SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Related to Figure 1
(A) STRING database co-occurance analysis based on the proteins used in the network in Figure 1B. Each square and the associated colour indicates the presence or absence and degree of conservation.
(B) Treefam data showing percent species with Aquarius/EMB-4 in each clade.
(C) Treefam tree based on sequence conservation of Aquarius/EMB-4 proteins in different model organisms (bootstrap values are indicated on branches).
(D) Assembly of splicing factors, Aquarius/EMB-4 and exon junction complex proteins during different stages of RNA splicing. Aquarius assembles during the B complex formation on intronic RNA and stays for the rest of the splicing reactions. EJC proteins assemble during Bact complex formation.
(E) Validation of the anti-EMB-4 antibody used in this study. The monoclonal anti-EMB-4 antibody (5M19-8) detects a single band at the size corresponding to EMB-4 (170kD) in wild type animals and no band is detected in the null emb-4(hc60) mutants (alpha-tubulin is used as loading control).
(F) Immunoprecipitation of EMB-4 using anti-EMB-4 antibodies and western blotting for EMB-4 and FLAG::HRDE-1.

Figure S2. Related to Figure 2
Immune-staining of C. elegans germline with anti-EMB-4 antibodies. Each panel highlights a different part of the germline.

Figure S3. Related to Figure 3
(A) mjls144 transgene consists of mex-5 promoter, GFP sequence with 3 synthetic introns, histone H2B sequence for nuclear localisation, piRNA target site for 21UR-1, tbb-2 UTR and is inserted in Chr II by MosSCI single copy insertion. mjls144 transgene is fully silenced in wild type animals and de-silences in hrde-1 and emb-4 mutants.
(B) ccSi1504 transgene consists of smu-1 promoter, SV40 nuclear localisation signal, GFP sequence where all piRNA target sequences are removed (Frøkjær-Jensen et al. 2016), 4 smu-1 introns, EGL-13 nuclear localisation signal, piRNA target site for 21UR-1, smu-1 3`UTR and is inserted in Chr V by MosSCI single copy insertion. ccSi1504 is fully silenced in wild type animals and de-silences in hrde-1 and emb-4 mutants (numbers show individual
animals assayed).

Figure S4. Related to Figure 4
(A) Domain structure of EMB-4 based on the domain structure of Aquarius (De et al. 2015).
(B) Crystal structure of Aquarius (domains are highlighted with same colours as in Figure S4A.
(C) Structural alignment of Aquarius (white) and EMB-4 (red).
(D) Superimposition of Vasa/AMPPNP/ssRNA with the crystal structures of Aquarius, EMB-4 and yeast Upf1-RNA. G884 residue of EMB-4 (shown in red) is embedded in close proximity to the putative ssRNA binding pocket.
(E) Western-blot showing EMB-4 protein abundance in wild type and emb-4(sa44) adult stage animals.

Figure S5. Related to Figure 5.
Enrichment of genes in 22G-RNA density bins used in Figure 5H-I for germline and somatic 22G-RNA targets (Gu et al. 2009), for WAGO class 22G-RNA targets (Gu et al. 2009), for piRNA target genes (top 500, (Bagijn et al. 2012), for ERGO-1 target genes (Conine et al. 2010; Han et al. 2009), for ALG-3/4 target genes (Conine et al. 2010; Han et al. 2009) and for CSR-1 target genes (Claycomb et al. 2009).

Figure S6. Related to Figure 6.
mRNA and 22G-RNA profiles of (A) piRNA target gene bath-45, (B) CER-15 retro-element, and (C) Mirage1 transposable element

Figure S7. Related to Figure 7.
22G-RNA profiles of wild-type, hrde-1 and emb-4 mutant animals (mean 22G-RNA abundance of three replicates) on (A) three intron piRNA sensor and (B) single intron piRNA sensor (Y -axis scale in wild type animals and mutants are different).

Figure S8. Related to Figure 7.
(A, B) mRNA expression levels correlate negatively with 22G-RNA abundance and correlation increases when more exons are targeted by 22G-RNAs (black line vs red line).

References

Bagijn, Marloes P., Leonard D. Goldstein, Alexandra Sapetschnig, Eva-Maria Weick, Samir Bouasker, Nicolas J. Lehrbach, Martin J. Simard, and Eric A. Miska. 2012. "Function, Targets, and Evolution of Caenorhabditis Elegans piRNAs." Science 337 (6094). AAAS: 574-78.
Claycomb, Julie M., Pedro J. Batista, Ka Ming Pang, Weifeng Gu, Jessica J. Vasale, Josien C. van Wolfswinkel, Daniel A. Chaves, et al. 2009. "The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation." Cell 139 (1). Elsevier: 123-34.

Conine, Colin C., Pedro J. Batista, Weifeng Gu, Julie M. Claycomb, Daniel A. Chaves, Masaki Shirayama, and Craig C. Mello. 2010. "Argonautes ALG-3 and ALG-4 Are Required for Spermatogenesis-Specific 26G-RNAs and Thermotolerant Sperm in Caenorhabditis Elegans." Proceedings of the National Academy of Sciences of the United States of America 107 (8). National Acad Sciences: 3588-93.
De, Inessa, Sergey Bessonov, Romina Hofele, Karine dos Santos, Cindy L. Will, Henning Urlaub, Reinhard Lührmann, and Vladimir Pena. 2015. "The RNA Helicase Aquarius Exhibits Structural Adaptations Mediating Its Recruitment to Spliceosomes." Nature Structural \& Molecular Biology 22 (2). Nature Publishing Group: 138-44.
Frøkjær-Jensen, Christian, Nimit Jain, Loren Hansen, M. Wayne Davis, Yongbin Li, Di Zhao, Karine Rebora, et al. 2016. "An Abundant Class of Non-Coding DNA Can Prevent Stochastic Gene Silencing in the C. Elegans Germline." Cell 166 (2): 343-57.
Gu, Weifeng, Masaki Shirayama, Darryl Conte Jr., Jessica Vasale, Pedro J. Batista, Julie M. Claycomb, James J. Moresco, et al. 2009. "Distinct Argonaute-Mediated 22G-RNA Pathways Direct Genome Surveillance in the C. Elegans Germline." Molecular Cell 36 (2). Elsevier Inc.: 231-44.

Han, Ting, Arun Prasad Manoharan, Tim T. Harkins, Pascal Bouffard, Colin Fitzpatrick, Diana S. Chu, Danielle Thierry-Mieg, Jean Thierry-Mieg, and John K. Kim. 2009. "26G Endo-siRNAs Regulate Spermatogenic and Zygotic Gene Expression in Caenorhabditis Elegans." Proceedings of the National Academy of Sciences of the United States of America 106 (44). National Acad Sciences: 18674-79.

Figure S1

A

Homo sapiens
Mus musculus
Danio rerio
Drosophila melanogaster
Caenorhabditis elegans
Caenorhabditis japonica
Caenorhabditis remanei
Caenorhabditis briggsae
Caenorhabditis brenneri
Schizosaccharomyces pombe
Saccharomyces cerevisiae

B
C

D

E

F

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure $\mathbf{S 7}$

Figure S8

emb-4

Table S1

	C. elegans HRDE-1 IP mean log2 fold enrichment (\# of replicates detected)	D. melanogaster PIWI IP (Le Thomas et al., 2013)	$\begin{gathered} \text { D. melanogaster } \\ \text { PIWI IP } \\ \text { (Le Thomas et al., } \\ \text { 2013) } \\ \hline \end{gathered}$
ALYREF (ALY-3, ALY)	0.68 (2/3)	3/3	4/4
RPL23 (RPL-23, RpL23)	0.43 (3/3)	3/3	1/4
DDX4 (GLH-2, VAS)	0.57 (2/3)	2/3	4/4
RPS15 (RPS-15, RpS15)	0.36 (3/3)	2/3	2/4
EIF4A3 (MEL-46, eIF4AIII)	0.74 (3/3)	2/3	2/4
AQR (EMB-4, CG31368)	0.73 (2/3)	2/3	1/4
$\begin{aligned} & \text { NCL (K07H8.10, } \\ & \text { CG17108) } \end{aligned}$	0.70 (3/3)	2/3	-
SND1 (TSN-1, Tudor-SN)	0.36 (3/3)	1/3	-
POLR2C (RPB-3, Rpll33)	0.64 (2/3)	-	3/4
RPL34 (RPL-34, RpL34)	0.39 (2/3)	-	2/4
NOP2 (NOL-1, CG8545)	0.63 (2/3)	-	2/4
SRRT (E01A2.2, ARS2)	0.40 (2/3)	-	2/4
POLR2J (RPB-11, Rpb11)	0.54 (2/3)	-	2/4
POLR1D (F58A4.9, $\mathrm{I}(2) 37 \mathrm{Cg})$	0.64 (2/3)	-	2/4
SSB (C44E4.4, La)	0.61 (2/3)	-	2/4
$\begin{aligned} & \text { NUP210 (NPP-12, } \\ & \text { Gp210) } \end{aligned}$	0.60 (2/3)	-	-
IMP3 (C48B6.2, CG4866)	0.27 (3/3)	-	-
RPS13 (RPS-13, RpS13)	0.42 (3/3)	-	-
RRS1 (RRBS-1, CG32409)	0.50 (2/3)	-	-
$\begin{aligned} & \text { DDX24 (F55F8.2, } \\ & \text { CG9143) } \end{aligned}$	$0.54(2 / 3)$	-	-
KIAA0020 (PUF-12, PEN)	0.50 (2/3)	-	-
$\begin{aligned} & \text { DDX54 (Y94H6A.5, } \\ & \text { CG32344) } \end{aligned}$	0.55 (2/3)	-	-
PAPD5 (GLD-4, TRF4)	0.88 (2/3)	-	-
HNRNPU (Y71G10AL.1, CG30122)	0.29 (3/3)	-	-
HNRNPR (HRP-2, SYP)	0.59 (3/3)	-	-
NUP93 (NPP-13, Nup93)	0.46 (3/3)	-	-
CSTF2 (R09B3.2, CstF-64)	0.36 (2/3)	-	-
POLR2B (RPB-2, Rpll140)	0.63 (2/3)	-	-

Table S2

Table S2. Strains used in this study, related experimental procedures		
Strain	Genotype	Comment
SX1316	mjls144 II	piRNA sensor transgene
SX2000	mjls144 II; hrde-1(tm1200) III	
SX2929	mjls144 II; emb-4(qm31) V	
SX2930	mjls144 II; emb-4(hc60) V	
SX3041	mjls144 II; emb-4(sa44) V	
SX3073	mjls588 II	piRNA sensor with 1 intron
SX3074	mjls144 II; hrde-1(tm1200) III; emb-4(sa44) V	
SX3078	mjls588 II; hrde-1(tm1200) III	
SX3079	mjls588 II; emb-4(qm31) V	
VM285	neSi21	3XFLAG::HRDE-1
SX3117	emb-4(mjSi92)	Ollas::EMB-4

