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S1. Introduction 
Here we describe in detail the mathematics underpinning SLAPenrich, its implementation, a case study, as 

well as a comparison with PathScore and PathScan, two related tools. 

 

SLAPEnrich is implemented as an R package (available at https://github.com/francescojm/SLAPenrich), 

documentation and submission to Bioconductor in progress). 

It includes different collections of pathway gene sets from multiple public available sources [1], together 

with all the data objects needed to run the analysis described in our manuscript. However, it can be also 

used with any user-defined collection of gene-sets. An overview of the exposed functions of the R package 

is provided in Additional File 6. 

The statistical framework implemented by SLAPenrich is detailed in the Methods section of our 

manuscript. 

To visualize enriched pathways SLAPenrich makes use of presence/absence matrices visualised as binary 

heatmaps where columns indicate samples, rows indicate genes harboring at least one somatic mutation in 

at least one sample of the analyzed dataset, and colors indicate the absence or the presence of somatic 

mutations (respectively) in a given gene/sample combination. To emphasize mutual exclusivity trends 

among the row-wise mutation patterns, rows and columns of these heatmaps are sorted with a heuristic 

method (detailed below) that minimizes the superposition of mutated samples column-wisely, thus the 

overlaps of the mutation patterns across the rows (an example is provided in Error! Reference source not 

found.A described in the next section). To finally summarize the results, an analysis of the enriched-

pathway core-component genes can be performed. The aim of this final analysis is to visualize in the same 

heatmap enriched pathways that share a frequently mutated sub-set of genes (the core-component) that is 



supposed to lead the pathway enrichments, together with a membership matrix specifying to which 

enriched pathway each core-component gene belongs to (an example is provided in Error! Reference 

source not found.B, introduced in the next section). This allows filtering out from the results those 

pathways that are not directly relevant to the disease under consideration, in a supervised way. A final 

feature of the package is the identification of pathways that are differentially enriched (thus frequently 

altered) across two sub-populations of samples of the same input dataset, as detailed in the following 

sections. 

 

 

S2. Heuristic mutual exclusivity sorting and pathway visualization 
The set of somatic mutations of a cancer genomic dataset can be easily modeled as a binary (or Boolean) 

matrix, whose entries can assume only two possible values, i.e. 0 or 1. In this case, the columns indicate 

samples, its rows indicate genes (or vice-versa) and a non-zero entry the presence of a somatic mutations in 

a given gene/sample combination. In a binary matrix, a run is a sequence of consecutive non-zero entries. 

Reordering rows and columns in a way that the number of runs on the rows and the column-wise marginal 

totals are minimized is an effective way to highlight patterns of mutual exclusivity among the runs of 

different rows, i.e. the genes of the considered sub-set. This is an NP-hard problem [2] here referred as 

mutual-exclusivity sorting. In SLAPenrich a heuristic implementation of the mutual-exclusivity sorting is 

provided in a dedicated R function used by the internal visualization routines, although this function is also 

available and usaåble on any user defined binary matrix. Here, for simplicity we will describe an execution 

of this heuristic applied to a binary matrix summarizing a genomic dataset (with genes on the rows, 

samples on the columns, and binary entries specifying the status of a gene in a given sample). 

 

In the initial step of the algorithm all the samples and all the genes in the input matrix are declared as 

uncovered and an empty vector is initialized: this is the set of covered genes G. Then the algorithm 

proceeds through a series of iterations until the sets of uncovered genes and uncovered samples are both 

empty. In each of these iterations a best in class gene is identified. This is the uncovered gene with the 

maximal exclusive coverage, which is defined as the number of uncovered samples in which this gene is 

mutated minus the number of samples in which at least another uncovered gene is mutated. Finally, the 

identified best in class gene is removed from the set of the uncovered genes, it is attached to G, and the set 

of samples in which it is mutated are removed from the set of the uncovered samples. 

After these iterations have been executed, an empty vector of samples L is initialized and all the samples of 

the dataset are labeled again as uncovered. Then for each of the best in class gene g (in the same order as 

they appear in G) and until there are uncovered samples, the uncovered samples in which g is mutated are 

sorted according to the exclusive coverage of g across them (in decreasing ordered), they are labeled as 

covered samples and attached in the resulting order to L. 



To obtain the final mutual-exclusivity sorting of the initial dataset, the corresponding inputted binary 

matrix is rearranged by permuting the genes/rows in the same order as they appear in G and the 

samples/columns in the same order as they appear in L. 

 

 

S3. Identification and visualization of enriched pathway core-components 
To identify shared core-components across significantly enriched pathways, the set of enriched pathways 

and their composing genes are modeled as a bipartite network, in which nodes in the first set correspond to 

enriched pathways and nodes in the second set to genes belonging to at least one of the enriched pathways. 

Finally a pathway node is connected with an edge to each of its composing gene nodes. The resulting 

bipartite network is then mined for communities, i.e. groups of densely interconnected nodes, by using a 

fast community detection algorithm based on a greedy strategy [3]. The resulting communities are finally 

visualized as independent heatmaps where nodes in the first set (pathways) are on the columns, nodes in the 

second set (genes) are on the rows and a not-empty cell in position i,j indicates that the i-th gene belongs to 

the j-th pathway (an example is provided in Error! Reference source not found.B). 

 

 

S.4 Differential pathway enrichment analysis 
Similarly to differential gene expression analysis, the two sub-populations to be contrasted are defined 

through a contrast matrix. Then individual SLAPenrichment analyses are performed on these two 

populations, yielding two sets of results. The pathways that are significantly enriched in at least one of the 

two analyses (according to a user defined false discovery rate (FDR) threshold) are then selected and, for 

each of them, a differential enrichment score is computed as: 

 

∆!,! 𝑃 = − log!" 𝐹𝐷𝑅!(!) + log!" 𝐹𝐷𝑅!(!) 

 

where 𝐴 and 𝐵 are the two contrasted sub-populations (respectively, positive and negative) and 𝐹𝐷𝑅!(!) 

and 𝐹𝐷𝑅!(!) are the two SLAPenrichment FDRs obtained in the two corresponding individual analyses, 

and 𝑃 is the pathway under consideration. Graphic routines included in our package allow a pathway level 

visualization of the inputted alterations across the two contrasted population, on the domain of the 

differentially enriched pathways as well as heatmaps and barplots of the differential enrichment scores (see 

an example in Error! Reference source not found.C). 

 

 



S.5 LUAD case study analysis 
To test the ability of our method in recovering pathways that are known to be associated to given a disease 

state and different clinico-pathological features, we have re-analysed, using different reference pathway 

collections, a published dataset encompassing somatic mutations found in 188 lung adenocarcinoma 

(LUAD) patients, studied in [4], downloading annotations of somatic variants and associated clinical 

information from http://genome.wustl.edu/pub/supplemental/tsp_nature_2008/ (files: 

supplementary_table_2.tsv and supplementary_table_15.tsv, respectively). 

The variants annotations were converted into a genomic event matrix (EM) with altered genes on the rows, 

patient sample identifiers on the columns, and generic i,j entries specifying the number of observed point 

mutations hosted by the i-th gene in the j-th patient. 

 

A first SLAPenrich analysis on the resulting dataset was performed using the SLAPE.analyse function 

with default values for all the parameters (including a Bernoulli model [5] for the individual pathway 

alteration probabilities across all the samples, and the choice of the set of all the altered genes in the dataset 

as background population), and a pathway gene sets collection from KEGG [6] (embedded in the package 

as R data object: SLAPE.20160211_MSigDB_KEGG_hugoUpdated). 

This analysis yielded 48 significantly enriched pathways, at a FDR < 5%  and a mutual exclusive coverage 

(EC) > 50% (Error! Reference source not found.). Among these, we found pathways whose deregulation 

is known to be involved in lung cancer, such as tight junction (alteration score (AS) = 0.37, EC = 89%) [7] 

(Error! Reference source not found.A), gap junction (AS = 0.45, EC = 75%) [8], and several pathways 

found with PathScan [9] and other computational methods [4], such as for example focal adhesion (AS = 

0.06, EC = 84%), ERBB signaling pathway (AS = 0.27, EC = 69%), dorsoventral axis formation (AS = 

0.42, EC = 55%). Additionally, we found a number of pathways recently proposed as potential targets for 

lung cancer therapy such as GNRH signaling pathway (AS = 0.45, EC = 87%) [10], WNT signaling 

pathway (AS = 0.29, EC = 74%) [11], and VEGF signaling pathway (AS = 0.33, EC = 80%) [12]. 

 

To further validate the ability of SLAPenrich in identifying disease relevant pathways and highlight the 

possible analytical venues allowed by our tool, we considered the clinical information of the samples in the 

analyzed LUAD dataset. Using this data, we stratified the considered patients based on their smoking status 

(never-smoker and current-smokers) and their bronchioalveolar carcinoma type (mucinous and non-

mucinous), and performed a differential SLAPenrich analysis contrasting the variant profiles of the 

obtained sub-populations, using the far larger publicly available collection of pathway gene sets from 

Pathway Commons [1], post-processed for redundancy removal as described in the Methods. Outcomes 

from the first analysis, comparing never-smoker vs. current-smokers, are reported in Supplementary Table 

S2 and summarized in Error! Reference source not found.C. In total we found 147 differentially enriched 

pathways (enriched at FDR < 5% in at least one of the two populations). Ranking these pathways according 

to their differential enrichment score, in decreasing order (Error! Reference source not found.C) 



highlights, consistently with previously reported findings, in the current-smokers population a prominent 

enrichment of alterations in the RAS/RAF/MEK signaling cascade [13], telomerase activity [14], NOXA 

and PUMA signaling[15]. On the other hand, in the never-smoker population we observed prominent 

enrichments in EGFR signaling and EGFR-dependent endothelin signaling pathways [16]. 

 

When contrasting mucinous vs. non-mucinous BAC types (Supplementary Figure S2 and Supplementary 

Table S3), we again observed correct associations between the mucinous BAC type and pathway alteration 

enrichments in the RAS/RAF/MEK signaling cascade [17], signaling by leptin[18], PI3K and MTOR 

signaling pathways [19], and inflammation related pathways such as CXCR3 and GM-CSF mediated 

signaling. Whereas for the non-mucinous BAC type population prominent enrichments were observed in 

pathways involving EGFR signaling[20]. The presented analyses and results are fully detailed in the 

vignette of the SLAPenrich package (see Code Availability). 

 

S.6 Comparison with other methods 
To our knowledge there are only two public available tools performing analyses of pathway alterations 

enrichments in large genomic datasets at the sample population level, and implementing a statistical 

framework similar to that of SLAPenrich: PathScan [9] and PathScore [21]. While these tools, in particular 

PathScore, share aspects with SLAPEnrich, a number of features of these two tools make them unsuitable 

for the analyses described in our manuscript. 

Pathscan, even if, like SLAPEnrich, computes aggregated p-values at the sample population level, these are 

still obtained by merging together enrichment p-values computed at the individual sample level. 

Additionally, PathScan does not take into account of possible mutual exclusivity trends between patterns of 

mutations of genes in the same pathway. Finally, in more practical terms, it requires raw sequencing data 

(BAM files) in input: this is quite uncomfortable for our case making use of public available processed 

genomic datasets represented through binary presence/absence matrices. 

PathScore uses the same mathematical model as SLAPEnrich, but the individual pathway mutation 

probabilities are computed with a fixed model, using published estimated mutation rates that cannot be 

changed. In contrast, SLAPEnrich uses a Bernoulli model with customisable mutation rates (which can be 

also estimated looking at the analysed cohort of patients itself). Furthermore, PathScore is not implemented 

as a stand-alone tool but as web-application only, and there are not APIs available yet to integrate it in 

other computational pipelines, or to customize its execution parameters. 

Furthermore, both PathScan and PathScore make use of pathway collections from public available 

repositories (KEGG [6] for PathScan, MsigDB [22] for PathScore). We use a larger pathway collection 

(2,794 pathways, covering 15,281 genes, against 186 pathways and 5,224 genes for Pathscan, and 1,329 

pathways and 8,904 genes for PathScore) from Pathway Commons [1]. Additionally we post-processed this 

collection for redundancy reduction: pathways with large overlaps are merged together instead of being 

tested individually. This is a unique feature of our tool, it avoids similar gene-sets to be tested multiple 



times and produces a non-redundant mapping between pathways and cancer hallmarks (as detailed in 

Figure 3). 

We report below results for a comparison of results obtained with our tool with respect to PathScan and 

PathScore both. 

 

Collectively, we found a significant agreement between our results and those obtained with PathScan (and 

reported in the Supplementary Table 1 of [9]). After applying the same result curation of [9], i.e. removal 

of known cancer pathways whose mutation lists are invariably collectively dominated by mutations in 

TP53, KRAS and EGFR, and considering the 129 remaining KEGG pathway,  we found 26 enriched 

pathways (FDR < 5% for both SLAPenrich and PathScan), out of 36 pathways enriched for SLAPenrich 

and 31 enriched for PathScan (at the same FDR threshold), Fisher exact test p-value = 2.10 × 10!!" 

(Error! Reference source not found.). Additionally, we observed a significant correlation (R = 0.66, p = 

0.0002) between the significance levels of the 26 commonly enriched pathways across the two methods 

(Supplementary Figure S3). 

 

Similarly, we performed a comparison between the output obtained with SLAPenrich and PATHscore [21] 

when analysing the LUAD dataset described above. To this aim, in order to obtain comparable results we 

downloaded the whole collection of 1,392 canonical pathway signatures from the Molecular Signature 

Database (MsigDB) [22], as this is the reference collection used by the PATHscore online tool. We 

performed a SLAPenrich analysis of the LUAD dataset (coded as an EM, as detailed above) using this 

reference collection of pathway gene sets as input, and a PATHscore analysis using the online tool 

available at http://pathscore.publichealth.yale.edu/, and the list of variants of the LUAD dataset coded as 

required by this PATHscore (included in Error! Reference source not found.). As with PAthScan, we 

observed a high and significance overlap (181 enriched pathways, Fisher exact test p-value = 1.76 ×

 10!!") between the 198 enriched pathways outputted by SLAPenrich (at an FDR < 5%) and the 479 

outputted by PATHscore (adjusted p-value < 0.05), Supplementary Table S5. As most of the significantly 

enriched pathways outputted by PATHscore have a null p-value it was not possible to check the correlation 

between the patterns of enrichment significance across the two methods. However when looking at the top 

enriched pathways across the two analyses (SLAPenrich FDR = 1.76 × 10!!" and PATHscore adjusted p-

value = 0) the results’ concordance was even more pronounced (100 overlapping pathways out of the 117 

outputted by SLAPenrich and the 176 outputted by PATHscore, Fisher exact test p-value = 8.63 × 10!!"), 

Supplementary Table S5. 
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