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Supporting Information
Part A of the SI contains a detailed description of the experimental methods, materials and additional
data. Part B contains derivation and analysis of the mathematical models.

Part A

A1 Constructions of activation cascades
The CAS-1 plasmid (see Figure S1) was constructed using the vector J86001 [1] as a scaffold in
a three-step process using isothermal assemble [2]. First, the constitutive promoter of the GFP
module in J86001 was replaced by the sal promoter. This was achieved by the successive addition
of the core region of the promoter by PCR amplifying J86001 with oligonucletides Psal5 and Psal3
,and the operator regions of the promoter amplifying the product of the previous PCR with com-
plementary oligonucleotides Psal2 5 and Psal2 3 to render pPSalC. In a second step, the rfp gene
in pPSalC was replaced by the nahR gene. Both fragments, the plasmid scaffold using the template
pPSalC and oligonucleotides J87001 2 5 and J87001 2 3 and the insert nahR using the BioBrick
Part BBa K598026 as a template and oligonucleotides NahR5/NahR3 were assembled as the vector
J87001. Third, the origin of replication of J87001 was replaced with the ColE2 origin, resulting in
the CAS-1 plasmid: the ColE2 origin was amplified from the plasmid pFM371 (gift from Felix Moser,
MIT) with oligonucleotides ColE2 5/ColE2 3, and the J87001 was amplified with oligonucleotides
J88001 5 and J88001 3. The CAS-0.3 plasmid was obtained after PCR amplification of CAS-1 plas-
mid with the overlapping oligonucleotides J93032-5 and J93032-3 designed to replace the ribosome
binding site (RBS) BBa B0034 of nahR gene with a weaker variant BBa B0032. To tune the copy
number of a plasmid, the CAS-1 and CAS-0.3 plasmids were transformed into E. coli DIAL JTK160
J and H strains to create the four activation cascades CAS 1/60, CAS 1/30, CAS 0.3/60, and CAS
0.3/30. A ColE2 plasmid in the DIAL J and H strains has around 60 and 30 copies, respectively, in
exponential growth [3].

Primers for cloning an activation cascade were listed in FASTA format as followed.
>Psal5
ccgttatcgttattaacaagtcatcaataaagccatcacgagtaccatagtactagagaaagaggagaaatactagatgcgtaaaggaga
>Psal3
ctttattgatgacttgttaataacgataacggagcaaacaatattgataaatactctagtatggtgcaaaacctttcgcggtatggcatg
>Psal2 5
ccgggcgcaatattcatgttgatgatttattatatatcgagtggtgtatttatcaatattgtttgctccgttatcgttattaacaagtc
>Psal2 3
caccactcgatatataataaatcatcaacatgaatattgcgcccggctctagtatggtgcaaaacctttcgcggtatggcatgatagcg
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>J87001 2 5
ctagtatttctcctctttctctagtatttattcgactataacaaaccattttcttgcgtaaacctgtacgatcctacaggtctctag
>J87001 2 3
cgctgatagtgctagtgtagatcgctactagagtactagctctagatgcggccgcgaattcc
>NahR 5
gaaaatggtttgttatagtcgaataaatactagagaaagaggagaaatactagatggaactgcgtgacctggatttaaacctgctggtgg
>NahR 3
agctagtactctagtagcgatctacactagcactatcagcgtcaatccgtaaacaggtcaaacatcagttgccgca
>ColE2 5
ggccagcaaaaggccaggaaccgtaaaaaggccgccctcgaggagcgcctcagcgcgccgtagcgtcg
>ColE2 3
ccactgagcgtcagaccccgtagaaaagagggcccgagcttaagactggccgtcgttttacacctagg
>J88001 5
tcttttctacggggtctgacgctcagtgg
>J88001 3
cggcctttttacggttcctggccttttgc
>J93032-5
ctagagtcacacaggaaagtactagatggaactgcgtgacctggatttaaacctgctgg
>J93032-3
ctagtactttcctgtgtgactctagtatttattcgactataacaaaccattttcttgcg

A2 Bacterial cells cultivation
The 15 % glycerol stock of the bacterium E coli DIAL strain cells stored at −80 ◦C were streaked on
a LB (Luria-Bertani) agar plate containing 100 µg mL−1 ampicillin and 50 µg mL−1 kanamycin and
incubated at 37 ◦C for 16 hours. A single colony was inoculated in a 1 mL growth medium with the
respective antibiotics in a well of a 24-well plate (Falcon, no. 351147) and incubated at 30 ◦C, 200 rpm
for 9 hours to reach OD value at 600 nm about 0.3. The growth medium is the minimal M9 medium
supplemented with 4 g L−1 glucose, 2 g L−1 casamino acids, and 1 mM thiamine hydrochloride. The
culture was then diluted 400-fold in the growth medium containing the respective antibiotics and
a inducer salicylate (SAL) 1 mM and distributed 1 mL per well in a 24-well plate. The plate was
incubated at 30 ◦C, 200 rpm for 2-3 hours to enter early exponential phase of the growth and then
each well was induced by another inducer N -hexanoyl-L-homoserine lactone (AHL) at the indicated
concentration. There were twenty-four AHL concentrations as 0, 0.03, 0.05, 0.08, 0.10, 0.20, 0.40,
0.80, 1.00, 1.95, 3.91, 7.81, 12.5, 15.6, 25.0, 31.3, 50.0, 62.5, 100, 125, 200, 250, 500, and 1000 nM.

A3 Flow cytometry and growth rate estimation
Each culture was sampled 10 µL h−1 and replenished the same volume of the fresh growth medium
containing the respective inducers and antibiotics. GFP expression in a single cell was quantified
by the flow cytometer Accuri C6 (BD). The parameters were the threshold 7000 on FSC-H, the
flow rate 66 µL min−1, the core size 13 µm, and a proper gating on FSC-H and SSC-H to exclude
the background and gate the target the cell population. The sampled culture was kept on ice and
was diluted right before running cytometry with 0.22 µm-filtrated water to make the reading rate
is about 1000 events per second. Total collected events were 50000. GFP intensity was analyzed
with the BD Accuri C6 software to obtain the arithmetic mean of a population. Growth rate was
estimated from the gated data in events per µL by the flow cytometer.

A4 Growth of activation cascade constructs
The activation cascade constructs CAS 1/60, CAS 1/30, CAS 0.3/60, and CAS 0.3/30 grew in the
medium containing 1 mM SAL and the indicated concentration of AHL. The specific growth rate
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during exponential growth at an indicated induced condition was shown in Figure S2. For CAS
0.3/30 and CAS 0.3/60, growth rates were consistent for all AHL levels. Due to lower plasmid copy
number, CAS 0.3/30 induced lower metabolic burden on the host cell. Consequently, its growth
rate was higher then those of CAS 0.3/60.Growth rates of CAS 1/60 and CAS 1/30 changed with
AHL inputs. For low AHL input (less than 10 nM) levels, growth rates were roughly unchanged. For
higher AHL input levels, host cell growth rate decreased. This is especially significant for CAS 1/60,
in which we observed more than 90% decrease in growth rate. These phenomena are consistent with
previous experimental results and theoretical study [4, 5, 6, 7, 8, 9], where it was shown that increase
in synthetic circuit resource demand may overload the host cells, reducing their growth rate.

Notice that slower growth rates of the host cells can not solely explain monotonically decreasing
(or biphasic) dose response curves of the activation cascade we observed in Figure 3. Two pieces
of evidence supports this reasoning. First, a similar trend of gradually reduced growth rates were
observed at a higher titer beyond a certain induction level in CAS 1/30 and CAS 1/60 in the induced
conditions of a constant SAL (1 mM) and titrating AHL (Figure S6), and a constant AHL (100 nM)
and titrating SAL (Figure S8). However, GFP concentration decreased with AHL in the presence of
a constant SAL (Figure 3) while it increased with SAL in the presence of a constant AHL (Figure
S7).

Therefore, the decrease in green fluorescent protein (GFP) concentration in the activation cascade
CAS 1/60 and CAS 1/30 is not necessarily a consequence of slower cell growth rates. Furthermore,
the only difference between the control experiment setup (Figure 1B) and the activation cascade
setup (Figure 1C) is that NahR production was inducible in the activation cascade, while constitutive
in the control experiment. Therefore, decrease in GFP is most likely to be caused by simultaneous
increase in production of GFP and NahR, rather than the fact that both are existent in cells in large
amounts.

Our second piece of evidence to rule out slower cell growth leading to decreased GFP amount
is a previous research on circuit-host interactions [8]. According to the mathematical model and
experimental results in [8], for an activated gene, slower growth rate leads to increases in its con-
centrations. These results take into account both change in dilution rate and the availability of
total resources as a consequence of slower host cell growth. Considering the activation cascade, were
there no competition between NahR and GFP for cellular resources, but only competition between
the synthetic circuit as a whole and the endogenous circuit of the host cell, lower cell growth rate
would lead to an increase in NahR concentration, further promoting the production of GFP, whose
concentration itself would have increased already with slower growth rate. However, our experimen-
tal results in Figure 3 contradicted this hypothesis. Therefore, the decrease in GFP concentration
we observed in the activation cascade could not be explained by decrease in cell growth rate alone.
Factors other than host-circuit interaction must be included to explain the negative or biphasic dose
response of an activation cascade.

A5 Step-wise dose response curve of transcriptional activa-
tion by NahR

To access the transcription activation by NahR at the second stage of the genetic cascade CAS 1/30,
we added 100 nM AHL to constitutively express NahR proteins and titrated NahR’s ligand SAL
from 0 to 5000 µM to acquire the dose response curve of NahR. We observed a two-step monotonic
increasing dose response curve. The Hill coefficients were around 2 for both induction steps by NahR
in CAS 1/30 (Figure S3a). Similarly, this two-step monotonic increasing curve was also observed
for the CAS 1/60, but the Hill coefficients were around 2 and 8, respectively, for the induction at
lower and higher titer (Figure S3b). To illustrate the functionality of the second stage of CAS 1/30
in Figure 1b, we only showed the titration curve of NahR activation up to 100 µM SAL to focus on
its monotonic response in an induction step.

It has been evidenced that NahR without chelating its ligand SAL readily binds the Psal promoter
and that prebound NahR requires SAL to promote transcriptional activation [10]. From Surface
Plasmon Resonance (SPR) analysis [11], in the absence of SAL, NahR bound to the Psal promoter
in a ratio from 1:1 to 8:1 when NahR concentration increased. Based on these evidences, we suspected
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4 and 10 prebound NahR proteins on the Psal promoter of CAS 1/30 and CAS 1/60, respectively,
deducing from the sum of Hill coefficients of the induction steps at a lower and a higher titer (i.e.
2+2 and 2+8). The inferred number of the prebound NahR proteins is proportion to a low and
high constitutive expression level of NahR in CAS 1/30 and CAS 1/60 under 100 nM AHL induction
due to a low and high plasmid copy number, respectively. We used 1000 µM SAL to fully activate
transcription by the prebound NahR on the Psal promoter in CAS 1/60 (Figure S3b). The same
concentration was also used in other three activation cascades because cell culture showed a reduced
growth rate when treated with more than 1000 µM SAL.

In Figure 4, when the input AHL was higher than 10 nM to express more NahR, NahR pre-bound
to the Psal promoter in a multimer form and in the presence of 1000 µM SAL, the NahR·DNA
complex achieve a higher transcription activation. Due to different RBS strength and plasmid copy
number, a higher transcription activation by NahR started slightly different at 1.95 nM, 7.81 nM,
10.0 nM, and 12.5 nM AHL for CAS 1/60, CAS 1/30, CAS 0.3/60, and CAS 0.3/30, respectively,
deducing from the output GFP level. Under resource competition, even though a higher activation
was achievable by NahR, CAS 1/60 showed a local increase of GFP output but still showed a negative
response after 10 nM AHL. Similarly, for CAS 1/30, we observed a local increase of GFP output
around 10 nM AHL on the right-hand side of a biphasic curve; for CAS 0.3/60, a local increase of
GFP output around 10 nM AHL merged with the turning section of a biphasic curve; for CAS 0.3/30
which had least resource competition between nahR and gfp gene expressions, a higher activation
by NahR leaded to a higher GFP output level.

A6 Detailed experimental data
Dose response curves in Figure 1A-B and Figure 4 without normalization are presented in Figure
S5, Figure S3A (when SAL concentration is between 0.01 and 100 µM as described in Section A5),
and Figure S6, respectively.
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Figure S1: The plasmid map of CAS-1.
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Figure S2: Exponential growth of the four activation cascades induced by adding 1 mM SAL and the
indicated AHL concentration. The mean and the standard deviation of specific growth rates during
exponential growth measured in three independent experiments at the indicated AHL concentration
(nM) were presented by a bar with an error bar.
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Figure S3: Dose response curves of the two activation cascades (a) CAS 1/30 and (b) CAS 1/60
under the inductions of 100 nM AHL and the indicated concentration of SAL.
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(a) (b)

Figure S4: Exponential growth rates of the two activation cascades (a) CAS 1/30 and (b) CAS 1/60
under the inductions of 100 nM AHL and the indicated concentration of SAL.
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Figure S5: The dose response curve in Figure 1A without normalization.
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Figure S6: The dose response curves of Figure 4 without normalization.
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Part B

B1 Derivation of a standard activation cascade model
A two-stage activation cascade is consists of a TF+effector complex u that activates node 1 to
produce x1, which further serve as a TF input that activates node 2 to produce protein x2. This
activation cascade can be view as an input/output system that takes u (concentration of u) as input,
and produce x2 (concentration of x2) as output. Here, we derive the standard Hill function model
to describe the dose response (steady state input/output response) of this circuit.

In node 1, the input TF (u) binds with the promoter site of gene 1 (p1) to form a promoter-
activator complex c1, which then recruits free RNA polymerases (RNAPs) (y) to form a transcrip-
tionally active complex C1. In addition, we take into account leakiness of p1 such that it can directly
recruit RNAPs (but with weaker affinity) to form transcriptionally active complex C0

1 without the
help of u. Letting n1 be the Hill coefficient capturing cooperativity of u binding with p1, the chemical
reactions are as follows:

p1 + n1 · u
k+

1


k−

1

c1, c1 + y
a1


d1

C1, p1 + y
a0

1


d0

1

C0
1.

The transcriptionally active complexes (C1 and C0
1) are then transcribed at a constant elongation

rate α1 to produce mRNA transcripts (m1), which we assume to be the same for both C1 and C0
1.

RNAPs are released when transcription is completed. We assume mRNA transcripts are diluted
during proliferation/degraded by RNase at a constant rate δ1:

C1
α1−→ c1 + y + m1, C0

1
α1−→ p1 + y + m1, m1

δ1−→ ∅.

Translation is initiated by free ribosomes (z) binding with the RBS of mRNA m1 to produce
a translationally active complex M1, which is then translated at a constant elongation rate θ1 to
produce protein x1. The protein x1 (complex M1) is subject to dilution due to cell growth and
degradation by protease (RNase), at constant rate γ1 (ω1). Ribosomes are released from mRNA
when translation is completed, and become free again. The chemical reactions are as follows.

m1 + z
κ+

1


κ−

1

M1, M1
θ1−→ m1 + z + x1, M1

ω1−→ z, x1
γ1−→ ∅.

Chemical reactions in the second node are similar to those in the first one, except that transcrip-
tion is activated by x1 rather than u. Letting n2 be the Hill coefficient capturing cooperativity of
x1 binding with promoter p2, the chemical reactions are:

p2 + n2 · x1
k+

2


k−

2

c2, c2 + y
a2


d2

C2, p2 + y
a0

2


d0

2

C0
2, C2

α2−→ c2 + y + m2, C0
2

α2−→ p2 + y + m2,

m2 + z
κ+

2


κ−

2

M2, M2
θ2−→ m2 + z + x2, m2

δ2−→ ∅, M2
ω2−→ z, x2

γ2−→ ∅.

Using reaction rate equations, consequently, the concentration of each species (italic) follows the
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following ODEs:

ċ1 = k+
1 p1u

n1 − k−1 c1 − a1yc1 + d1C1 + α1C1, (S1a)
Ċ0

1 = a0
1p1y − d0

1C
0
1 − α1C

0
1 , (S1b)

Ċ1 = a1yc1 − d1C1 − α1C1, (S1c)
ṁ1 = α1C

0
1 + α1C1 − δ1m1 − κ+

1 m1z + κ−1 M1 + θ1M1, (S1d)
Ṁ1 = κ+

1 m1z − κ−1 M1 − θ1M1 − ω1M1, (S1e)
ẋ1 = θ1M1 − γ1x1 − n2k

+
2 p2x

n2
1 + n2k

−
2 c2, (S1f)

ċ2 = k+
2 p2x

n2
1 − k

−
2 c2 − a2yc2 + d2C2 + α2C2, (S1g)

Ċ0
2 = a0

2p2y − d0
2C

0
2 − α2C

0
2 , (S1h)

Ċ2 = a2yc2 − d2C2 − α2C2, (S1i)
ṁ2 = α2C

0
2 + α2C2 − δ2m2 − κ+

2 m2z + κ−2 M2 + θ2M2, (S1j)
Ṁ2 = κ+

2 m2z − κ−2 M2 − θ2M2 − ω2M2, (S1k)
ẋ2 = θ2M2 − γ2x2. (S1l)

Given that the binding reactions and mRNA dynamics are much faster than protein production
and degradation [12], we can set (S1a)-(S1e), and (S1g)-(S1k) to quasi-steady state (QSS) to simplify
our analysis. Since we are only interested in the dose response (steady state i/o response) of this
circuit, QSS assumption does not limit the applicability and accuracy of our model. We first obtain
the QSS concentrations of complexes formed with the promoters p1 and p2:

c1 = p1

(
u

k1

)n1

, C0
1 = p1y

K0
1
, C1 = c1y

K1
= p1y

K1
·
(
u

k1

)n1

,

c2 = p2

(
x1

k2

)n2

, C0
2 = p2y

K0
2
, C2 = c2y

K2
= p2y

K2
·
(
x1

k2

)n2

,

(S2)

where we have defined the following dissociation constants:

ki =
(
k−i
k+
i

)1/ni

, Ki = di + αi
ai

, K0
i = d0

i + αi
a0
i

(i = 1, 2). (S3)

Dissociation constant ki describes the binding of activator u (or x1) with the promoter site p1 (or
p2), and a smaller ki indicates stronger binding. Similarly, Ki and K0

i are the dissociation constants
between free RNAPs and c1 (or c2), and between RNAPs and p1 (or p2), respectively. We assume
activators promote recruitment of RNAPs to promoter sites, and therefore, Ki < K0

i .
Let p1,T and p2,T be the total DNA copy number of the two nodes, respectively, we assume that

the concentration of DNA of each node is conserved [12, 13]:

p1,T = p1 + c1 + C1 + C0
1 , p2,T = p2 + c2 + C2 + C0

2 . (S4)

Using (S2) and (S4), we can find the concentrations p1 and p2 of the free promoters:

p1 = p1,T

1 + y
K0

1
+ (1 + y

K1
)
(
u
k1

)n1 , p2 = p2,T

1 + y
K0

2
+ (1 + y

K2
)
(
x1
k2

)n2 . (S5)

Substituting (S5) into (S2), we obtain:

C0
1 = yp1,T

K0
1

[
1 + y

K0
1

+ (1 + y
K1

)
(
u
k1

)n1] , C1 =
yp1,T

(
u
k1

)n1

K1

[
1 + y

K0
1

+ (1 + y
K1

)
(
u
k1

)n1] ,
C0

2 = yp2,T

K0
2

[
1 + y

K0
2

+ (1 + y
K2

)
(
x1
k2

)n2] , C2 =
yp2,T

(
x1
k2

)n2

K2

[
1 + y

K0
2

+ (1 + y
K2

)
(
x2
k2

)n2] ,
(S6)
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Meanwhile, setting equations (S1d), (S1e), (S1j) and (S1k) to QSS, we obtain the following:

M1 = α1z

κ1δ1 + ω1z
(C1 + C0

1 ), M1 = α2z

κ2δ2 + ω2z
(C2 + C0

2 ), (S7)

where we have defined κi (i = 1, 2) to be the effective dissociation constant of the RBS binding with
free ribosomes:

κi = κ−i + θi + ωi

κ+
i

, (i = 1, 2). (S8)

By incorporating into (S8) the translation rate constant θi, and mRNA decay rate when ribosome
is bound ωi, our definition of effective dissociation constant κi accounts for not only the binding
strength of ribosomes with RBS (κ−i and κ+

i ), but also the ability of a mRNA molecule to sequester,
and then occupy ribosomes. Therefore, an increase in κi can either indicate weaker RBS binding with
ribosomes (less ribosome recruitment), faster translation, and faster mRNA decay (both contribute
to faster ribosome release). Combining equations (S7) and (S6), we therefore have

M1 = α1z

κ1δ1 + ω1z
· yp1,T

K1
·

K1
K0

1
+
(
u
k1

)n1

1 + y
K0

1
+
(

1 + y
K1

)(
u
k1

)n1 ,

M2 = α2z

κ2δ2 + ω2z
· yp2,T

K2
·

K2
K0

2
+
(
x1
k2

)n2

1 + y
K0

2
+
(

1 + y
K2

)(
x1
k2

)n2 .

(S9)

In a standard Hill function model, we assume that the free amount of RNAPs y and that of ribosomes
z are constant parameters. At QSS, according to equations (S1f) and (S1l), we have

ẋ1 = θ1M1 − γ1x1 = T1
β1 +

(
u
k1

)n1

η1 +
(
u
k1

)n1 − γ1x1,

ẋ2 = θ2M2 − γ2x2 = T2
β2 +

(
x1
k2

)n2

η2 +
(
x1
k2

)n2 − γ2x2,

(S10)

where we have defined the following lumped constants:

T1 := θ1α1p1,T yz

(κ1δ1 + ω1z)(K1 + y) , β1 := K1

K0
1
, η1 := 1 + y/K0

1
1 + y/K1

,

T2 := θ2α2p2,T yz

(κ2δ2 + ω2z)(K2 + y) , β2 := K2

K0
2
, η2 := 1 + y/K0

2
1 + y/K2

.

(S11)

For clarity, we define Hill-functions F1(u) and F2(x1) to characterize regulatory interactions from u
to x1, and from x1 to x2:

F1(u) :=
β1 +

(
u
k1

)n1

η1 +
(
u
k1

)n1 , F2(x1) :=
β2 +

(
x1
k2

)n2

η2 +
(
x1
k2

)n2 . (S12)

According to (S12), F1(u) and F2(u) are increasing Hill-functions that are normalized to 1 at their
maximum. Notice that limu→+∞ F1(u) = 1 when u saturates promoters of node 1, and F1(0) =
β1/η1 is the amount of basal expression of x1 relative to its maximum expression level. Similarly,
F2(0) = β2/η2, and limx1→+∞ F2(x1) = 1. We consider the biologically relevant parameter region
(see Section B9), where free RNAPs and ribosomes amounts are limited (y � Ki,K

0
i and z � κi for
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i = 1, 2), but remains constant parameters (and therefore no resource competition in the circuit).
In this case, η1, η2 ≈ 1, we have

F1(u) =
β1 +

(
u
k1

)n1

1 +
(
u
k1

)n1 , F2(x1) =
β2 +

(
x1
k2

)n2

1 +
(
x1
k2

)n2 ,

T1 = θ1α1p1,T yz

K1κ1δ1
, T2 = θ2α2p2,T yz

K2κ2δ2
.

(S13)

According to (S10), the node dynamics can thus be written as:

ẋ1 = T1F1(u)− γ1x1, ẋ2 = T2F2(x1)− γ2x2, (S14)

which are in the same form as equations (1) in the main text. They are also consistent with standard
textbook Hill function models [12, 13]. The purpose of applying the limited resource assumption
y � Ki,K

0
i and z � κi here is to make the model (S14) comparable to the analytical model with

resource competition, which is derived for this parameter region (see Section B2).
The standard model (S14) is based on the assumption that y and z, the free amount of RNAPs

and ribosomes, are constant parameters. When their availability depends on gene expression levels
in the circuit, we need to explicitly write y and z as functions of TF concentrations, which we address
in the next section.

B2 Derivation of an activation cascade model with resource
competition

Experimental evidences have suggested that the amount of RNAPs and ribosomes are key limiting
factors for gene expression in bacteria with exponential growth [8, 5]. Particularly, at a constant
growth rate, the total amount of RNAPs and ribosomes is conserved. In this section, instead of
treating free resources as constant parameters, we use a conservation law to find an expression for
the free amount of resource concentrations y and z. For an activation cascade, RNAPs can bind
with promoter-activator complex to form Ci (i = 1, 2) or directly with the promoter to form C0

i , and
ribosomes can bind with the RBS site of each node to form Mi. These are considered as resource
demand at each node, and therefore, resource conservation can be written as:

yT = y + C1 + C0
1 + C2 + C0

2 , zT = z +M1 +M2, (S15)

where yT and zT are the total amount of resources available to this cascade circuit, which we assume
to be a constant parameter. Under the limited resource assumption, where y � Ki,K

0
i and z � κi

(i = 1, 2), resources bound to the nodes can be written as:

C0
1 = yp1,T

K1
·

K1
K0

1

1 +
(
u
k1

)n1 , C1 = yp1,T

K1
·

(
u
k1

)n1

1 +
(
u
k1

)n1 , M1 = yzα1p1,T

κ1K1δ1
·
K1
K0

1
+
(
u
k1

)n1

1 +
(
u
k1

)n1 ,

C0
2 = yp2,T

K2
·

K2
K0

2

1 +
(
x1
k2

)n2 , C2 = yp2,T

K2
·

(
x1
k2

)n2

1 +
(
x1
k2

)n2 , M2 = yzα2p2,T

κ2K2δ2
·
K2
K0

2
+
(
x1
k2

)n2

1 +
(
x1
k2

)n2 .

(S16)

Substituting equations (S16) into (S15), the free amount of resources can be found to be:

y = yT

1 + p1,T

K1

[
K1
K0

1
+
(

u
k1

)n1

1+
(

u
k1

)n1

]
+ p2,T

K2

[
K2
K0

2
+
(

x1
k2

)n2

1+
(

x1
k2

)n2

] ,
z = zT

1 + α1p1,T

κ1K1δ1
y

[
K1
K0

1
+
(

u
k1

)n1

1+
(

u
k1

)n1

]
+ α2p2,T

κ2K2δ2
y

[
K2
K0

2
+
(

x1
k2

)n2

1+
(

x1
k2

)n2

] . (S17)
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From (S17), we find

y · z = yT zT

1 + p1,T

K1

(
1 + α1yT

κ1δ1

)[ K1
K0

1
+
(

u
k1

)n1

1+
(

u
k1

)n1

]
+ p2,T

K2

(
1 + α2yT

κ2δ2

)[ K2
K0

2
+
(

x1
k2

)n2

1+
(

x1
k2

)n2

] . (S18)

To simplify notations, for i = 1, 2, we let

Ji := pi,T
Ki

(
1 + αiyT

κiδi

)
. (S19)

Recall that Ki/K
0
i = βi, using (S19) and Hill-functions defined in (S13), equation (S18) becomes:

y · z = yT zT
1 + J1F1(u) + J2F2(x1) . (S20)

Meanwhile, at QSS, according to equations (S1f) and (S1l), we have

ẋ1 = θ1M1 − γ1x1 = yzα1θ1p1,T

K1κ1δ1
·
K1
K0

1
+
(
u
k1

)n1

1 +
(
u
k1

)n1 − γ1x1,

ẋ2 = θ2M2 − γ2x2 = yzα2θ2p2,T

κ2K2δ2
·
K2
K0

2
+
(
x1
k2

)n2

1 +
(
x1
k2

)n2 − γ2x2,

(S21)

where we have used the concentrations of M1 and M2 obtained from (S16). Substituting into (S21)
the free amount of resources (y · z) in (S20), we obtain the model in (1):

ẋ1 = T1F1(u)
1 + J1F1(u) + J2F2(x1) − γ1x1,

ẋ2 = T2F2(x1)
1 + J1F1(u) + J2F2(x1) − γ2x2,

(S22)

with

Ti := yT zTαiθipi,T
κiKiδi

, (i = 1, 2). (S23)

Physical interpretations of the elements in model (S22) are as follows. Parameters Ti are the maxi-
mum expression rate of node i. In fact, according to (S22) and (S23), an expression rate of Ti can
only be obtained in a fictitious scenario where all available RNAPs (yT ) and ribosomes (zT ) are
engaged in the production of xi. The functions Fi describe the extent to which a node is activated,
with Fi = 1 indicating that node i is fully activated, and Fi = Ki/K

0
i = βi when node i is expressed

at its basal level. Parameter Ji can be viewed as the maximum resource demand in node i. A more
comprehensive discussion of Ji can be found in Section B5.

B3 Diverse dose response curves of activation cascades
In this section, we use our model (S22) to thoroughly study the dose response curve of a two-
stage activation cascade. By investigating the slope of its dose response curve as a function of the
input concentration, we show that an activation cascade can exhibit various shapes of dose response
curves, including monotonically increasing, monotonically decreasing and biphasic. By engineering
biologically relevant parameters, such as DNA copy numbers, RBS strengths, and promoter leakiness,
all three shapes of the dose response curves can be obtained.
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B3.1 Slope of the dose response curve of an activation cascade
The dose response curve of an activation cascade can be derived by solving for the steady state
in (S22) for various u values. Due to the nonlinearity and complexity of the network, analytical
expression of the steady state is hard to obtained. In order to investigate the dose response curve
without solving it explicitly, we take a differential perspective, which allows us to identify the sign of
the slope of the dose response curve for various inputs and parameter conditions. This mathematical
tool is stated in the following claim.

Claim 1. Consider a monostable time-invariant single-input-single-output (SISO) system:

ẋ = f(x, u), y = g(x, u),

where f(x, u) and g(x, u) are analytic functions with respect to their arguments. Let the linearized
system at input ū and corresponding locally asymptotically stable equilibrium x̄ be

˙̃x = Ax̃ +Bũ, ỹ = Cx̃ +Dũ.

Let the steady state i/o response (dose response) of the nonlinear system be ȳ = G(ū), then the
slope of the dose response curve at (x̄, ū) can be found by the DC gain of the linearized system, that
is,

dȳ
du

∣∣∣∣
x̄,ū

= H(0) = −CA−1B +D. (S24)

Proof. In the linearized model, A = ∂f
∂x |x̄,ū, B = ∂f

∂u |x̄,ū, C = ∂g
∂x |x̄,ū and D = ∂g

∂u |x̄,ū. Therefore,

dȳ
du

∣∣∣∣
x̄,ū

= ∂g(x̄, ū)
∂x︸ ︷︷ ︸
C

·dx̄
du + ∂g(x̄, ū)

∂u︸ ︷︷ ︸
D

. (S25)

Since x̄ satisfies f(x̄, ū) = 0, using the implicit function theorem, we have,

dx̄
du = −

[
∂f(x̄, ū)
∂x

]−1

︸ ︷︷ ︸
A−1

· ∂f(x̄, ū)
∂u︸ ︷︷ ︸
B

= −A−1B. (S26)

Matrix A is invertible because the equilibrium x̄ is asymptotically stable. Combining equations
(S25) and (S26), we obtain dȳ

du

∣∣∣
x̄,ū

= H = −CA−1B +D.

Applying Claim 1 to the two-stage activation cascade model (S22), re-written here as

ẋ1 = G1(u, x1)− γ1x1, ẋ2 = G2(u, x1)− γ2x2, (S27)

where we have defined

G1(u, x1) := T1F1(u)
1 + J1F1(u) + J2F2(x1) , G2(u, x1) := T2F2(x1)

1 + J1F1(u) + J2F2(x1) , (S28)

as the rate of expression of x1 and x2. We linearize (S27) at an input ū and equilibrium x̄ to obtain:

A =
[
∂G1
∂x1
− γ1 0

∂G2
∂x1

−γ2

]
, B =

[
∂G1
∂u
∂G2
∂u

]
, C =

[
0 1

]
, D = 0. (S29)

Substituting (S29) into (S24) in Claim 1, we obtain:

dx̄2

du = H(0) =
∂G2
∂x1
· ∂G1
∂u +

(
γ1 − ∂G1

∂x1

)
· ∂G2
∂u(

γ1 − ∂G1
∂x1

)
γ2

, (S30)
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where x̄2 represent the steady state of x2. Note that since we have

∂G1

∂u
= ∂G1

∂F1︸︷︷︸
positive

· ∂F1

∂u︸︷︷︸
positive

> 0, ∂G1

∂x1
= ∂G1

∂F2︸︷︷︸
negative

· ∂F2

∂x1︸︷︷︸
positive

< 0,

∂G2

∂u
= ∂G2

∂F1︸︷︷︸
negative

· ∂F1

∂u︸︷︷︸
positive

< 0, ∂G2

∂x1
= ∂G2

∂F2︸︷︷︸
positive

· ∂F2

∂x1︸︷︷︸
positive

> 0.
(S31)

the denominator in (S30), (γ1 − ∂G1/∂x1) > 0, is positive. Therefore, sign(H(0)) depends on the
sign of the numerator

∂G2

∂x1
· ∂G1

∂u︸ ︷︷ ︸
positive

+
(
γ1 −

∂G1

∂x1

)
︸ ︷︷ ︸

positive

· ∂G2

∂u︸︷︷︸
negative

(S32)

in (S30). According to (S31), the positivity of the numerator term in (S30) is undetermined and
depends on specific parameter values. With reference to (S30), a physical interpretation of our
result in is as follows. A (differential) change in x̄2 has two sources: the contribution from the
transcriptional regulation path u→ x1 → x2, mathematically characterized by

M+ =

∣∣∣∣∣∣
∂G2
∂x1
· ∂G1
∂u(

γ1 − ∂G1
∂x1

)
γ2

∣∣∣∣∣∣ ,
and a contribution from the hidden repression path due to resource competition u a x2, characterized
by

M− =
∣∣∣∣∣ ∂G2
∂u

γ2

∣∣∣∣∣ .
Depending on the relative magnitude of M+ and M−, the slope of a dose response curve can be
monotonically decreasing (M− > M+ for all u), monotonically increasing (M− < M+ for all u) or
biphasic (M− < M+ for small u and M− > M+ for large u). However, physical parameters, such as
RBS strength, promoter strength and DNA copy number, are involved in M+ and M− in a highly
convoluted manner, and therefore, their effects on the shape of a dose response curve can hardly be
singled out through (S30). In section B3.2, we consider extreme parameter relationships that allow
ae dose response curve to fall into a specific class.

On the other hand, dose response curve of x1 is guaranteed to be monotonically increasing even
in the presence of resource competition. This can be verified by applying Claim 1 to the cascade,
and treating x1 as its output. In this cases, we have

Â = A =
[
∂G1
∂x1
− γ1 0

∂G2
∂x1

−γ2

]
, B̂ = B =

[
∂G1
∂u
∂G2
∂u

]
, Ĉ =

[
1 0

]
, D̂ = D = 0. (S33)

The static gain of the linearized system with x1 as the output becomes

dx̄1

du = Ĥ(0) =
∂G1
∂u

γ1 − ∂G1
∂x1

, (S34)

which is guaranteed to be positive for all positive input and parameter values.

B3.2 Sufficient parameter conditions to obtain various shapes of dose
response curves

To make the dose response curve of an activation cascade to become monotonically increasing, we
need to make J1 sufficiently small. This can be seen from the following two perspectives. First, if
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we consider the dose response of the output x2, from equation (S22), we have

x̄2 = 1
γ2
· T2F2(x̄1)

1 + J1F1(u) + J2F2(x̄1) . (S35)

Notice that since x̄1 increases monotonically with u for all input levels, and F2(x̄1) is an increasing
Hill function, F2(x̄1) increases with u. As J1 → 0, (S35) becomes

x̄2 ≈
1
γ2
· T2F2(x̄1)

1 + J2F2(x̄1) ,

which increases monotonically with F2(x̄1), and consequently with u. Due to continuity, we thus
expect the dose response curve to be monotonically increasing for J1 sufficiently small. On the other
hand, from a differential perspective, we want the slope of the dose response curve to be positive
for all u in order to obtain a monotonically increasing dose response curve. According to (S30) and
(S32), this can be achieved if ∂G2/∂u, which represent the strength of the non-regulatory repression
u a x2, is sufficiently small in magnitude. From (S28), we obtain

∂G2

∂u
= −J1 ·

∂F1

∂u
· T2F2(x1)

[1 + J1F1(u) + J2F2(x1)]2 .

Since limJ1→0 ∂G2/∂u = 0, and it decreases for J1 small. The slope of the dose response curve is
always positive for sufficiently small J1. Based on the above reasoning, here, we provide sufficient
parameter conditions that guarantee the dose response curve of a two-stage cascade to be monotoni-
cally increasing, monotonically decreasing or biphasic. These results are summarized in the following
claim.

Claim 2. If nodes 1 and 2 have the same DNA copy numbers p1,T = p2,T = pT , and transcription
rate constant α1 = α2 = α, then in a two-stage activation cascade the slope of a dose response curve
dx̄2/du satisfies:

1. dx̄2/du > 0 for all u > 0 if (a) K1 � pT and (b) κ1 · δ1 � α · yT ;

2. dx̄2/du < 0 for all u > 0 if (a) pT � K0
2 > K2 � K0

1 > K1 and (b) α · yT � δ2 · κ2 � δ1 · κ1;

3. dx̄2/du > 0 when u → 0 and dx̄2/du < 0 when u → ∞ if (a) K0
1 � pT ≥ K2 � K1 and (b)

κ2 · δ2 > κ1 · δ1 � α · yT .

Proof. Using equation (S22), the steady state concentrations of x1 and x2 (i.e. x̄1 and x̄2) can be
written as:

x̄1(u, x̄1) = 1
γ1
· T1F1(u)

1 + J1F1(u) + J2F2(x̄1) , (S36)

x̄2(u, x̄1) = 1
γ2
· T2F2(x̄1)

1 + J1F1(u) + J2F2(x̄1) . (S37)

Note that in Section B3.1, we have shown that x̄1 increases monotonically with u, regardless of
parameters. When conditions in case 1 are satisfied, we have

J1F1(u) ≤ J1 � 1.

Equation (S37) becomes

x̄2(u, x̄1) ≈ 1
γ2
· T2F2(x̄1)

1 + J2F2(x̄1) . (S38)

From (S38), x̄2 increases with x̄1, which increases monotonically with u according to (S34). Conse-
quently, x̄2 is guaranteed to increase with u. When conditions in case 2 are satisfied, we have

J1 > J1F1(u) > J1β1 � J2 > J2F2(x̄1) > J2β2 � 1.
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Combining with (S36), we have x̄1 = T1/(J1γ1) ≈ constant, and (S37) can be viewed a single variable
decreasing function of u. The dose response curve of the cascade is negative. When conditions in
case 3 are satisfied, note that when u→ 0, F1(u)→ β1 and when u→∞, F1(u)→ 1. The conditions
give J1F1(u) � 1 when u → 0, and J1F1(u) � J2F2(x̄2) � 1 when u → ∞. The rest of the proof
follows from cases 1 and 2.

Of particular interests in Claim 2 is case 1, which enables us to restore the dose response curve
of any failed cascade (with negative or biphasic dose response curves) to become positive. The
parameter conditions K1 � pT and κ1 · δ1 � α · yT leads to J1 � 1, implying that node 1 has
negligible maximal resource demand. These conditions can be satisfied in experiments by reducing
the DNA copy number, promoter and RBS strength of node 1.

B3.3 Practical guidance on activation cascade design
In this section, we intend to provide a more comprehensive and practical recipe on activation cascade
design. In particular, we want to understand if reducing J1, which allows us to obtain intended
monotonically increasing dose response curve, could potentially affect some desirable feature of the
circuit, such as signal amplification. Our design parameters are the RBS strengths of node 1 and
node 2, and the circuit plasmid copy number, which are among the most commonly used dials in
synthetic biology. Since activation cascades are often used for signal transduction and amplification,
with reference to Figure S7(a), we evaluate the following performance specifications of an activation
cascade:

• Shape of the dose response curve (monotonically increasing, monotonically decreasing or bipha-
sic).

• Maximum production of output protein (x2,max).

• Fold activation of the cascade x2,max/x2,basal.

• Dynamic input range, defined as the difference between input levels that achieve 90% and 10%
of x2,max. The dynamic input range is set to be 0 if x2,basal is more than 10% of x2,max.

An ideal activation cascade should have a monotonically increasing dose response curve with large
x2,max and fold activation to produce detectable outputs. A large dynamic input range is ideal for
applications requiring analog output to a wide range of inputs, while a small dynamic input range
may be helpful to generate a “digital” (switch-like) dose response, which helps to filter noise in
the form of spurious activation [14, 15]. Using the full activation cascade model (see Section B10),
performances of the cascades can be visualized in Figure S7(b). We find that each performance cri-
terion is governed by one or two key design parameters. Due to resource competition considerations,
the shape of a dose response curve is determined by the RBS strengths of x1 and the plasmid copy
number. Meanwhile, RBS strength of x2 and copy number are the dominant factors to decide x2,max.
This is because maximum amount of x2 is produced when its promoters are saturated with x1. As
long as a sufficient amount of x1 can be produced to saturate the promoters, x2,max depends solely
on its own production rate, which increases with its RBS strength and copy number. Cascade fold
activation decreases with plasmid copy number and x1 RBS strength. To understand this result,
consider the extreme case where promoters of x2 are already saturated by the basal amount of x1
due to its high copy number and strong RBS strength, the circuit essentially loses its activation
capability. Similarly, a large dynamic input range of the cascade relies on low plasmid copy number
and weak x1 RBS strength.

Therefore, in order to design an activation cascade with positive dose response, large maximum
output, fold activation and dynamic input range, it is advisable to use low copy plasmid with weak
x1 RBS strength, and strong x2 RBS strength. On the contrary, to design a cascade with switch-like
response, a large production rate of x1 is required. This allows a large change in x1 when a unit
addition of u is applied. Increase in x1 further facilitates transition of x2 from low to high. However,
designing an activation cascade circuit with large x1 production rate often results in negative dose
response, and/or loss of activation capability, and an ad hoc selection of parameters may be required.
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Figure S7: Tuning the performance of an activation cascade by changing its RBS
strengths and copy number. (a) Visualization of the performance criteria used to evaluate the
dose response of an activation cascade. (b) Performance of cascades with various RBS strengths and
plasmid copy numbers. In each embedded figure, the horizontal axis represents the RBS strength of
x1, and the vertical axis represents the RBS strength of x2. The three rows of embedded figures cor-
responds to circuits with low, medium and high DNA copy numbers. The first column of embedded
figures describe the shapes of their dose response curves. The red, dotted and grid shaded region
each corresponds to parameter combinations that give rise to monotonically decreasing, biphasic
and monotonically increasing dose responses. The other three columns of embedded figures use gray
scale to represent numerical values of maximum expression, fold activation and dynamic input range,
respectively. Darker color represent large numerical values.

B4 Model of general genetic circuits with resource limita-
tions

The model we derived for the two-stage activation cascade in Section B1 and B2 can be extended
to genetic circuits with any topology. We take a similar approach by first deriving node dynamics
in isolation, treating the free amount of RNAPs and ribosomes as parameters, and then take into
account sharing of these resources to decide the parameters in a network context.

B4.1 Gene expression in a node
Since most gene promoters take at most two TF inputs [13], we consider a node i taking two input
TFs (u1

i and u2
i ) that can either be activators or repressors, to form complexes with pi. The reactions

are:

pi + n1i · u1
i

k+
i,1


k−

i,1

c1
i , pi + n2i · u2

i

k+
i,2


k−

i,2

c2
i , c1

i + n2i · u2
i

k+
i,12



k−
i,12

c12
i , c2

i + n1i · u1
i

k+
i,21



k−
i,21

c12
i ,

where n1 and n2 are the Hill coefficients describing cooperativities of u1
i and u2

i binding with pi,
respectively. The promoter pi and the promoter/TF complexes (c1

i , c2
i , c12

i ) recruit free RNAPs (y)
to form an open complex for transcription. The reactions are given by:

pi + y
a0

i


d0

i

C0
i , cj

i + y
ai,j


di,j

Cj
i (j = 1, 2, 12).

These transcriptionally active complexes can then be transcribed into mRNA (mi), the reactions are
given by:

C0
i

αi−→ pi + y + mi, Cj
i
αi−→ cj

i + y + mi, (j = 1, 2, 12).
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Here, we assume that transcription elongation rate constant of node i (αi) is independent of how
transcription is initiated (i.e. αi is independent of the initiation complexes C0

i ,C1
i ,C2

i and C12
i .)

Translation is initiated by ribosomes (z) binding with RBS on mRNA mi to form a translationally
active complex Mi, which is then translated into protein xi. Meanwhile, mRNAs and proteins are
also diluted/degraded. The reactions are:

mi + z
κ+

i


κ−

i

Mi, Mi
θi−→ mi + z + xi, mi

δi−→ ∅, Mi
ωi−→ z, xi

γi−→ ∅.

Consequently, we have the following ODEs in node i:

ċji = k+
i,jpi(u

j
i )n

j
i − k−i,jc

j
i − ai,jyc

j
i + di,jC

j
i + αiC

j
i , (S39a)

ċ12
i = k+

i,12c
1
i (u2

i )n
2
i − k−i,12c

12
i + k+

i,21c
2
i (u1

i )n
1
i − k−i,21c

12
i − ai,12c

12
i y − di,12C

12
i + αiC

12
i , (S39b)

Ċ0
i = a0

i piy − d0
iC

0
i − αiC0

i , (S39c)
Ċki = ai,kyc

k
i − di,kCki − αiCki , (S39d)

ṁi = αiC
0
i + αiC

1
i + αiC

2
i + αiC

12
i − δimi − κ+

i miz + κ−i Mi + θiMi, (S39e)
Ṁi = κ+

i miz − κ−i Mi − θiMi − ωiMi, (S39f)
ẋi = θiMi − γixi, (S39g)

where indices j = 1, 2 and k = 1, 2, 12. Since DNA concentration is conserved [12], we have

pi,T = pi + C0
i +

∑
j=1,2,12

(cji + Cji ), (S40)

where pi,T is the total concentration of gene i. Assuming that binding reactions and mRNA dynamics
are sufficiently fast, we obtain the QSS concentrations of complexes formed with pi:

c1i = pi

(
u1
i

k1
i

)n1
i

, c2i = pi

(
u2
i

k2
i

)n2
i

, c12
i = pi

(
1
k12
i

+ 1
k21
i

)
·

[(
u1
i

k1
i

)n1
i

·
(
u2
i

k2
i

)n2
i

]
,

C0
i = piy

K0
i

, Cji = cjiy

Kj
i

, (j = 1, 2, 12),
(S41)

where dissociation constants are defined as:

K0
i = d0

i + αi
a0
i

, Kj
i = di,j + αj

ai,j
, (j = 1, 2, 12),

k1
i =

(
k−i,1

k+
i,1

)1/n1
i

, k2
i =

(
k−i,2

k+
i,2

)1/n2
i

, kli =
(
k−i,l

k+
i,l

)
, (l = 12, 21).

(S42)

Here, K0
i is the basal dissociation constant of promoter pi binding with free RNAPs y, Kj

i is
the dissociation constant of promoter-TF complex cj

i binding with y. Parameters k1
i and k2

i are
the dissociation constants of TF u1

i and u2
i binding with pi; and k12

i and k21
i are the dissociation

constants of c1
i binding with u2

i , and c2
i binding with u1

i , respectively.
Based on (S41) and (S40), the free promoter concentration pi can be found to be

pi = pi,T

1 + y
K0

i
+
∑
j=1,2

(
1 + y

Kj
i

)(
uj

i

kj
i

)nj
i

+ k̂i

(
1 + y
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)(
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i
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i

)n1
i
(
u2

i

k2
i

)n2
i

, (S43)

where we have defined:

k̂i =
(

1
k12
i

+ 1
k21
i

)
.
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The concentration of active open complex for node i transcription, Ci, is:

Ci = C0
i +

∑
j=1,2,12

Cji = pi,T

y
K0

i
+ yk̂i

K12
i

(
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i

k1
i

)n1
i
(
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i

)n2
i +

∑
j=1,2

y
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(
uj

i

kj
i

)nj
i

1 + y
K0

i
+ k̂i

(
1 + y

K12
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)(
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k1
i

)n1
i
(
u2

i

k2
i

)n2
i +

∑
j=1,2

(
1 + y

Kj
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)(
uj

i

kj
i

)nj
i

,

(S44)

We assume that the free amount of both RNAPs and ribosomes are very limited, in particular:

y � Kj
i ,K

0
i ,K

12
i (j = 1, 2) and z � κi, (S45)

In this situation, the concentration of active open complex for node i transcription becomes:

Ci = pi,T

y
K0

i
+ yk̂i

K12
i

(
u1

i

k1
i

)n1
i
(
u2

i

k2
i

)n2
i +

∑
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(
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i
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)nj
i
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(
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i
(
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(
uj
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kj
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)nj
i

. (S46)

Setting ODEs (S39e) and (S39f) to QSS we obtain

Mi = αi
δi

z

κi
Ci = pi,Tαiyz

δiκi
·

1
K0

i
+ k̂i

K12
i

(
u1

i

k1
i

)n1
i
(
u2

i

k2
i

)n2
i +

∑
j=1,2

1
Kj
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(
uj

i

kj
i

)nj
i

1 + k̂i
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)n1
i
(
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k2
i

)n2
i +

∑
j=1,2

(
uj

i

kj
i

)nj
i

, (S47)

where κi is the effective dissociation constant of RBS of node i binding with ribosomes:

κi = κ−i + θi + ωi

κ+
i

.

In order to obtain physically relevant parameters and simplify our notation, we rearrange the ex-
pressions in (S47). Consider a Hill-type-function of the form

f(v, w) = π0 + π1v
n + π2w

m + π3λv
nwm

1 + vn + wm + λvnwm
, (S48)

where π0, · · · , π3, λ, n and m are non-negative constants, and v, w ∈ [0,∞). Defining π̄ :=
max{π0, π1, π2, π3}, notice that we have sup[f(v, w)] = π̄. Applying this result to the (S47), we
define,

K̄i = min{K0
i ,K

1
i ,K

2
i ,K

12
i },

so that we can re-write equation (S47) as

Mi = pi,Tαiyz

δiκiK̄i

· Fi(ui) (S49)

The function Fi(ui) : R2
+ 7→ [0, 1] describes the effect of TFs u1

i and u2
i on transcription of node i, it

can be written as:

Fi(ui) =
β0
i + β12

i k̂i

(
u1

i

k1
i

)n1
i
(
u2

i
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i

)n2
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, (S50)

where

β0
i := K̄i

K0
i

, βji := K̄i

Kj
i

, β12
i := K̄i

K12
i

.
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Figure S8: An example genetic circuit, with 6 nodes and 2 external TF inputs. A limited amount of
RNAPs and ribosomes are available for nodes 1 to 6. Links between nodes indicate transcriptional
regulation interactions, where “→” is an activation and “a” is a repression.

Equation (S50) is independent of the availability of resources and encapsulates the most common
forms of transcriptional regulations. For example, when node i takes a single activator u1

i as input,
we have β0

i < 1, β1
i = 1, and β2

i = β12
i = 0; when node i takes a single repressor u1

i as input, we
have β0

i = 1, β1
i < 1, and β2

i = β12
i = 0; when node i is constitutive, β0

i = 1, and β1
i = β2

i = β12
i = 0;

when node i takes two competitive repressors u1
i and u2

i as input, β0
i = 1, β1

i , β
2
i < 1 and β12

i = 0.
Finally, we combine equations (S49) and (S39g) to obtain the dynamics of xi:

ẋi = αiθipi,T
δi

· y
K̄i

· z
κi
· Fi(ui)− γi · xi. (S51)

Since y and z are shared among all nodes in the network, their free concentrations y, z need to be
determined from the network context. This is discussed in the next subsection.

B4.2 Resource sharing in genetic circuits
A genetic circuit is composed of N nodes and L external TF inputs (v1, · · · , vL). The concentrations
of the external inputs can be represented by v = [v1, · · · , vL]T and the state of the network is
represented by the concentrations of output proteins of each node x = [x1, · · · , xN ]T . The set of all
TFs in the network is X = {x1, · · · , xN, v1, · · · , vL}, and we use ξ = [xT ,vT ]T ∈ R(N+L) to represent
the vector of their concentrations. Nodes can be connected by regulatory interactions where protein
xj can either activate or repress the production of xi by binding to its promoter. We call xi as a
target of xj and xj as a parent of xi. We denote by Ui ⊆ X the set of all parents of xi. Their
concentrations are given by a vector ui = Qi · ξ, where Qi ∈ R2×(N+L) is a selection matrix whose
elements are defined as:

qjk =
{

1, if ξk is the jth input to node i,
0, otherwise.

Figure S8 illustrates an example genetic circuit. In this example circuit, x = [x1, · · · , x6]T and
v = [v1, v2]T . Therefore, X = {x1, · · · x6, v1, v2}, and ξ = [x1, · · · , x6, v1, v2]T . Using node 1 as an
example, we have U1 = {x6, v1}, u1 = [x6, v1]T , and the selection matrix Qi ∈ R2×8 can be written
as

Qi =
[
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

]
.
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As an extension of resource conservation in an activation cascade (S15), here, we have:

yT = y +
N∑
i=1

yi, zT = z +
N∑
i=1

zi. (S52)

We let yi and zi denote the amount of RNAPs and ribosomes bound to node i:

yi = C0
i + C1

i + C2
i + C12

i , zi = Mi.

According to (S46) and (S47), we use (S50) to simplify the notation for the resources bound to node
i:

yi = Ci = pi,T y

K̄i

Fi(ui), zi = Mi = pi,Tαiyz

δiκiK̄i

Fi(ui) (S53)

Combining equations (S52) and (S53), we obtain:

y = yT

1 +
N∑
i=1

[ pi,T

K̄i
Fi(ui)]

, z = zT

1 + y
N∑
i=1

[ αipi,T

δiK̄iκi
Fi(ui)]

.

Hence,

y · z = yT · zT

1 +
N∑
i=1

pi,T

K̄i
· (1 + αi

κiδi
yT ) · Fi(ui)

. (S54)

Substituting (S54) into (S51), we derive the dynamics of node i as:

ẋi = TiFi(ui)

1 +
N∑
k=1

JkFk(uk)
− γixi, (S55)

where Ji and Ti are lumped parameters defined as:

Ji := pi,T

K̄i

· (1 + αi
κiδi

yT ), Ti := yT zT pi,T ·
θiαi

K̄iκiδi
. (S56)

Fi(ui) is the only element in equation (S55) that reflects regulatory interactions on node i. According
to equation (S50), the form of Fi(ui) is the same as that of the standard Hill functions described
in [12] and [13]. Notice that regardless of the nature of regulatory interaction (i.e. activation vs.
repression), we always have sup[Fi(ui)] = 1, hence, according to (S56), Ti represents the maximal
gene expression rate of node i, because Ti is the production rate of xi when Fi(ui) = 1, y = yT and
z = zT .

To demonstrate the effectiveness of our general model, we apply it to a simple genetic circuit
used previously to study resource competition between an inducible gene and a constitutive one in
[16, 1]. The effective interaction graph of this circuit is reproduced in Figure S9. In this circuit, a
TF u is transcriptionally activating the production of protein x1. Another protein x2 is produced
constitutively. Experimental results in [16, 1] indicate that at steady state, due to competition for a
limited pool of RNAPs and ribosomes, the steady state concentrations of x1 and x2 follow a linear
relationship:

ax̄1 + bx̄2 = 1.

This result can be shown as a special case of our general model (S55). According to (S55), gene
expressions in this circuit can be written as:

ẋ1 = T1F1(u)
1 + J1F1(u) + J2

− γ1x1, ẋ2 = T2

1 + J1F1(u) + J2
− γ2x2.
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Figure S9: A genetic circuit consists of an inducible gene and a constitutive gene. Due to resource
competition, steady state expression levels x̄1 and x̄2 follow a linear relationship called “isocost line”
[1].

At steady state, when expression of the two nodes are x̄1 and x̄2, respectively, we have

x̄1 = T1F1(u)
γ1[1 + J1F1(u) + J2] , x̄2 = T2

γ2[1 + J1F1(u) + J2] . (S57)

From (S57), we find

J1γ1

T1︸ ︷︷ ︸
a

x̄1 + (1 + J2)γ2

T2︸ ︷︷ ︸
b

x̄2 = 1,

where parameters a and b are equivalent to the ones in the previous model [1].
Indeed, the circuit in Figure S9 can be viewed as an extreme case of the activation cascade we

studied in this paper, with the second activation stage x1 → x2 negligibly weak. This situation
happens, for example, when activation of x2 by x1 is saturated, while expression of x1 continues to
deplete resources as u increases, effectively inhibiting x2 expression. The monotonically decreasing
or biphasic response curve of the activation cascade thus becomes not surprising.

B5 Ji quantifies resource demand in node i
Ji is a dimensionless lump parameter for node i that defines its maximal resource demand when
Fi(ui) = 1. We take Ji as a measure of resource demand by node i because the expression in
equation (S54) implies the “conservation law” for y · z:

yT · zT = y · z︸︷︷︸
free resources

+
N∑
i=1

[Ji · Fi(ui)] · y · z︸ ︷︷ ︸
resources bound to node i

. (S58)

Furthermore, the major between our model in equation (S22) and the standard Hill function model

in (S10) is the common denominator term D = 1 +
N∑
k=1

JkFk(uk). The following claim shows that

when resources bound to the nodes are negligibly small, the resource demand measures for all nodes
must satisfy Ji � 1 for all i.

Claim 3. For every ui, if yi � y and zi � z for all i = 1, · · · , N , then Ji � 1 for all i = 1, · · · , N .

Proof. Using equation (S53), yi � y for every ui is requires pi,TFi(ui)/K̄i < pi,T /K̄i � 1, since
Fi(ui) ≤ 1. Similarly, zi � z for every ui requires αipi,T y

δiK̄iκi
� 1. Since yi � y for all i, y ≈ yT .

Therefore, αipi,T yT

δiKiκi
� 1 and Ji � 1 for all i.

This claim shows that when resource demand is negligible in the network, 0 < Ji � 1 (i =
1, · · · , N), our model (S22) reduces to the standard Hill-function model in (S10). Equation (S56)
indicates that a node i is a strong resource sequester if its (i) copy number is large; (ii) RNAP
sequestering capability is strong (small K̄i); (iii) transcription rate constant is large; (iv) ribosome
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sequestering capability is strong (small κi); (v) mRNA degradation rate is low or (vi) the total
amount of RNAP is large. Conditions (i) and (ii) are associated with the pi,T /K̄i term in equation
(S56), and describe the node’s capability to occupy RNAP. Conditions (iii) to (vi) are considered
from the (αiyT )/(κiδi) term and characterize the node’s capability to occupy ribosomes.

B6 Rules to draw effective interaction graphs
Directed edges, such as those in Figure S8, have been used to represent regulatory interactions among
nodes in genetic circuits [12]. In this section, we expand their applications to represent interactions
in a circuit with both regulatory interactions and non-regulatory interactions arising from resource
competitions. These rules allow us to easily obtain the effective interactions among nodes, presented
in Figure 4 of the main text. We first mathematically define the standards to draw directed edges in
a genetic circuit, and then obtain effective interactions among nodes based on our model in equation
(S55).

Definition 1. Let the dynamics of xi be given by ẋi = Gi(ξ) − γi · xi. We draw the interaction
graph from TF ξj to xi based on the following rules:

• If ∂Gi

∂ξj
≡ 0 for all ξj ∈ R+, then there is no interaction from ξj to xi;

• If ∂Gi

∂ξj
≥ 0 for all ξj ∈ R+ and ∂Gi

∂ξj
6= 0 for some ξj , then ξj activates xi and we draw ξj → xi;

• If ∂Gi

∂ξj
≤ 0 for all ξj ∈ R+ and ∂Gi

∂ξj
6= 0 for some ξj , then ξj represses xi and we draw ξj a xi.

• If ∂Gi

∂ξj
> 0 for some ξj ∈ R+ and ∂Gi

∂ξj
< 0 for some other ξj , then the regulation of ξj on xi

is undetermined and we draw ξj ( xi;

Based on Definition 1, for the standard model in equation (S10), Gi(ξ) = TiFi(Qiξ) = TiFi(ui),
and therefore there is a link from ξj to xi if and only if ξj ∈ Ui. In our model (S22), instead we have

Gi(ξ) = TiFi(Qi · ξ)

1 +
N∑
k=1

JkFk(Qk · ξ)
= TiFi(ui)

1 +
N∑
k=1

JkFk(uk)
,

which implies that the dynamics of xi may be influenced by TFs that do not belong to Ui.
In what follows, we discuss the effective interactions from ξj ∈ χ to protein xi when (i) xi is

the only target of ξj, (ii) xi is one of the multiple targets of ξj, and (iii) xi is not a target of ξj.
We do not require xi 6= ξj and assume that a TF cannot be both an activator and a repressor.
When xi is the only target of ξj, the following claim shows that resource limitations do not alter the
activation/repression of xi by ξj in the interaction graph.

Claim 4. If ξj ∈ Ui and ξj /∈ Uq for all (q 6= i). Then we have sign[∂Gi(ξ)/∂ξj ] = sign[∂Fi(Qiξ))/
∂ξj ].

Proof. According to equation (S22),

∂Gi(ξ)
∂ξj

=

positive︷︸︸︷
∂Gi
∂Fi

·∂Fi(Qiξ)
∂ξj

⇒ sign
(
∂Gi
∂ξj

)
= sign

(
∂Fi
∂ξj

)
.
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Figure S10: Lateral activation by a repressor. (a) Effective interaction graph of a single-input
motif [12]. Black arrows represent regulatory interactions and red dashed arrows represent non-
regulatory interactions due to resource competition. (b) Dose response curves of the circuit in (a).
Expression level of x1 is nomonotonic with respect to u, which is its repressor.

In the case where ξj ∈ U1, · · · ,Uk (k ≥ 2), the effective interactions from ξj to its targets are
undetermined. For example, if ξj represses x1 and x2 simultaneously, the effective interaction from
ξj to x1 is given by

∂G1(ξ)
∂ξj

= ∂G1

∂F1︸︷︷︸
positive

·

transcriptional repression︷ ︸︸ ︷
∂F1(Q1ξ)

∂ξj︸ ︷︷ ︸
negative

+

hidden activation︷ ︸︸ ︷
∂G1

∂F2︸︷︷︸
negative

· ∂F2(Q2ξ)
∂ξj︸ ︷︷ ︸

negative

. (S59)

As sign(∂G1/∂ξj) cannot be determined, the effective interaction from ξj to x1 is undetermined.
Simulation of this situation is presented in Figure S10. In Figure S10(a), we present the effective
interaction graph of a single-input motif, where TF u transcriptionally represses two targets x1 and
x2. The nature of effective interactions from u to x1 and x2 are undetermined. In particular, in
Figure S10, we simulated a situation where dose response of x1 with respect to u becomes biphasic,
rather than the intended monotonically decreasing. This situation is captured by equation (S59).
Physically, this fact can be explained by the following resource competition mechanism: if x2 occupies
a lot of resources in the absence of u (large J2), a large amount of resources are released in the
presence of u, effectively promoting the expression of x1.

When ξj is not a parent of xi, the following claim shows ξj is an effective repressor for xi if ξj is
an activator. Conversely, ξj is an effective activator for xi if it is a repressor.

Claim 5. If ξj /∈ Ui but ξj ∈ Uk for some k 6= i, then we have sign[∂Gi(ξ)/∂ξj ] = −sign[∂Fk(Qkξ)/
∂ξj ].

Proof. Since ξj /∈ Ui, ∂Gi/∂Fk < 0 for all k.

∂Gi(ξ)
∂ξj

=
∑
k

∂Gi
∂Fk︸︷︷︸

negative

·∂Fk(Qkξ)
∂ξj

.

Therefore, sign(∂Gi/∂ξj) = −sign(∂Fk/∂ξj).

All results in this section are summarized in Figure 4 of the main text.

B7 Dose response of a two-stage repression cascade
Here, we consider an application of our general model and graphical rules obtained in Sections B4
and B6 to another circuit commonly used for biological signal transduction and amplification: a two-
stage repression cascade. A two-stage repression cascade consists of a TF input u transcriptionally
repressing x1, which is a repressor of the output protein x2. As u increases, concentration of x2
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increases due to reduced amount of x1. When this circuit is subject to resource competition, its
ODE model can be written, according to (S55), as

ẋ1 = T1F1(u)
1 + J1F1(u) + J2F2(x1) − γ1x1,

ẋ2 = T2F2(x1)
1 + J1F1(u) + J2F2(x1) − γ2x2,

(S60)

where

F1(u) = 1
1 +

(
u
k1

)n1 F2(x1) = 1
1 +

(
x1
k2

)n2 . (S61)

According to Claim 1, slope of its dose response curve dx̄2/du can be found as

dx̄2

du = H(0) =
∂G2
∂x1
· ∂G1
∂u +

(
γ1 − ∂G1

∂x1

)
· ∂G2
∂u(

γ1 − ∂G1
∂x1

)
γ2

, (S62)

with

G1(u, x1) = T1F1(u)
1 + J1F1(u) + J2F2(x1) , G2(u, x1) = T2F2(x1)

1 + J1F1(u) + J2F2(x1) .

Note that the expression of the slope in (S62) for the repression cascade is identical to that of the
activation cascade in (S30). However, here, since the Hill functions (F1(u) and F2(x1)) now decrease
with their arguments, we have

∂G1

∂u
= ∂G1

∂F1︸︷︷︸
positive

· ∂F1

∂u︸︷︷︸
negative

< 0, ∂G1

∂x1
= ∂G1

∂F2︸︷︷︸
negative

· ∂F2

∂x1︸︷︷︸
negative

> 0,

∂G2

∂u
= ∂G2

∂F1︸︷︷︸
negative

· ∂F1

∂u︸︷︷︸
negative

> 0, ∂G2

∂x1
= ∂G2

∂F2︸︷︷︸
positive

· ∂F2

∂x1︸︷︷︸
negative

< 0.

Consequently, as long as γ1 > |∂G1/∂x1|, we have H(0) > 0, and the slope of the dose response
curve of a repression is always positive. This property of the repression cascade can also be explained
by the effective interaction graph we presented in Figure 4D of the main text. Since u is a repressor,
with x1 being its only target, the effective interaction between u and x1 is still repression, and the
effective interaction between u and x2 is an activation. Similarly, according to the rules established
in Figure 4A-C, the effective interaction from x1 to x2 is a repression, while x1 is also effectively
activating itself. The two interactions acting from u to x2 are both effective activations: u a x1 a x2
and u→ x2. Therefore, steady state of x2 is guaranteed to increase with u. Situations where
γ1 > |∂G1/∂x1| corresponds to scenarios where the repression cascade becomes bistable due to
the hidden self-activation loop x1 → x1. Self-activation loops are closely related to bistability in
genetic circuits [12, 13]. While existing experimental results have illustrated repression cascades to
show bimodal behavior [17], whether the observed bimodality is due to bistability arising from the
non-regulatory self-activation still needs to be investigated.

B8 Effects of additional constitutive nodes on effective in-
teractions

In the main text of this paper, we study a model of the two-stage activation cascade that does not
take into account resource demand by the constitutive gene luxR, and only considers competition
for resources between NahR and GFP. Here, we extend our model to explicitly account for resource
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Figure S11: (a) Two-stage activation, reproduced from Figure 1 of the main text. (b) Schematic of
the activation cascade with a constitutive node x0. A conserved amount of resources are used to
produce the constitutive node x0, and the two stages of the activation cascade x1 and x2.

demand of luxR, which we call node 0. We show that whether this constitutive node is included in
the resource competition model or not does not change our qualitative results on the shape of dose
response curves. A schematic of the circuit with the constitutive node x0 is shown in Figure S11.

According to (S55), an ODE model of the system is:

ẋ1 = T1F1(u)
1 + J0F0 + J1F1(u) + J2F2(x1) − γ1x1,

ẋ2 = T2F2(x1)
1 + J0F0 + J1F1(u) + J2F2(x1) − γ2x2.

Since node 0 is constitutive, we have F0 ≡ 1. Consequently, the model can be written as

ẋ1 = T̃1F1(u)
1 + J̃1F1(u) + J̃2F2(x1)

− γ1x1,

ẋ2 = T̃2F2(x1)
1 + J̃1F1(u) + J̃2F2(x1)

− γ2x2,

(S63)

where we have defined the following new lumped parameters:

T̃i = Ti
1 + J0

, J̃i = Ji
1 + J0

, (i = 1, 2). (S64)

Note that equation (S63) has the same form as (S22), which is the model we derived only considering
resource competition between node 1 and 2. Therefore, we may conclude that adding a constitutive
x0 to the circuit is equivalent to changing parameters Ti and Ji (i = 1, 2). The properties of
non-regulatory interactions arising resource competition is unaffected, and we would expect that
the dose response curves can be positive, negative or biphasic. Note that according to (S64), the
resource demand J1 and J2 of both nodes decrease with J0. Since small J1 guarantees monotonically
increasing dose response curve of the activation cascade, a constitutive node 0 with large resource
demand can be used as a sponge to passively mitigates the effects of resource competition on circuit
behavior. The price, however, is that expression of all genes in the circuit will be quenched due
to decreased T1 and T2. Interestingly, such strategy maybe used by natural systems to deal with
fluctuation in RNAP concentrations [18].
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B9 Parametric analysis
We follow the widely used convention that a concentration of 1 molecule/cell is equivalent to a
concentration of 1 nM, due to the fact that typical volume of an E. coli cell is 10−18 m3 [19].
Therefore, the total concentration of the promoters are given by plasmid copy number as p1,T =
p2,T = 30 nM for CAS 1/30 and CAS 0.3/30, and p1,T = p2,T = 60 nM for CAS 1/60 and CAS 0.3/60.
According to [5], elongation rate constant of mRNA chain is about 30 nucleotides per second, and
GFP has about 720 nucleotides, transcribing each gene takes about half a minute. We therefore take
transcription rate constant to be αi ≈ 100 hr−1. According to [20], each DNA can have as many as
20 RNAPs transcribing simultaneously. This fact is critical to our model as the number of RNAPs
engaged in the transcription of gene i can be significantly larger than assuming a single RNAP
binding to the promoter. To account for this fact in our model, instead of assuming each gene can
bind with λ RNAPs, we assume that the plasmid copy numbers are increased by a factor of λ, while
each promoter can only bind a single RNAP. In this way, the binding kinetics between promoters
and RNAPs are unaffected, but effective RNAP demand and mRNA production increased. Here, we
take a conservative estimate that λ = 5, so effective total promoter concentration of gene i is λpi,T .
Similarly, elongation rate of the peptide chain is about 10 amino acid per second, and a typical
GFP has 250 amino acid, translating its mRNA takes about half a minute. We therefore estminate
θi ≈ αi ≈ 100 hr−1. Each mRNA can have as many as 30 ribosomes translating simultaneously [21].
These multi-ribosome complexes are also known as “polysomes”, which can significantly increase
ribosome demand of a circuit. Instead of modeling each mRNA binding φ ribosomes, we model it
as the number of mRNAs increased by a factor of φ, and each of them only binds one ribosome.
Increase in the number of mRNAs can be modeled by increasing the transcription rate constant αi
by φ times. The half life time of mRNA ranges ranges from 3 to 10 minutes, we estimate its decay
rate δi to be between 4 ∼ 15 texthr−1. When ribosomes are bound to mRNAs, they protect the
mRNAs from degradation [22], we therefore assume ωi < δi. The decay rate of proteins are set to
be γi ≈ 0.4 hr−1 to be consistent with experimental observations.

The dissociation constants between TFs and target DNAs, ki, can range between 0.02 nM to
10 µM, and that of RNAP binding non-specifically with DNA (K0

i ) is typically larger than 10 µM
[23]. The dissociation constant of T7 RNAP binding with promoter is 220 nM [24]. T7 RNAP has
stronger binding with promoters than other RNAP species [25], therefore, we expect K >220 nM.
For instance, the dissociation constant of lac promoter with RNAP is about 550 nM [26]. A typ-
ical dissociation constant of ribosome binding with RBS is 5 µM [21]. Furthermore, notice that
according to (S42), our definition of effective dissociation constants K0

i , Ki and κi in node i is
always larger than the standard definition of dissociation constant (di/ai) due to the presence of
transcription/translation elongation rate constant in the numerators.

The total amount of resource in E. coli cells is dependent on cell growth rate: slower growth
rate indicates smaller total amount of resources [5]. In all our experiments with different activation
cascades and AHL inputs, host cell growth were relatively slow. The maximum specific growth
rate was obtained in CAS 0.3/30 experiment at about 0.5 per hour. Specific growth rates in other
experiments were even slower at about 0.3 ∼ 0.4 per hour (see Figure S2). According to Bremer
et.al. [5], at specific growth rate of about 0.4 per hour, the total number of RNAPs per E. coli cell is
about 1500 molecules. The total amount of active ribosomes per E. coli cell is about 6000 molecules,
of which about 5000 molecules are active. However, a large portion of RNAP and ribosomes are
allocated to transcribe/translate endogenous circuits of the host cell. According to [27], in E. coli
cells at specific growth rate of 0.7 per hour, the free amount of RNAP is about 150 molecules, and the
amount of free ribosomes is about 1000 molecules. Since RNAPs and ribosomes are also sequestered
by the synthetic activation cascade, and that we observed specific growth rates slower than 0.7
per hour, we expected the free amount of RNAPs and ribosomes in our experiments to be smaller
than 150 nM and 1 µM, respectively. Therefore, based on the characteristic values of dissociation
constant K0

i , Ki and κi, our limited resource assumptions in (S45) that y � Ki,K
0
i and z � κi are

reasonable. As the size of synthetic circuit increases, the amount of free resources becomes more
scare, and this assumption is closer to reality. Physically, these assumptions correspond to situations
where the promoters are rarely occupied by RNAP and that mRNAs are in excess compared to free
ribosomes, both of which are common in experiments [28, 29].
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Table 1: Characteristic values of biological parameters

Parameters Characteristic values Sources
Total DNA concentration pi,T 1 copy ∼ 1 nM [19]
Total RNAPs available to synthetic circuit yT . 1000 nM [1, 5, 27]
Total ribosomes available to synthetic circuit zT . 1000 nM [1, 5, 27]
Dissociation constant between TFs and DNAs kji 10−2 ∼ 103 nM [23]
Dis. const. between RNAPs and DNAs (specific) Kj

i & 500 nM [24, 25, 26]
Dis. const. between RNAPs and DNAs (nonspecific) K0

i & 10 µM [19]
Dis. const. between ribosomes and RBS κi & 5 µM [21]
Transcription elongation rate constant αi ∼ 100 hr−1 [5]
Translation elongation rate constant θi ∼ 100 hr−1 [5]
Number of RNAPs per DNA λ . 20 [20]
Number of ribosomes per mRNA φ . 30 [21]
mRNA decay rate constant δi 4 ∼ 15 hr−1 [19]
mRNA+ribosome complex decay rate constant ωi < δi [22]
Protein decay rate constant γi 0.3 ∼ 0.4 hr−1 Experiment

In fact, the total amounts of resources yT and zT available to the circuit of interest is not equal
to the total amounts of resources reported in [5]. This is because a large portion of resources are
allocated to express endogenous circuits of the host cell. If we regard the endogenous circuit as a
constitutively expressed gene, with strong resource sequestration, then the total amounts of resources
available to the synthetic circuit are approximately the free amounts. Moreover, with RNAPs and
ribosomes unevenly distributed in cells in reality, recent experimental results have suggested that
resource competition may be a local behavior [1, 30]. Based on the above reasoning, we argue that
the total amount of resources available to the synthetic circuit is less than the free resources in the
whole cell reported in [5, 27]. A summary of all characteristic parameters discussed in this section
are summarized in Table 1.

B10 Simulation implementations
To generate Figure 2, we simulate a full model of the activation cascade, which takes into account
ODEs in (S1a)-(S1l) and the resource conservation law (S15). Simulations are performed by MAT-
LAB R2014b (Simulink) with variable step ODE solver ode15s. Notice that we do not incorporate
the limited resources assumption (S45) into our model. The assumption is only used to derive a
lower dimensional model (S22) for the sake of mathematical analysis. However, simulation results
still match predictions obtained by the lower dimensional analytical model (S22). Simulation pa-
rameters are listed in Table 2. Parameter values are chosen from typical parameter ranges reasoned
in Section B9 to match the qualitative dose response curves observed in experiments.

Table 2: Simulation parameters to generate Figure 2

Parameter Unit Value Parameter Unit Value
yT nM 200 zT nM 140
K0

1 µM 50 K0
2 µM 100

K1 µM 5 K2 µM 1
δi hr−1 5 ωi hr−1 1
θi hr−1 100 αi hr−1 100
n1 - 2 n2 - 4
k1 nM 10 k2 nM 200
κ0 µM 15 κ2 µM 15
λ = φ - 5 γi hr−1 0.4

Sample dose response curves generated by activation cascades in the parameter space in Figure
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2 is shown in Figure S12. The maximum amount of GFP output is about 7 µM when p1,T =
p2,T=60 nM, and κ1 = κ0/3, a situation being comparable to CAS 1/60. The protein concentration
is comparable to that of some common proteins in E. coli [19].
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Figure S12: Sample dose response curves of activation cascades in the parameter space. Black dose
response curves are monotonically increasing, cyan ones are biphasic and red ones are monotonically
decreasing.

The purpose of this study is to qualitatively demonstrate the existence and significance of non-
regulatory interactions due to resource competition, and to understand relevant biological parameters
that govern their strengths. Since the existence and effects of non-regulatory interactions are in-
dependent of exact parameters, we did not attempt to fit the model to exact experimental results.
Most likely, due to the large number of unknown parameters in the model, parameter fitting may
result in multiple local optima. Furthermore, performing a satisfactory parameter fitting requires a
few additional considerations, and therefore a more comprehensive model. These considerations in-
clude but are not limited to 1) binding reactions to form LuxR+AHL complex, 2) binding reactions
to form NahR+SAL complex, 3) step-wise does response curve of transcription activation by NahR
(see Section A5), whose detailed biomolecular mechanism is largely unclear, 4) dependence of the
number of RNAPs/ribosomes simultaneously binding a DNA/mRNA molecule on RBS strength,
DNA copy number and growth conditions, 5) change of dilution rate constants and total amount
of resources due to slower growth rate in CAS 1/30 and CAS 1/60 experiments (see A4), and 6)
the allocation of resources between a synthetic circuit and the endogenous circuits of the host cell,
where many relevant biomolecular mechanisms remain unknown. In future work, we will study to
what extent these additional considerations needs to be factored into the model.
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