:59:04 28:19:17
9 52633 11:28:05 20:57:16
10 58236 28:16:28 24:40:29
11 52180 21:12:16 21:43:08
12 51123 02:02:10 18:35:34
13 43464 07:45:23 20:33:17
14 37540 01:02:52 16:32:27
15 34726 08:31:56 15:47:45
16 32260 08:43:07 10:44:12
17 25533 15:33:12 09:04:38
18 31596 05:24:35 13:50:00
19 17507 16:50:13 04:18:35
20 25983 05:58:52 08:31:22
21 15300 01:51:53 04:30:42
22 15599 02:04:01 05:55:55

(a) All SNPs (1,064,575).

Chr. # of SNPs RSS-BVSR RSS-BSLMM
1 75746 05:07:03 19:26:49
2 83175 05:54:35 24:53:23
3 67258 05:42:02 24:44:39
4 59391 18:44:43 15:51:33
5 59886 04:35:35 18:27:03
6 52539 05:00:59 15:41:28
7 52739 27:20:38 13:40:14
8 52067 18:32:13 35:38:15
9 46720 05:49:21 14:34:32
10 51038 25:59:36 35:41:12
11 46036 23:03:39 35:40:52
12 44721 03:59:24 28:02:50
13 38644 04:31:00 13:58:33
14 33118 18:32:42 12:22:30
15 30644 28:49:42 10:03:44
16 28770 16:10:05 13:06:48
17 25533 16:50:20 05:57:31
18 22337 04:40:37 08:58:16
19 15267 05:49:31 03:00:28
20 23086 03:31:40 05:51:34
21 13663 02:52:47 04:40:02
22 13674 02:14:44 05:20:14

(b) Filtered SNPs (absolute LOO imputation |z|-score ≤ 2).

Chr. # of SNPs RSS-BVSR RSS-BSLMM
1 82625 05:20:16 26:37:00
2 90263 03:40:14 29:57:33
3 73042 04:58:29 35:41:18
4 64605 20:10:46 19:51:18
5 64869 05:22:55 27:45:49
6 57241 03:05:23 18:44:27
7 57243 04:43:04 16:08:54
8 56139 33:10:26 35:35:08
9 50555 05:53:44 15:32:51
10 55544 28:07:26 35:36:17
11 49893 24:21:42 35:36:44
12 48770 05:26:07 35:36:09
13 41685 15:52:05 35:36:03
14 36012 22:36:37 27:39:27
15 33203 18:27:45 29:00:33
16 31008 22:47:40 29:01:19
17 24322 19:59:12 07:01:32
18 30449 03:54:09 21:05:19
19 16595 10:26:02 03:26:06
20 24956 04:17:32 06:15:45
21 14755 02:13:41 05:24:09
22 14843 03:00:16 06:36:39

(c) Filtered SNPs (absolute LOO imputation |z|-score ≤ 3).
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Supplementary Figure 1. Comparison of true PVE and Summary PVE (SPVE) given the true
β. The true PVE is computed from the true values of {β, τ} and the individual-levle data {X, y}. The
SPVE is computed from the trueβ, the summary-level data {β̂ j, σ̂2

j } and the estimated LD matrix R̂.
The simulated genotypes consist of 10,000 independent SNPs from 1000 individuals, so R̂ is set as
identity matrix; The real genotypes are 10,000 correlated SNPs randomly drawn from Chromosome
16 (WTCCC UK Blood Service control group, 1458 individuals), and R̂ is estimated from WTCCC
1958 British Birth Cohort (1480 individuals) and HapMap CEU genetic maps using the shrinkage
method in Wen and Stephens (2010). Solid dots indicate sample means of 200 replicates; vertical
bars indicate symmetric 95% intervals; orange line indicates the reference line with intercept 0
and slope 1. The tables summarize the RMSEs between SPVE and true PVE.
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Supplementary Figure 2. Comparison of PVE estimation and association detection on three
types of LD matrix: cohort sample LD (RSS-C), shrinkage panel sample LD (RSS) and panel sample
LD (RSS-P). The simulation schemes and statistical methods are the same as Figure 1 in main text,
except that the true PVE is 0.02 and 0.002 respectively.

(a) True PVE: 0.02 (b) True PVE: 0.02

(c) True PVE: 0.002 (d) True PVE: 0.002
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Supplementary Figure 3. Distribution of maxj log10(ĉ
2
j ) in all the simulated datasets used in

main text. For each SNP j ∈ [p], ĉj := (||y|| · ||Xj||)−1(Xᵀ
j y) is the sample correlation between phe-

notype (y) and genotype of SNP j (Xj), and it can be computed from the single-SNP summary data,
ĉ2

j = (nσ̂2
j + β̂2

j )
−1 β̂2

j . The simulations use the real genotypes of 12,758 (p) SNPs on Chromosome
16 from 1,458 (n) individuals. The shaded area in the following plots corresponds to the 60%-90%
quantile of maxj log10(ĉ

2
j ) across 42 complex traits listed in main text (Table 1). This helps us iden-

tify which simulations have “realistic” maxj log10(ĉ
2
j ) values that are close to real GWAS datasets.

(a) Scenario 1.1 (b) Scenario 2.1, true PVE 0.2 (c) Scenario 2.1, true PVE 0.6

(d) Scenario 1.2 (e) Scenario 2.2, true PVE 0.2 (f) Scenario 2.2, true PVE 0.6
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Supplementary Figure 4. Comparison of PVE estimation and association detection based on
{σ̂2

j } and {ŝ2
j } respectively. The RSS-BVSR models are fitted on the Scenario 2.1 simulated datasets

in main text, with Ŝ defined by {σ̂2
j } and {ŝ2

j } respectively.

(a) Comparison of PVE estimation. Left panel: Relative RMSE for each method is reported (percentages on
top of box plots). The true PVE are shown as the solid horizontal line. Each box plot summarizes results
from 20 replicates. Right panel: Each point corresponds to one simulated dataset. The reference line has
intercept 0 and slope 1.

(b) Comparison of association detection. The associations are evaluated at the 200-kb region level. A region
is causal if and only if it contains at least one causal SNP.
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Supplementary Figure 5. Computation time, in hours, of RSS-BVSR and RSS-BSLMM in
the simulation studies in main text (Section 4). For each simulated dataset and method, the com-
putation was performed on a single core of Intel E5-2670 2.6GHz, with 2 million MCMC iterations.
There are 50 replicates in Scenario 1.1 and 1.2, and 20 replicates in Scenario 2.1 and 2.2. The com-
putation time of RSS-BSLMM in simulations is longer than real data analysis (Supplementary
Table 6) because a larger Pg was used; see Appendix B.3 for details.

(a) Scenario 1.1 (b) Scenario 2.1, true PVE 0.2 (c) Scenario 2.1, true PVE 0.6

(d) Scenario 1.2 (e) Scenario 2.2, true PVE 0.2 (f) Scenario 2.2, true PVE 0.6
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Supplementary Figure 6. Simulations show that PVE estimation can be biased when RSS
methods are applied to the summary data that are not generated from the same sample. Here the
summary data are generated as follows. For each simulated individual-level dataset (Scenario 2.1,
true PVE = 0.2 and T = 1000), we first randomly draw 10% of SNPs. For each of these SNPs,
we randomly draw 50% of individuals and use their data to compute the single-SNP summary
statistics. For the rest of SNPs, their summary statistics are computed from all individuals.
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Supplementary Figure 7. Summary of sample sizes and maximum squared correlations (r2)
for the 1,064,575 analyzed SNPs from the human height summary dataset (Wood et al., 2014).
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Supplementary Figure 8. SNP filtering based on sample sizes can lead to conservative re-
sults if the sample size cut-off is too high. Below are the results of fitting RSS-BVSR to the human
height summary data (Wood et al., 2014) on Chromosome 16, using all 32,260 SNPs and the 17,721
SNPs with sample size greater than or equal to 250,000, respectively. The cut-off 250,000 may
ensure that the summary data of the filtered SNPs are approximately generated from the same
sample, but it removes almost half of SNPs on Chromosome 16, which further reduces the PVE
estimates and association signals.
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Supplementary Figure 9. Distributions of single-SNP z-scores from the human height GWAS
(Wood et al., 2014). Each panel below contains the GWAS z-score distribution of SNPs that pass
the leave-one-out (LOO) residual diagnostic filter (red solid curve), and the z-score distribution of
SNPs that do not pass the filter (green dash curve).
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