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This supplementary material for the manuscript ‘Co-operation, competition and crowding: a discrete frame-
work linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling waves’ contains a more
detailed analysis of all of the different cases of partial differential equations (PDEs) that arise from the
continuum description of the discrete model of co-operation and competition. Eight cases of different com-
binations of co-operative, competitive or neutral mechanisms are now considered systematically. Some of
these cases involve distinct sub-cases so that, in total, we consider 22 different classes of PDE models of
invasion. The properties of each of these distinct cases are presented in Table 1 in the main document. Note
that certain cases are examined in the main document and hence there is some unavoidable overlap between
the two documents, as here we examine all cases in a systematic manner.
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Figure S1. Travelling wave behaviour for the Fisher-Kolmogorov model (Case
1). (a) Phase plane for the system (S1.3)-(S1.4). Red circles denote equilibrium points. The
numerical solutions of Equation (S1.1) (cyan, solid) and Equation (S1.2) (orange, dashed), in
(C,U) co-ordinates, are superimposed. (b) Numerical solution of Equation (S1.1) at t = 25
and t = 50 (blue). The grey line indicates the initial condition and the arrow indicates the
direction of increasing time. (c) The time evolution of L(t). All results are obtained using
P i
m = P g

m = 1, P i
p = P g

p = 0.3, P g
d = P i

d = 0, δx = 0.1, δt = 0.01, ϵ = 10−6, v = 0.768.

Case 1. Equal motility rates, equal proliferation rates, no agent death.

For P i
m = P g

m, P i
p = P g

p and P i
d = P g

d = 0, there is no co-operative or competitive mechanism. This gives
F (C) = D = Di = Dg, and R(C) = λC(1− C), where λ = λi = λg. Therefore, Equation (2) reduces to the
Fisher-Kolmogorov equation [24,27,29]

(S1.1)
∂C

∂t
= D

∂2C

∂x2
+ λC(1− C).

As the source term is non-negative for all physical values of C ≥ 0, the agent population will always even-
tually reach the carrying capacity.

The Fisher-Kolmogorov equation has been studied extensively [18–21,24,25,27,29]. Here we present the key
results in the context of examining the long time travelling wave solution. We seek right moving travelling
waves in the co-ordinate z = x − vt, −∞ < z < ∞, where v is a constant wave speed [29]. Transforming
Equation (S1.1) into the travelling wave co-ordinate gives

(S1.2) D
d2C

dz2
+ v

dC

dz
+ λC(1− C) = 0, −∞ < z < ∞.

With U = dC/dz, Equation (S1.2) can be expressed as a system of ordinary differential equations (ODEs),

dC

dz
= U,(S1.3)

dU

dz
= − v

D
U − λ

D
C(1− C).(S1.4)

This system has two equilibrium points: (C,U) = (0, 0), and (C,U) = (1, 0). The linear stability of these
equilibrium points can be analysed by examining the eigenvalues of the Jacobian at each equilibrium point.
At (0, 0) the characteristic equation has solutions ξ = (−v±

√
v2 − 4λD)/2D, implying that (0, 0) is a stable

node provided that v > 2
√
λD, and a stable spiral (focus) otherwise, as λ and D are both positive. We

therefore have a minimum wave speed condition, v∗ = 2
√
λD, that must be satisfied otherwise the solution

trajectory will enter non-physical regions of the phase plane [29]. The Jacobian of the linearised system at

(1, 0) has eigenvalues ξ = (−v ±
√
v2 + 4λD)/2D, implying that (1, 0) is a saddle point.
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The phase plane and associated heteroclinic orbit for Equations (S1.3)-(S1.4) are shown in Figure S1(a).
Details of the numerical techniques used to solve Equation (S1.2) and to generate the phase planes are given

in the Methods (Main Document). Provided v ≥ 2
√
λD we observe a heteroclinic orbit between (1, 0) and

(0, 0). The numerical solution of Equation (S1.2) and the numerical solution of Equation (S1.1), transformed
into (C,U) co-ordinates, are superimposed, showing a good match. This result is unsurprising, as Equation

(S1.2) is solved using the minimum wave speed, v = v∗ = 2
√
λD, and the numerical solution of Equation

(S1.1) evolves from a Heaviside initial condition, which is known to approach a travelling wave moving at
the minimum wave speed [29]. The numerical solution of Equation (S1.1) at t = 25 and t = 50 is shown
in Figure S1(b), confirming that the waveform does not change with time. To quantify the wave speed we
calculate the time evolution of the leading edge, L(t) = xf such that C(xf , t) ≈ 1× 10−4. If the solution of
Equation (S1.1) forms a travelling wave, L(t) will tend to a straight line with slope v, as t → ∞. In Figure
S1(c), we observe that L(t) is approximately linear with slope v, and hence the solution of Equation (S1.1)
moves with approximately constant speed at late time. Overall, these features suggest that the solution of
Equation (S1.1) is a travelling wave.

Case 2. Different motility rates, equal proliferation rates, no agent death.

If P i
m ̸= P g

m the governing PDE contains a nonlinear diffusivity term. Since the agent birth rate is indepen-
dent of agent type and agents do not die, we consider the same source term as for Case 1. Again, there are
no competitive or co-operative mechanisms associated with birth/death but it could be either advantageous
(P i

m > P g
m) or disadvantageous (P i

m < P g
m) for an individual to be isolated from the bulk population, if the

goal for the population is to invade unoccupied space. In this parameter regime, Equation (2) simplifies to

(S2.1)
∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ λC(1− C),

where λ = λi = λg and F (C) = Di(1− 4C + 3C2) +Dg(4C − 3C2).

F (C) has different properties depending on the choice of P i
m and P g

m. To illustrate this, we present the
(P i

m, P g
m) parameter space in Figure S2(a), and highlight regions of different behaviour of F (C). If P i

m > 4P g
m,

there will be an interval, 1/3 ≤ α < C < β ≤ 1, centred around C = 2/3, where F (C) < 0. Specifically, this
interval is given by

(S2.2) α =
2

3
−

√
(P i

m)2 − 5P i
mP g

m + 4(P g
m)2

3(P i
m − P g

m)
< C < β =

2

3
+

√
(P i

m)2 − 5P i
mP g

m + 4(P g
m)2

3(P i
m − P g

m)
.

All parameter pairs that result in F (C) < 0, which we refer to as positive-negative-positive, correspond to
the purple region in Figure S2(a), and an example F (C) curve is given in Figure S2(b). Parameter pairs
that result in F (C) < 0 with F (1) = 0 correspond to the black line in Figure S2(a), and an example F (C)
curve is given in Figure S2(b). We refer to this type of nonlinear diffusivity function as capacity-degenerate
positive-negative. It is relevant for us to remark that nonlinear diffusivity functions with negative regions can
lead to shocks in the solution of nonlinear diffusion equations without any source term [50, 51]. Therefore,
it is instructive to consider whether shock-fronted travelling waves exist with Fisher-Kolmogorov kinetics.

For specific parameter regimes, F (C) is degenerate at C = 0, that is, F (0) = R(0) = 0. This type of
nonlinear diffusivity function, which we refer to as extinction-degenerate non-negative, leads to sharp-fronted
travelling waves, provided that F (C) ≥ 0 for 0 ≤ C ≤ 1 [40, 46, 47]. For Equation (S2.1), this corresponds
to P i

m = 0. The parameter pairs that satisfy this condition correspond to the orange line in Figure S2(a),
and a typical F (C) curve is given in Figure S2(b). The special case P i

m = P g
m leads to a constant diffusivity,

and parameter pairs that satisfy lie along the cyan line in Figure S2(a). A typical F (C) curve for this case
is presented in Figure S2(b). For all other parameter pairs F (C) > 0, which we refer to as strictly positive,
and these parameter pairs correspond to the grey region in Figure S2(a), for which an example F (C) curve
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Figure S2. Classification of F (C). (a) Type of F (C) function for 0 ≤ C ≤ 1 for the
parameter space P i

m ∈ [0, 1] and P g
m ∈ [0, 1]. The grey region represents parameter pairs

that result in only positive F (C), and the purple region represents parameter pairs that
result in negative F (C) for an interval of C. The orange line represents parameter pairs
that result in F (0) = 0, the green line represents parameter pairs that result in F (2/3) = 0,
the cyan line represents parameter pairs that result in constant F (C), and the black line
represents parameter pairs that result in negative F (C) for an interval of C with F (1) = 0.
(b) Example F (C) for each region in (a). Positive F (C) (grey), corresponding to P i

m = 1
and P g

m = 0.5. Negative F (C) for an interval of C (purple), corresponding to P i
m = 1

and P g
m = 0.1. Negative F (C) for an interval of C with F (1) = 0 (black), corresponding

to P i
m = 1 and P g

m = 0.1. F (0) = 0 (orange), corresponding to P i
m = 0 and P g

m = 1.
F (2/3) = 0 (green), corresponding to P i

m = 1 and P g
m = 0.25. Constant F (C) (cyan),

corresponding to P i
m = 1 and P g

m = 1. The white circles in (a) denote the parameter pairs
used to generate the curves in (b).

is shown in Figure S2(b).

We look for a right moving travelling wave solution of Equation (S2.1) in terms of the co-ordinate z = x−vt.
Transforming Equation (S2.1) into travelling wave co-ordinates, we obtain

(S2.3) v
dC

dz
+ F (C)

d2C

dz2
+ (Di −Dg)(6C − 4)

(
dC

dz

)2

+ λC(1− C) = 0, −∞ < z < ∞.

Making the substitution U = dC/dz gives

dC

dz
= U,(S2.4)

dU

dz
=

−vU − (Di −Dg)(6C − 4)U2 − λC(1− C)

F (C)
.(S2.5)

We now consider the properties of the travelling wave solutions for several sub-cases within Case 2. Unlike
the Fisher-Kolmogorov equation, the minimum wave speed is unknown and hence all phase planes presented
in this section are generated with v obtained from the numerical solution of Equation (S2.1) at sufficiently
late time.

Sub-case 2.1. Strictly positive nonlinear diffusivity function. If F (C) > 0 for 0 ≤ C ≤ 1, Equations
(S2.4)-(S2.5) are not singular for 0 ≤ C ≤ 1. Hence the linear analysis performed for Case 1 is valid in
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Figure S3. Travelling wave behaviour for Equation (S2.1) with strictly positive
F (C) (Case 2.1). (a), (d) Phase plane for the system (S2.4)-(S2.5). Red circles denote
equilibrium points. The numerical solutions of Equation (S2.1) (cyan, solid) and Equation
(S2.3) (orange, dashed), in (C,U) co-ordinates, are superimposed. (b), (e) Numerical so-
lution of Equation (S2.1) at t = 25 and t = 50 (blue). The grey lines indicate the initial
condition and the arrows indicate the direction of increasing time. (c), (f) The time evo-
lution of the position of the leading edge of the travelling wave solution. All results are
obtained using P i

p = P g
p = 0.5, P i

d = P g
d = 0, δx = 0.1, δt = 0.01, ϵ = 10−6 and (a)-(c)

P i
m = 1.0, P g

m = 0.5, v = 0.992; (d)-(f) P i
m = 0.2, P g

m = 0.8, v = 0.584.

terms of the position and stability of the equilibrium points. The exception is the minimum wave speed
condition for the equilibrium point at (0, 0) to be a stable node, which becomes v > 2

√
λDi, which is always

positive [42–44].

Solutions of Equation (S2.1), illustrating travelling wave behaviour for two different F (C) functions are given
in Figures S3(a)-(c) and Figures S3(d)-(f), respectively. In both cases the solution trajectory in the phase
plane, Figure S3(a) and Figure S3(d), forms a heteroclinic orbit between (1, 0) and (0, 0). Interestingly, the
waveform in Figure S3(e), with P g

m > P i
m, is relatively sharp near C = 0. If P g

m > P i
m, F (C) is concave up

with a minimum value of P i
m/2 at C = 0, for 0 ≤ C ≤ 1, whereas F (C) has a minimum value at C = 2/3

for P i
m > P g

m. This suggests that F (0) has considerable influence on the waveform.

The observed wave speed in Figure S3(a), v = 0.992, is close to the predicted minimum wave speed v∗ =
2
√
λDi = 1, whereas the observed wave speed in Figure S3(b), v = 0.584, is greater than the predicted

minimum wave speed v∗ = 0.447. To determine whether v∗ provides an accurate prediction of the observed
wave speed, we calculate the long time numerical solution of Equation (S2.1) and measure v for a suite of
P i
m and P g

m values. Predicted minimum wave speeds and observed wave speeds are compared in Figure S4.
In Figure S4(a), the predicted wave speed is accurate for all P g

m values with P i
m = 0.8. Interestingly, with

P i
m = 0.2, the predicted wave speed is only accurate for P g

m ≤ 0.4. Setting P g
m = 1 and varying P i

m we
observe, in Figure S4(b), that the prediction is accurate for P i

m ≥ 0.5. Hence, it appears that for P i
m ≥ 2P g

m
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Figure S4. Wave speed comparison for Case 2.1. Comparison of the minimum wave
speed condition (solid) and the observed wave speed at sufficiently late time (crosses) for
(a) constant P g

m and a suite of P i
m values; (b) constant P i

m and a suite of P g
m values. All

results are obtained using P i
p = P g

p = 0.5, P i
d = P g

d = 0, δx = 0.1, δt = 0.01, ϵ = 10−6 and
the Heaviside initial condition.

the minimum wave speed condition is accurate. For P i
m < 2P g

m the grouped agents may have more successful
movement events than the individual agents. Therefore, the dominant contribution to the invasion of the
population may be attributed to the grouped agents, which could explain why the minimum wave speed,
which depends on P i

m, does not provide a good estimate of the observed wave speed in these parameter
regimes.

Sub-case 2.2. Extinction-degenerate non-negative nonlinear diffusivity function. The case where
F (0) = R(0) = 0, and F (C) > 0 for 0 < C ≤ 1, occurs when P i

m = 0. Under these conditions Equations
(S2.4)-(S2.5) simplify to

dC

dz
= U,(S2.6)

dU

dz
=

1

Dg(4C − 3C2)

(
− vU +Dg(6C − 4)U2 − λC(1− C)

)
, −∞ < z < ∞.(S2.7)

Note that Equation (S2.7) is singular at C = 0 and, furthermore, that R(0) = 0. Hence we apply a stretching
transformation

(S2.8) ζ =

∫ z

0

1

Dg(4C(s)− 3C(s)2)
ds,

to remove the singularity, which gives

dC

dζ
= DgU(4C − 3C2),(S2.9)

dU

dζ
= −vU +Dg(6C − 4)U2 − λC(1− C), ζ ≥ 0.(S2.10)

Equations (S2.9)-(S2.10) have equilibrium points at (C,U) = (1, 0), (C,U) = (0, 0) and (C,U) = (0,−v/4Dg).
The additional equilibrium point in the transformed system corresponds to a solution trajectory approaching
C = 0 with a non-zero slope. Performing linear analysis to determine the eigenvalues of the Jacobian at
the steady states, we find that the characteristic equation at (0, 0) has solutions ξ = 0 and ξ = v, implying
that (0, 0) is an improper node. Sánchez-Garduño and Maini [40] investigate the stability of this equilibrium
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Figure S5. Travelling wave behaviour for Equation (S2.1) with extinction-
degenerate non-negative F (C) (Case 2.2). (a), (d) Phase plane for the system (S2.6)-
(S2.7). Red circles denote equilibrium points. The numerical solutions of Equations (S2.1)
(cyan, solid) and (S2.3) (orange, dashed), in (C,U) co-ordinates, are superimposed. (b), (e)
Numerical solution of Equation (S2.1) at t = 25 and t = 50. The grey lines indicate the
initial condition and the arrows indicate the direction of increasing time. (c), (f) The time
evolution of the position of the leading edge of the travelling wave solution. All results are
obtained using P i

m = 0, P i
p = P g

p = 0.3, P g
d = P i

d = 0, δx = 0.01, δt = 0.01, ϵ = 10−6 and
(a)-(c) P g

m = 1.0, v = 0.463; (d)-(f) P g
m = 0.5, v = 0.328.

point and find that the equilibrium point is a saddle node. The characteristic equation at (1, 0) has solutions

ξ = (−v ±
√
v2 + 4λDg)/2, implying that (1, 0) is a saddle point. Finally the characteristic equation of the

equilibrium point at (0,−v/4Dg) has eigenvalues ξ = ±v, implying that (0,−v/4Dg) is a saddle point. A
critical value v∗ exists such that v < v∗ results in no travelling wave solution, v = v∗ results in a sharp-
fronted travelling wave and v > v∗ results in a classic (smooth) travelling wave [40].

Numerical solutions illustrating travelling wave behaviour for Equation (S2.1) with P i
m = 0 are given in

Figure S5. In the phase plane for both cases, Figure S5(a) and Figure S5(d), the solution trajectory tends
to the origin with dU/dC large and negative. The corresponding numerical solutions of Equation (S2.1),
presented in Figure S5(b) and Figure S5(e), approach a travelling wave solution with a sharp front near
C = 0. This result is expected as the Heaviside initial condition results in the minimum wave speed that,
for a degenerate diffusivity function, results in a sharp-fronted wave [46].

Sub-case 2.3. Positive-negative-positive nonlinear diffusivity function. In order for F (C) to change
sign twice, that is, F (C) < 0 for 1/3 ≤ α < C < β ≤ 1 and F (C) ≥ 0 otherwise for 0 ≤ C ≤ 1, the
parameters must lie within the purple region in Figure S2(a). In this situation, Equations (S2.4)-(S2.5) are
undefined at C = α and C = β, and these singularities cannot be removed using a stretching transformation
since R(α) ̸= 0 and R(β) ̸= 0. However, it is possible for dU/dz to be finite at C = α and C = β if Uα and
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Uβ exist such that

lim
C→α

[
−vUα − (Di −Dg)(6C − 4)U2

α − λC(1− C)

Di(1− 4C + 3C2) +Dg(4C − 3C2)

]
,(S2.11)

lim
C→β

[−vUβ − (Di −Dg)(6C − 4)U2
β − λC(1− C)

Di(1− 4C + 3C2) +Dg(4C − 3C2)

]
,(S2.12)

are both finite. This requires the numerator in the expressions (S2.11)-(S2.12) vanish at C = α and C = β,
respectively. As such, Uα and Uβ are obtained by solving the system

0 = −vUα − (Di −Dg)(6α− 4)U2
α − λα(1− α),(S2.13)

0 = −vUβ − (Di −Dg)(6β − 4)U2
β − λβ(1− β),(S2.14)

resulting in Uα = −(v ±
√
v2 − 4F ′(α)R(α))/2F ′(α) and Uβ = −(v ±

√
v2 − 4F ′(β)R(β))/2F ′(β). We

note that, as R(C) ≥ 0 for 0 ≤ C ≤ 1, and F ′(α) ≤ 0 for all possible α values, Uα will be real-valued.

Subsequently, we have a wave speed condition that v ≥ 2
√

F ′(β)R(β), as F ′(β) ≥ 0 for all possible β values.
Ferracuti et al. [36] prove that the minimum wave speed, v∗, is greater than a threshold value, which in turn
is greater than max{R′(0)F (0), F ′(β)R(β)}. Therefore, Uβ will also always be real-valued.

Applying L’Hopital’s Rule to Equation (S2.5), we obtain

lim
C→α

dU

dz

∣∣∣∣
U=Uα

= lim
C→α

[
6(Di −Dg)U

2
α + λ(1− 2C)

(Dg −Di)(6C − 4)

]
,(S2.15)

lim
C→β

dU

dz

∣∣∣∣
U=Uβ

= lim
C→β

[
6(Di −Dg)U

2
β + λ(1− 2C)

(Dg −Di)(6C − 4)

]
,(S2.16)

which are finite provided that α ̸= 2/3 and β ̸= 2/3. For the system of Equations (S2.4)-(S2.5), we have
two straight lines in the phase plane where dU/dz is infinite, at C = α and C = β. These kind of lines have
previously been called walls of singularities for hyperbolic models related to chemotactic and haptotactic
invasion [52]. For a smooth solution trajectory to exist between two equilibrium points on opposite sides of
the wall of singularities, we require that the trajectory passes through the wall of singularities. This implies
that the solution trajectory must pass through the wall of singularities at the special points, (α,Uα) and
(β, Uβ), known as holes in the wall [52,53]. Otherwise, a smooth heteroclinic orbit between (1, 0) and (0, 0)
cannot exist, as limC→α |U | → ∞ and limC→β |U | → ∞. As Uα and Uβ are real valued and the limits in
Equations (20)-(21) are finite, the holes in the wall always exist for Fisher kinetics.

Ferracuti et al. [36] prove that travelling wave solutions exist for reaction-diffusion equations with positive-
negative-positive F (C) and Fisher kinetics, however travelling wave profiles arising from the PDE are not
presented. An upper bound on the minimum wave speed is stated as [36]

(S2.17) v∗ = max{v1, v2, v3},
where

F ′(0)R(0) + F (0)R′(0) ≤v21
4

≤ sup
C∈(0,α]

[
F (C)R(C)

C

]
,(S2.18)

F ′(β)R(β) + F (β)R′(β) ≤v22
4

≤ sup
C∈[α,β)

[
F (C)R(C)

C − β

]
,(S2.19)

F ′(β)R(β) + F (β)R′(β) ≤v23
4

≤ sup
C∈(β,1]

[
F (C)R(C)

C − β

]
,(S2.20)

and the prime denotes ordinary differentiation with respect to C. Numerical solutions of Equation (S2.1)
with P i

m > 4P g
m are presented in Figure S6. We superimpose the numerical solution of Equation (S2.1) in

(C,U) co-ordinates on the phase plane for the system (S2.4)-(S2.5) in Figures S6(a) and S6(d). The numer-
ical solution forms a heteroclinic orbit between (1, 0) and (0, 0) in both cases, and passes through the holes
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Figure S6. Travelling wave behaviour for Equation (S2.1) with positive-negative-
positive F (C) (Case 2.3). (a), (d) Phase plane for the system (S2.4)-(S2.5) with the
numerical solution of Equation (S2.1), in (C,U) co-ordinates, superimposed. The grey
region corresponds to values of C where F (C) < 0. The dashed black lines denote a wall of
singularities. Red circles correspond to equilibrium points and purple circles correspond to
holes in the wall. (b), (e) Numerical solution of Equation (S2.1) at t = 100 and t = 200. The
grey lines indicate the initial condition and the arrows indicate the direction of increasing
time. (c), (f) The time evolution of the position of the leading edge of the travelling wave
solution, L(t). All results are obtained using P i

d = P g
d = 0, δx = 0.01, δt = 0.01, ϵ = 10−6

and (a)-(c) P i
m = 0.5, P g

m = 0.1, P i
p = P g

p = 0.75, v = 0.864; (d)-(f) P i
m = 0.1, P g

m = 0.01,

P i
p = P g

p = 1.0, v = 0.448.

in the wall of singularities, denoted using purple circles. Continuum models with negative diffusivity and
no source terms have been relatively well studied, and exhibit shock behaviour across the region of negative
diffusion [50, 51]. Interestingly, our solution does not include a shock and is instead smooth through the
region of negative diffusion.

Numerical solutions of Equation (S2.1) are presented in Figures S6(b) and S6(e), which appear to take the
form of travelling waves. The observed wave speeds, v = 0.864 and v = 0.456, in Figure S6(c) and Figure
S6(f), respectively, are well approximated by the upper bound on the minimum wave speed presented by
Ferracuti et al. [36]. The bound provides values for the minimum wave speed of v∗ = 0.866 and v∗ = 0.447,
respectively. We might expect that the observed wave speeds correspond to the minimum wave speeds since
the initial conditions for the numerical solutions are given by a Heaviside initial condition.

The observed wave speed, obtained from the long time numerical solutions of Equation (S2.1), and the
upper bound on the minimum wave speed, given by Equation (S2.17), are shown in Figure S7 for a suite
of Pp values and two positive-negative-positive F (C) functions. In all cases the bound provides an accurate
prediction of the observed wave speed.
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Figure S7. Wave speed comparison for Case 2.3. Comparison of the observed wave
speed and the upper bound of the minimum wave speed obtained from the relationship in
Equation (S2.17) for a suite of Pp values. All results are obtained using P i

d = P g
d = 0,

δx = 0.01, δt = 0.01, ϵ = 10−6, and (a) P i
m = 0.25, P g

m = 0.05; (b) P i
m = 0.05, P g

m = 0.005,
and the Heaviside initial condition. In all cases Equation (S2.18) provided the estimate of
the minimum wave speed. Crosses correspond to the observed wave speed and the solid line
corresponds to the upper bound of the wave speed.

Sub-case 2.4. Capacity-degenerate positive-negative nonlinear diffusivity function. For the special
case where P g

m = 0, F (1) = 0. As F (C) is degenerate at C = 1, it is intuitive to expect there could be
sharp-fronted travelling wave solutions, with the sharp front near C = 1, similar to the results in Figure S5.
However, unlike for the parameter regimes in Figure S5, we have an interval 1/3 < C < 1 where F (C) < 0.
To determine whether this negative diffusivity influences the presence of sharp fronts, we follow the approach
of Maini et al. [38], who show that the existence of travelling waves for reaction-diffusion equations with
capacity-degenerate positive-negative F (C) can be determined by considering the existence of travelling
waves for

(S2.21)
∂C

∂t̂
=

∂2C

∂x2
+ F (C)R(C), t̂ ≥ 0.

The restriction on t̂ implies that F (C) > 0. As F (C) < 0 for 1/3 < C < 1, Equation (S2.21) is only
equivalent to Equation (S2.1) for 0 ≤ C ≤ 1/3. For 1/3 ≤ C ≤ 1, Equation (S2.1) is equivalent to

(S2.22)
∂C

∂t̂
=

∂2C

∂x2
+ F̂ (C)R̂(C), t̂ ≥ 0,

where F̂ (C) = −F (1 − C) and R̂(C) = R(1 − C) [38]. Equations (S2.21)-(S2.22) have minimum travelling
wave speeds v∗0 and v∗1 , respectively. Maini et al. [38] prove that sharp fronts in the travelling wave near
C = 1 only exist if F (1) = 0 and v∗1 < v∗0 . The first condition is obviously satisfied, while the second can
be determined through linear analysis of Equations (S2.21)-(S2.22) in travelling wave co-ordinates. Both
equations have minimum wave speed conditions, v∗0 = v∗1 = 2

√
λDi, to obtain physically-relevant heteroclinic

orbits, and hence travelling wave solutions with a sharp region near C = 1 do not exist.

Travelling wave behaviour for a parameter regime with F (1) = 0 is shown in Figure S8. The equilibrium
point at (1, 0) is also a hole in the wall. The solution trajectory forms a heteroclinic orbit between (1, 0)
and (0, 0), and moves through the region of C where F (C) < 0. Although F (1) = 0, we do not observe a
solution trajectory corresponding to a sharp front, as we observed in Figure S5, where F (0) = 0. This result
is consistent with the analysis of Maini et al. [38]. The numerical solution of Equation (S8), presented in
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Figure S8. Travelling wave behaviour for Equation (S2.1) with capacity-
degenerate positive-negative F (C) (Case 2.4). (a) Phase plane for the system (S2.4)-
(S2.5) with the numerical solution of Equation (S2.1), in (C,U) co-ordinates, superimposed.
The grey region corresponds to values of C where F (C) < 0. The dashed black lines de-
note a wall of singularities. Red circles correspond to equilibrium points and purple circles
correspond to holes in the wall. (b) Numerical solution of Equation (S2.1) at t = 100 and
t = 200. The grey lines indicate the initial condition and the arrow indicates the direction of
increasing time. (c) The time evolution of the position of the leading edge of the travelling
wave solution, L(t). All results are obtained using P i

m = 0.01, P g
m = 0, P i

p = P g
p = 1.0,

P i
d = P g

d = 0, δx = 0.01, δt = 0.01, ϵ = 10−6, v = 0.1433.

Figure S8(b), has a relatively steep front but is not sharp near C = 1. As L(t), presented in Figure S8(c),
becomes linear as t increases and the waveform in Figure S8(b) are consistent, the numerical solution of
Equation (S2.1) with F (1) = 0 appears to form a classic travelling wave.

Case 3. Equal motility rates, equal proliferation rates, equal death rates.

For P i
d = P g

d > 0, with P i
m = P g

m and P i
p = P g

p , there are no competitive or co-operative mechanisms. In
this case, Equation (2) becomes

(S3.1)
∂C

∂t
= D

∂2C

∂x2
+ λC(1− C)−KC,

where D = Di = Dg, λ = λi = λg and K = Ki = Kg. The corresponding ODE in travelling wave
co-ordinates is

(S3.2) D
d2C

dz2
+ v

dC

dz
+ λC(1− C)−KC = 0, −∞ < z < ∞,

and, with U = dC/dz, we obtain

dC

dz
= U,(S3.3)

dU

dz
= − v

D
U − λ

D
C(1− C) +

K

D
C.(S3.4)

The source term in Equation (S3.1) is non-positive for all relevant C values if K > λ, and negative for
C > (λ − K)/λ otherwise. Hence the population will never reach the original carrying capacity of unity.
The new carrying capacity can be determined by considering the zeros of the source term, which occur at
C = 0 and C = (λ−K)/λ. Introducing a new variable, C = λC/(λ−K), and rewriting Equation (S3.1) in
terms of C we obtain

(S3.5)
∂C

∂t
= D

∂2C

∂x2
+ (λ−K)C(1− C).
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Figure S9. Travelling wave behaviour for the scaled Fisher-Kolmogorov model
(Case 3). (a), (d) Phase plane for the system (S3.3)-(S3.4). Red circles denote equilib-
rium points. The numerical solutions of Equations (S3.1) (cyan, solid) and (S3.2) (orange,
dashed), in (C,U) co-ordinates, are superimposed. (b), (e) Numerical solution of Equation
(S3.1) at t = 40 and t = 80. The grey lines indicate the initial condition and the arrows
indicate the direction of increasing time. (c), (f) The time evolution of the position of the
leading edge of the travelling wave solution. All results are obtained using P i

m = P g
m = 1,

P i
p = P g

p = 0.3, δx = 0.1, δt = 0.01, ϵ = 10−6 and (a)-(c) P g
d = P i

d = 0.1, v = 0.615; (d)-(f)

P g
d = P i

d = 0.2, v = 0.445.

Equation (S3.5) is the Fisher-Kolmogorov equation in terms of the new variable, C, with an intrinsic growth
rate (λ−K). As such, the analysis performed for Case 1 is applicable here and we obtain information about
the stability of the equilibrium points, as well as the minimum wave speed required for physically meaningful
travelling wave solutions. If λ > K, the minimum wave speed is v∗ = 2

√
(λ−K)D. If K > λ, there is

only one physically relevant equilibrium point, C = 0, and hence the population will tend to extinction and
travelling wave solutions do not exist.

Travelling wave behaviour for two parameter regimes with λ > K are illustrated in Figure S9. The phase
plane for K = 0.1, presented in Figure S9(a), displays qualitatively similar behaviour to the phase plane
for K = 0.2, presented in Figure S9(d). Unsurprisingly, the unstable equilibrium point moves closer to
zero as K approaches λ. The numerical solutions of Equation (S3.1), presented in Figures S9(b) and S9(e),
have significantly different densities behind the wave fronts. However, both travelling wave fronts represent
heteroclinic orbits between (C,U) = ((λ − K)/λ, 0) and (C,U) = (0, 0). Interestingly, the two travelling
wave fronts have approximately the same support, even though the waveform is significantly shallower for
the case with K = 0.2. Results in Figures S9(c) and (f) show that both solutions approach travelling waves
as t increases, and that increasing the death rate reduces the wave speed.
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Case 4. Different motility rates, equal proliferation rates, equal death rates.

For P i
p = P g

p , P
i
d = P g

d and P i
m ̸= P g

m, the co-operative or competitive mechanism arises due to the difference
in the rate of motility. In this case, the governing PDE is

(S4.1)
∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ λC(1− C)−KC,

where F (C) = Di(1 − 4C + 3C2) + Dg(4C − 3C2), λ = λi = λg and K = Ki = Kg. Equation (S4.1)
corresponds to

(S4.2) v
dC

dz
+ F (C)

d2C

dz2
+ (Di −Dg)(6C − 4)

(
dC

dz

)2

+ λC(1− C)−KC = 0, −∞ < z < ∞,

in travelling wave co-ordinates, and with the substitution U = dC/dz, we obtain

dC

dz
= U,(S4.3)

dU

dz
=

−vU − (Di −Dg)(6C − 4)U2 − λC(1− C) +KC

F (C)
.(S4.4)

The system of Equations (S4.3)-(S4.4) has equilibrium points (C,U) = (0, 0) and (C,U) = (S, 0), where
S = (λ −K)/λ. Increasing K causes a decrease in the carrying capacity, S. If K > λ, the non-zero equi-
librium point occurs at a negative C value and hence only one physically relevant equilibrium point exists,
implying that the population will become extinct. Hence we only investigate the behaviour of parameter
regimes where λ > K.

We introduce the variable C = C/S such that the agent density is scaled by the carrying capacity and,
subsequently, the zeros of the source term occur at C = 0 and C = 1. This approach allows us to repeat the
analysis for Case 2 with a different F (C). We transform Equation (S4.1) in terms of C to obtain

(S4.5)
∂C

∂t
=

∂

∂x

(
F (SC)

∂C

∂x

)
+ (λ−K)C(1− C).

If we define U = dC/dz, Equation (S4.5) corresponds to the system,

dC

dz
= U,(S4.6)

dU

dz
=

−vU − (Di −Dg)S(6SC − 4)U
2 − (λ−K)C(1− C)

F (SC)
, −∞ < z < ∞.(S4.7)

The transformed nonlinear diffusivity function

(S4.8) Fs(C) = F (SC) = Di(1− 4SC + 3(SC)2) +Dg(4SC − 3(SC)2),

has different properties depending on S, Di and Dg. To highlight this, Figure S10 shows the (P i
m, P g

m) pa-

rameter space for three different S values and the qualitative behaviour of the corresponding Fs(C) function.
For S = 1, presented in Figure S10(a), we recover the nonlinear diffusivity function examined for Case 2,
where for P i

m > 4P g
m, denoted in purple, there is an interval α < C < β, α < β < 1, where Fs(C) < 0. De-

creasing S to 0.9, presented in Figure S10(b), we observe that the purple region again occurs for P i
m > 4P g

m.
However, if P g

m < 0.145P i
m, highlighted in red, Fs(C) < 0 for ω < C ≤ 1, and hence Fs(C) has only one

zero in 0 ≤ C ≤ 1. This type of nonlinear diffusivity function is not observed for Case 2 and we refer to it
as positive-negative. Specifically, this behaviour occurs when (16 − (6S − 4)2)P g

m < (4 − (6S − 4)2)P i
m and

P i
m > 4P g

m. Furthermore, this implies that for S < 2/3 there are no (P i
m, P g

m) values that correspond to
positive-negative-positive Fs(C). An example of this (P i

m, P g
m) parameter space is shown in Figure S10(c).

For S < 1/3, Fs(C) ≥ 0 for 0 ≤ C ≤ 1. Parameter pairs that correspond to extinction-degenerate non-
negative Fs(C) (orange) and constant Fs(C) (cyan) exist for all S values.
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Figure S10. Classification of Fs(C) for different carrying capacity densities. (a)-(c)
Type of Fs(C) function for 0 ≤ C ≤ 1 for the parameter space P i

m ∈ [0, 1] and P g
m ∈ [0, 1]

with (a) S = 1.0; (b) S = 0.9; (c) S = 0.5. Grey regions correspond to parameter pairs
that result in strictly positive Fs(C), purple regions correspond to parameter pairs that
result in positive-negative-positive Fs(C) and red regions correspond to parameter pairs
that result in positive-negative Fs(C). Cyan, orange and black lines correspond to constant,
extinction-degenerate non-negative and capacity-degenerate positive-negative Fs(C) curves,
respectively. (d) Example Fs(C) for each region in (b). The white circles in (b) denote the
parameter pairs used to generate the curves in (d).

Sub-case 4.1. Strictly positive nonlinear diffusivity function. If Fs(C) > 0 for 0 ≤ C ≤ 1, linear

analysis leads to a minimum wave speed v∗ = 2
√
(λ−K)Di for the equilibrium point at (0, 0) to be stable.

Intuitively, the wave speed is positive provided that the rate of birth is greater than the rate of death.

Travelling wave behaviour for Equation (S4.1) with strictly positive Fs(C) and S = 0.5 is shown in Figures
S11(a)-(c). Similar to the strictly positive F (C) considered in Case 2.1, there is a heteroclinic orbit between
the two equilibrium points, implying that the solution of Equation (S4.1) forms a travelling wave. Intuitively,
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Figure S11. Travelling wave behaviour for Equation (S4.1) for various Fs(C).
We consider (a)-(c) strictly positive Fs(C) (Case 4.1), (d)-(f) extinction-degenerate non-
negative Fs(C) (Case 4.2), (g)-(i) positive-negative-positive F (SC) (Case 4.3), and (j)-(l)
capacity-degenerate positive-negative Fs(C) (Case 4.4). (a), (d), (g), (j) Phase plane for
the system (S4.3)-(S4.4) with the numerical solution of Equations (S4.1) (cyan, solid) and
(S4.2) (orange, dashed), in (C,U) co-ordinates, superimposed. The grey regions correspond
to values of C where Fs(C) < 0. The dashed black lines denote a wall of singularities. Red
circles correspond to equilibrium points and purple circles correspond to holes in the wall.
(b), (e), (h), (k) Numerical solution of Equation (S4.1) at t = 25 and t = 50. The grey
lines indicate the initial condition and the arrows indicate the direction of increasing time.
(c), (f), (i), (l) The time evolution of the position of the leading edge of the travelling wave
solution. Parameters used are (a)-(c) P i

m = 0.25, P g
m = 0.5, P i

p = P g
p = 1, P i

d = P g
d = 0.5,

v = 0.504; (d)-(f) P i
m = 0, P g

m = 1, P i
p = P g

p = 1, P i
d = P g

d = 0.1, v = 0.777; (g)-(i)

P i
m = 0.25, P g

m = 0.05, P i
p = P g

p = 1, P i
d = P g

d = 0.1, v = 0.672; (j)-(l) P i
m = 0.25,

P g
m = 0.05, P i

p = P g
p = 1, P i

d = P g
d = 1/6, v = 0.648. All results are obtained using

δx = 0.1, δt = 0.01, ϵ = 10−6.
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introducing agent death has the effect of reducing the density sufficiently far behind the wave front, and we
observe that the non-zero equilibrium point now occurs at C = S ≤ 1.

Sub-case 4.2. Extinction-degenerate non-negative nonlinear diffusivity function. If Fs(0) = 0,
Fs(C) > 0 for 0 < C ≤ 1, and R(0) = 0, a stretching transformation is applied to remove the singularity in
Equations (S4.6)-(S4.7), giving

dC

dζ
= DgS(4C − 3SC

2
)U,(S4.9)

dU

dζ
= −vU +DgS(6SC − 4)U

2 − (λ−K)C(1− C), ζ ≥ 0,(S4.10)

as Di = 0. There are now three equilibrium points: (C,U) = (0, 0); (C,U) = (1, 0); and (C,U) =
(0,−v/4SDg). As for Case 2.2, the saddle-saddle connection between (1, 0) and (0,−v/4SDg) only occurs
for a unique wave speed, v∗, which implies that sharp-fronted solutions exist only for the minimum wave
speed.

Sharp-fronted travelling wave solutions of Equation (S4.1) with extinction-degenerate non-negative Fs(C)
and S = 0.9 are shown in Figures S11(d)-(f). Introducing agent death does not change the qualitative
behaviour compared to the corresponding case with K = 0 (Case 2.2). Specifically, dC/dz approaches C = 0
with a non-zero value and hence the wave front is sharp near C = 0. Again, the density behind the wave
front decreases such that C = S, corresponding to the non-zero equilibrium point.

Sub-case 4.3. Positive-negative-positive nonlinear diffusivity function. For positive-negative-positive
Fs(C), the analysis in Case 2.3 holds provided that λ > K. Specifically, the minimum wave speed condition
proved by Ferracuti et al. [36] implies that real-valued holes in the wall will be present for the scaled Fisher-
Kolmogorov equation with λ > K. In turn, this suggests that the smooth travelling wave solutions passing
through the region of negative diffusivity observed for Case 2.3 will be present with non-zero K. Travelling
wave behaviour for Equation (S4.1) with positive-negative-positive Fs(C) is demonstrated in Figures S11(g)-
(i). The travelling wave solution behaviour is similar to the behaviour in the corresponding case with K = 0
(Case 2.3), with the exception of the reduced carrying capacity.

Sub-case 4.4. Capacity-degenerate positive-negative nonlinear diffusivity function. The capacity-
degenerate positive-negative diffusivity case, where Fs(1) = R(S) = 0, Fs(C) < 0 for ω < C < 1 and
Fs(C) ≥ 0 otherwise, might be thought to lead to travelling wave solutions with a sharp front near the
carrying capacity density [38]. Similar to the approach for Case 2.4, we consider the conditions proposed
by Maini et al. [38]. Again, we satisfy the condition that Fs(1) = 0. However, the minimum wave speed
for the transformation of Equation (S2.1) in 0 ≤ C < ω is the same as the minimum wave speed for the
transformation of Equation (S2.1) in ω < C ≤ 1. As such, we do not expect that Equation (S4.1) will
approach a travelling wave solution with a sharp front near C = 1. We present travelling wave behaviour for
Equation (S4.1) with capacity-degenerate positive-negative Fs(C) in Figures S11(j)-(l) and, as anticipated,
observe that the travelling wave solution is a classic front.

Sub-case 4.5. Positive-negative nonlinear diffusivity function. The positive-negative case, where Fs(C) >
0 for 0 ≤ C < ω and Fs(C) < 0 for ω < C ≤ 1, cannot occur with K = 0. It is instructive to examine whether
stable travelling wave solutions of Equation (S4.1) exist, as the non-zero equilibrium point now occurs in the
region where Fs(C) < 0. If we perform standard linear analysis on Equations (S4.3)-(S4.4), the Jacobian at

(S, 0) has eigenvalues ξ = (−v ±
√
v2 + 4F (S)(λ(2S − 1) +K))/2F (S), which implies that the equilibrium

point is an unstable node provided v > 2
√
−F (S)(λ(2S − 1) +K). The negative sign is present as F (S) < 0

for positive-negative Fs(C). The Jacobian at (0, 0) has eigenvalues ξ = (−v ±
√
v2 − 4Di(λ−K))/2Di,

which is a stable node provided that v > 2
√
(λ−K)Di. While there are infinitely many solution trajecto-

ries out of the unstable node, we require that the solution trajectory passes through the hole in the wall,
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Figure S12. Travelling wave behaviour for Equation (S4.1) with positive-negative
Fs(C) (Case 4.5). (a) Phase plane for the system (S4.3)-(S4.4) with the numerical solution
of Equation (S4.1), in (C,U) co-ordinates, superimposed. The grey region corresponds to
values of C where Fs(C) < 0. The dashed black lines denote a wall of singularities. Red
circles correspond to equilibrium points and purple circles correspond to holes in the wall.
(b) Numerical solution of Equation (S4.1) at t = 50 and t = 100. The grey lines indicate
the initial condition and the arrow indicates the direction of increasing time. (c) The time
evolution of the position of the leading edge of the travelling wave solution. All results are
obtained using P i

m = 0.05, P g
m = 0.01, P i

p = P g
p = 1.0, P i

d = P g
d = 0.25, δx = 0.1, δt = 0.01,

ϵ = 10−6, v = 0.2760.

and hence there is a single solution trajectory that forms a heteroclinic orbit.

Travelling wave behaviour for Equation (S4.1) with positive-negative Fs(C) is shown in Figure S12. The
numerical solution of Equation (S4.1), in (C,U) co-ordinates, passes through the wall of singularities where
Equation (S4.4) is finite and forms a heteroclinic orbit between (S, 0) and (0, 0). The travelling wave front is
of classic type, a result predicted by the analysis performed by Maini et al. [38] as Fs(0) ̸= 0 and Fs(1) ̸= 0.

Case 5. Equal motility rates, no grouped agent death.

Results in Figure 1 (Main Document) indicate that restricting death events to isolated agents significantly
change the behaviour of the agent population. This represents a co-operative mechanism, as there is a benefit
to being in close proximity to another agent. In the case where P i

d ̸= 0 and P g
d = 0, the source term can be

expressed as an Allee effect [15]

(S5.1) R(C) = rC(1− C)(C −A),

where

(S5.2) r = Ki − λi + λg,

is the intrinsic growth rate, and

(S5.3) A =
Ki − λi

Ki − λi + λg
,

is the Allee parameter. It follows that Equation (2) becomes

(S5.4)
∂C

∂t
= D

∂2C

∂x2
+ (Ki − λi + λg)C(1− C)

(
C − Ki − λi

Ki − λi + λg

)
.

If Ki > λi, R(C) represents the strong Allee effect, A > 0 [15]. The strong Allee effect has bistable growth
kinetics, namely, R(C) < 0 for 0 < C < A and R(C) > 0 for A < C < 1. For low densities there are
significantly more isolated agents than grouped agents, which corresponds to negative growth if Ki > λi. If
λi > Ki, and λg > 0, R(C) > 0 for 0 < C < 1. There are two possibilities for this case: r > 0 and r < 0.
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Figure S13. Comparison of source terms. R(C) corresponding to the weak Allee effect
with r = 1, A = −0.5 (cyan), strong Allee effect with r = 1, A = 0.5 (orange), reverse Allee
effect with r = −1, A = 1.5 (purple) and logistic growth with r = 1 (black).

If r > 0 then A < 0 and hence the growth rate is inhibited at low density, but remains positive, which
corresponds to the weak Allee effect [15]. For the case where r < 0 and R(C) > 0, we obtain A > 1 for
all parameter combinations. Interestingly, this implies that the growth rate is inhibited at high density, but
remains positive. This situation does not correspond to either the weak or strong Allee effect, and we term
this behaviour the reverse Allee effect. It is not possible to have a combination of parameters that results
in r < 0 and 0 < A < 1 as all of our parameters are non-negative. Representative source terms showing the
three types of Allee effect are compared with a logistic source term in Figure S13.

For P i
m = P g

m, we have linear diffusion in Equation (S5.4). Reaction-diffusion equations with linear diffusion
and either weak or strong Allee kinetics have been well-studied [15, 19, 22, 23, 25, 26, 28, 30]. We briefly
present results here and interpret these in the context of examining the long time travelling wave solution.
For additional details we refer the reader to [15]. We look for solutions in the travelling wave co-ordinate
z = x − vt. The existence of such solutions has been examined previously and requirements for the initial
conditions to converge to a travelling wave solution have been found for both the case where A < 0 and
where 0 < A < 1 [23]. Transforming Equation (S5.4) into travelling wave co-ordinates we obtain

(S5.5) D
d2C

dz2
+ v

dC

dz
+ (Ki − λi + λg)C(1− C)

(
C − Ki − λi

Ki − λi + λg

)
= 0, −∞ < z < ∞,

where D = Dg = Di. If U = dC/dz, Equation (S5.5) can be expressed as

dC

dz
= U,(S5.6)

dU

dz
=

−vU

D
− (Ki − λi + λg)C(1− C)(C −A)

D
.(S5.7)

This system of equations has three equilibrium points: (C,U) = (0, 0); (C,U) = (1, 0); and (C,U) = (A, 0).
We are only concerned with physically relevant equilibrium points, where 0 ≤ C ≤ 1. If A < 0 or A > 1, there
are only two physically relevant equilibrium points as the equilibrium point at (C,U) = (A, 0) has no physical
meaning. Performing standard linear stability analysis by examining the eigenvalues of Jacobian of the sys-
tem, the characteristic equation at (0, 0) has solutions ξ = (−v±

√
v2 + 4(Ki − λi)D)/2D, which implies that
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Figure S14. Travelling wave behaviour for the (a)-(c) weak Allee effect and the
(d)-(f) strong Allee effect with a constant F (C) (Case 5). (a), (d) Phase plane for
the system (S5.6)-(S5.7) with the numerical solution of Equations (S5.4) (cyan, solid) and
(S5.5) (orange, dashed), in (C,U) co-ordinates, superimposed. Red circles correspond to
equilibrium points. (b), (e) Numerical solution of Equation (S5.4) calculated at (b) t = 50
and t = 100; (e) t = 100 and t = 200. The grey lines indicate the initial condition and the
arrows indicate the direction of increasing time. (c), (f) The time evolution of L(t). All
results are obtained with δx = 0.1, δt = 0.01, ϵ = 10−6, P g

d = 0, (a)-(c) P i
m = 0.5, P g

m = 0.5,
P i
p = 0.7, P g

p = 0.4, P i
d = 0.5, v = 0.44; (d)-(f) P i

m = 1.0, P g
m = 1.0, P i

p = 0.3, P g
p = 0.3,

P i
d = 0.5, v = 0.072.

the equilibrium point is a stable node when λi > Ki, provided the wave speed satisfies v > 2
√
(λi −Ki)D. If

the wave speed does not satisfy this condition then the equilibrium point is a stable spiral, which implies that
the heteroclinic orbit enters non-physical values of C. If Ki > λi, (0, 0) is a saddle point. The characteristic

equation for the equilibrium point at (1, 0) has solutions ξ = (−v±
√
v2 + 4λgD)/2D, which implies that the

equilibrium point is a saddle point, as λg is non-negative. A heteroclinic orbit between (1, 0) and (0, 0) exists
for a unique wave speed [25]. The equilibrium point at (A, 0) has a characteristic equation with solutions

ξ = (−v±
√
v2 − 4λgAD)/2D. As we are only concerned with physically realistic equilibrium points, that is,

where 0 < A < 1, the equilibrium point (A, 0) will be a stable node provided that the minimum wave speed
v > 2

√
λgAD is satisfied, and a stable spiral otherwise. The spiral behaviour does not cause the solution

trajectory to become non-physical and hence this wave speed condition is not required to obtain physically
meaningful solutions.

Solutions that display travelling wave behaviour for the weak Allee effect are presented in Figures S14(a)-(c).
There is a heteroclinic solution trajectory for Equations (S5.6)-(S5.7) between the two equilibrium points,
and the numerical solution of Equation (S5.4) matches the solution trajectory in (C,U) co-ordinates. The
results in Figures S14(b)-(c) suggest that the numerical solution of Equation (S5.4) with the weak Allee
effect approaches a travelling wave solution. Since the source term for the reverse Allee effect is qualitatively
similar to the weak Allee effect, we do not present solutions here. Solution behaviour for the reverse Allee
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Figure S15. Travelling wave behaviour for Equation (S5.4) with the reverse Allee
effect and constant F (C) (Case 5). (a) Phase plane for the system (S5.6)-(S5.7) with the
numerical solution to Equations (S5.4) (cyan, solid) and (S5.5) (orange, dashed), in (C,U)
co-ordinates, superimposed. Red circles correspond to equilibrium points. (b) Numerical
solution to Equation (S5.4) calculated at t = 25 and t = 50. The grey lines indicate the
initial condition and the arrow indicates the direction of increasing time. (c) The time
evolution of the position of the leading edge of the wave front. All results are obtained with
δx = 0.1, δt = 0.01, ϵ = 10−6, P i

m = 1.0, P g
m = 1.0, P i

p = 0.6, P g
p = 0.2, P i

d = 0.3, P g
d = 0,

v = 0.756.

effect can be found in Figure S15.

A travelling wave solution of Equation (S5.4) in a parameter regime that results in a strong Allee effect is
now considered. The phase plane for the system (S5.6)-(S5.7), presented in Figure S14(d), has three physi-
cally meaningful equilibrium points, and the equilibrium point at (0, 0) is unstable, unlike in Figure S14(d).
However, there is still a heteroclinic orbit between (1, 0) and (0, 0). Unlike for the weak Allee effect, the
wave speed that admits this solution trajectory is unique [25]. The numerical solution of Equation (S5.4)
shows the solution approaches a travelling wave, although the approach is slower than for the weak Allee
effect. This is intuitive, as the growth rate for the weak Allee effect is non-negative, while the strong Allee
effect has regions of negative growth.

It is instructive to consider how v depends on A. We calculate the numerical solution of Equation (S5.4)
for a range of A values with r = 1 for A ≤ 1, and r = −1 for A > 1, and use the numerical solution to
calculate v at sufficiently late time. We consider r < 0 for A > 1 because, due to our parameters being
non-negative, A < 1 for r > 0. The minimum wave speed for the travelling wave solution is known for A ≤ 0,
namely, v∗ = 2

√
−ArD for A ≤ −1/2 and v∗ = 2

√
rD(1/2 − A) for −1/2 ≤ A ≤ 0 [28]. For 0 < A < 1

there is a unique wave speed, v =
√
2rD(1/2 − A) [28]. Consequently, for A > 1/2, the population will

tend to extinction because the travelling wave speed is negative [28]. For the case where A > 1 it is unclear
whether there is a minimum wave speed condition. A comparison between the observed wave speed for each
A value and the predicted minimum wave speed is given in Figure S16. The predicted wave speeds match the
observed wave speeds well for A ≤ 1. For A > 1 we superimpose the wave speed prediction v = 2

√
−ArD,

and observe that the predictions match the numerical wave speeds well. For the case A > 1 we require that
λi > Ki, and hence the minimum wave speed condition is the same as for the weak Allee effect.
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Figure S16. Wave speed comparison for Case 5. Comparison of observed wave speeds
obtained from the numerical solution of Equation (S5.4). For A ≤ 1 results are obtained
using r = 1, whereas for A > 1 results are obtained using r = −1. The cyan line corresponds
to v = 2

√
−ArD and the orange line corresponds to v = 2

√
rD(1/2−A).

Case 6. Different motility rates, no grouped agent death.

For P i
m ̸= P g

m and P g
d = 0, there is a co-operative mechanism in terms of increased survival for agents in

close proximity to other agents. In this parameter regime Equation (2) becomes

(S6.1)
∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ (Ki − λi + λg)C(1− C)

(
C − Ki − λi

Ki − λi + λg

)
,

where F (C) = Di(1 − 4C + 3C2) +Dg(4C − 3C2). Note that F (C) is the same as in Case 2 and, as such,
encodes the same four types of qualitative behaviour. To examine the long term travelling wave behaviour
of Equation (S6.1), we transform Equation (S6.1) into travelling wave co-ordinates, z = x− vt, giving

(S6.2) v
dC

dz
+ F (C)

d2C

dz2
+ (Di −Dg)(6C − 4)

(
dC

dz

)2

+R(C) = 0, −∞ < z < ∞,

where R(C) = (Ki − λi + λg)C(1−C)(C − (Ki − λi)/(Ki − λi + λg)). Making the substitution U = dC/dz
results in

dC

dz
= U,(S6.3)

dU

dz
=

−vU − (Di −Dg)(6C − 4)U2(Ki − λi + λg)−R(C))

F (C)
.(S6.4)

Equation (S6.4) is singular if F (C) = 0 for 0 ≤ C ≤ 1. It is therefore of interest to determine whether
travelling wave solutions can be found for each class of F (C).

Sub-case 6.1. Strictly positive nonlinear diffusivity function. Strictly positive F (C) corresponds to
parameters in the grey region of Figure S2(a). As the wave speed for an arbitrary A is not determined by
linear analysis for the Allee equation with constant diffusivity, we follow the approach of Hadeler [42–44] to
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determine a condition for v > 0. Making the transformation

(S6.5) ẑ =

∫ z

0

1

Di(1− 4C(s) + 3C(s)2) +Dg(4C(s)− 3C(s)2)
ds,

results in

dC

dẑ
= Û ,

(S6.6)

dÛ

dẑ
= −vÛ − λ

(
Di(1− 4C + 3C2) +Dg(4C − 3C2)

)
(Ki − λi + λg)C(1− C)

(
C − Ki − λi

Ki − λi + λg

)
.

(S6.7)

For v > 0 we require that the transformed source term is, on average, positive, which corresponds to [42–45]

(S6.8)

∫ 1

0

(Ki − λi + λg)
(
Di

(
1− 4C + 3C2

)
+Dg

(
4C − 3C2

))
C(1− C)

(
C − Ki − λi

Ki − λi + λg

)
dC > 0.

Condition (S6.8) is equivalent to

(S6.9) (6λg − 5Ki + 5λi)Dg − λgDi > 0.

For the case with r > 0, Condition (S6.9) is equivalent to (A− 1)Di +(6− 11A)Dg > 0. Since Di < 4Dg for
F (C) > 0 on 0 ≤ C ≤ 1, it is trivial to see that for A < 0, v > 0. Interestingly, for A > 0, the threshold A
value for the population to persist increases if P g

m > P i
m, and decreases otherwise. For example, if P i

m = 0
then A < 6/11 leads to persistence, higher than the threshold A value in the case with constant F (C).
Alternatively, as P i

m → 4P g
m, A → 2/7. This implies that populations where isolated agents are significantly

more motile than grouped agents are more susceptible to extinction. This result is intuitive, as the parame-
ter regime considered here describes a co-operative benefit, namely, a reduced death rate for agents in close
proximity to other agents. Finally, for the reverse Allee case, where r < 0 and A > 1, Condition (S6.9) is
always satisfied and the population persists.

Travelling wave solutions for the strong Allee effect with a strictly positive F (C) are shown in Figure S17.
For the strong Allee effect, with parameters that correspond to A = 1/4, presented in Figures S17(a)-(c),
we observe a heteroclinic orbit between (1, 0) and (0, 0). The numerical solution of Equation (S6.1) in this
parameter regime approaches a travelling wave solution with v > 0. However, if we consider a parameter
regime that corresponds to the strong Allee effect with A = 4/9, presented in Figures S17(d)-(f), we observe
that, while a heteroclinic orbit between (1, 0) and (0, 0) exists, it corresponds to a negative wave speed. As
a consequence, the population tends to extinction in a birth/death parameter regime that would otherwise
result in the persistence of the population if the diffusivity is constant. As both the weak and reverse Allee
effect are qualitatively similar to Fisher kinetics, numerical solutions are not presented here. Numerical
solutions can be found in Figure S18.

Sub-case 6.2. Extinction-degenerate non-negative nonlinear diffusivity function. The case where
F (0) = 0 corresponds to parameters along the orange line in Figure S2(a). Sánchez-Garduño and Maini [41]
demonstrate that Condition (S6.8) must be satisfied for travelling wave solutions to have v > 0. Furthermore,
there is a critical wave speed that results in a sharp-fronted travelling wave [41]. From the results obtained
for Case 6.1, Condition (S6.8) is always satisfied for A < 0 or A > 1. For parameter regimes where 0 < A < 1
the choice of P i

m and P g
m influences whether Condition (S6.8) is satisfied. To obtain an extinction-degenerate

diffusivity we require that P i
m = 0. Hence (S6.9) implies that for A < 6/11 the wave speed will be positive.

To obtain a positive wave speed with constant F (C), we require A < 1/2, which implies that the population
is more likely to persist in an parameter regime that leads to extinction-degenerate non-negative F (C).
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Figure S17. Travelling wave behaviour for the Equation (S6.1) with the strong
Allee effect and strictly positive F (C) (Case 6.1). (a), (d) Phase plane for the system
(S6.3)-(S6.4) with the numerical solution of Equations (S6.1) (cyan, solid) and (S6.2) (or-
ange, dashed), in (C,U) co-ordinates, superimposed. Red circles correspond to equilibrium
points. (b), (e) Numerical solution of Equation (S6.1) calculated at (b) = 150 and t = 300;
(e) t = 2500 and t = 5000. The grey lines indicate the initial condition and the arrows
indicate the direction of increasing time. (c), (f) The time evolution of L(t). All results are
obtained with δx = 0.1, δt = 0.01, ϵ = 10−6, P g

d = 0, (a)-(c) P i
m = 1.0, P g

m = 0.5, P i
p = 0.4,

P g
p = 0.3, P i

d = 0.5, v = 0.084; (d)-(f) P i
m = 1.0, P g

m = 0.5, P i
p = 0.4, P g

p = 0.3, P i
d = 0.65,

v = −0.004.

Travelling wave behaviour for the strong Allee effect with extinction-degenerate non-negative F (C) is shown
in Figure S19. The numerical solution of Equation (S6.1) with A = 1/4, in Figures S19(a)-(c), leads to a
sharp-fronted travelling wave solution near C = 0 with v > 0. With A = 1/4, we expect to obtain v > 0.
For a parameter regime that results in A = 4/7, we obtain a travelling wave solution of Equation (S6.1)
with v < 0 (Figures S19(d)-(f)). Interestingly, the sharp front near C = 0 is not present for the strong Allee
effect with v < 0, unlike with v > 0, where the wave front is smooth. We present travelling wave behaviour
for both the weak Allee effect and the reverse Allee effect in Figure S20.

Sub-case 6.3. Positive-negative-positive nonlinear diffusivity function. A positive-negative-positive
F (C), where there is an interval α < C < β where F (C) < 0, corresponds to parameter pairs highlighted
in purple in Figure S2(a). Kuzmin and Ruggerini [37] examine reaction-diffusion equations with similar
properties for the strong Allee effect, in the context of diffusion-aggregation models, and provide conditions
for smooth travelling wave solutions to exist. For a solution with v > 0, we require A < α [37] and

(S6.10)

∫ α

0

F (C)R(C) dC > 0.

Furthermore, we require [37]

(S6.11) 3

∫ α

0

F (C)R(C) dC ≥ max{Φ(σ),Φ(ρ)},
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Figure S18. Travelling wave behaviour for Equation (S6.1) with the (a)-(c) weak
Allee effect and the (d)-(f) reverse Allee effect and strictly positive F (C) (Case
6.1). (a),(d) Phase plane for the system (S6.3)-(S6.4) with the numerical solution to Equa-
tions (S6.1) (cyan, solid) and (S6.2) (orange, dashed), in (C,U) co-ordinates, superimposed.
Red circles correspond to equilibrium points. (b),(e) Numerical solution to Equation (S6.1)
calculated at t = 50 and t = 100. The grey lines indicate the initial condition and the
arrows indicate the direction of increasing time. (c),(f) The time evolution of the position
of the leading edge of the wave front. All results are obtained with δx = 0.1, δt = 0.01,
ϵ = 10−6, P g

d = 0, (a)-(c) P i
m = 1.0, P g

m = 0.5, P i
p = 0.4, P g

p = 0.3, P i
d = 0.3, v = 0.448;

(d)-(f) P i
m = 0.5, P g

m = 0.25, P i
p = 0.6, P g

p = 0.2, P i
d = 0.3, v = 0.536.

where

Φ(y) = 8α2y + 4
√
4α2y2 − 2mα3y,

σ = sup
C∈[α,β)

[
F (C)R(C)

C − β

]
, ρ = sup

C∈(β,1]

[
F (C)R(C)

C − β

]
, and

m = min
C∈[0,A]

[
F (C)R(C)

]
.

A suite of P g
m values with P i

m = 1, which correspond to 1/3 < α < 2/3, are considered for parameter regimes
that result in A < α. Figures S21(a)-(c) show the parameter spaces, (A,α), that satisfy Condition (S6.10),
Condition (S6.11) and Conditions (S6.10)-(S6.11) simultaneously, respectively. Orange regions represent pa-
rameter pairs where the condition is satisfied and grey regions represent parameter pairs where the condition
is not satisfied. These results suggest that smooth travelling wave solutions should exist for certain choices
of parameters. Interestingly, all parameter pairs that satisfy Condition (S6.10) also satisfy Condition (S6.11).

For Case 2.3 and Case 4.3, smooth travelling wave solutions that pass through holes in the wall of singularities
for positive-negative-positive F (C) are obtained. The minimum wave speed bound presented by Ferracuti
et al. [36] implies that the location of the holes in the wall occur are real-valued for the wave speed arising
from the Heaviside initial condition. As such, to obtain smooth travelling wave solutions of Equation (S6.1)
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Figure S19. Travelling wave behaviour for Equation (S6.1) with the strong Allee
effect and extinction-degenerate non-negative F (C) (Case 6.2). (a), (d) Phase plane
for the system (S6.3)-(S6.4) with the numerical solution of Equations (S6.1) (cyan, solid)
and (S6.2) (orange, dashed), in (C,U) co-ordinates, superimposed. Red circles correspond
to equilibrium points. (b), (e) Numerical solution of Equation (S6.1) calculated at (b) t = 50
and t = 100; (e) t = 400 and t = 800. The grey lines indicate the initial condition and the
arrows indicate the direction of increasing time. (c), (f) The time evolution of L(t). All
results are obtained with δx = 0.01, δt = 0.005, ϵ = 10−6, P i

m = 0, P g
m = 1.0,P g

d = 0, (a)-(c)
P i
p = 0.4, P g

p = 0.3, P i
d = 0.5, v = 0.199; (d)-(f) P i

p = 0.4, P g
p = 0.3, P i

d = 0.8, v = −0.026.

with positive-negative-positive F (C), we might expect that the wave speed satisfies v > 2
√
F ′(β)R(β), such

that the holes in the wall at C = β are real-valued.

Following the approach used for Case 2.3, it is simple to demonstrate that both the weak and reverse Allee
effect have real-valued holes in the wall. As such, we observe heteroclinic orbits between (1, 0) and (0, 0) that
pass through the holes in the wall, and present the corresponding travelling wave solutions in Figure S22.
We now examine numerical solutions of Equation (S6.1) with the strong Allee effect. For parameter regimes

that give rise to wave speeds that satisfy v > 2
√
F ′(β)R(β), numerical travelling wave solutions could not

be found. While the condition for real-valued holes in the wall is satisfied, the zeros of Equation (S6.4) are
imaginary for a certain interval of C > β. This corresponds to a nullcline that is not real-valued for certain
C values.

We now consider parameter regimes corresponding to the strong Allee effect with the additional restriction
that v < 2

√
F ′(C)R(C) for 2/3 < C ≤ 1. For all P i

m and P g
m that give rise to a positive-negative-positive

F (C), holes in the wall at C = β do not exist and, as such, we do not expect to obtain smooth solutions.
Interestingly, we observe travelling wave solutions with shocks such that the solution never enters the region
α < C < β. An example of a shock-fronted travelling wave solution for the strong Allee effect with both
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Figure S20. Travelling wave behaviour for Equation (S6.1) with the (a)-(c) weak
Allee effect and the (d)-(f) reverse Allee effect and extinction-degenerate non-
negative F (C) (Case 6.2). (a),(d) Phase plane for the system (S6.3)-(S6.4) with the
numerical solution to Equations (S6.1) (cyan, solid) and (S6.2) (orange, dashed), in (C,U)
co-ordinates, superimposed. Red circles correspond to equilibrium points. (b),(e) Numerical
solution to Equation (S6.1) calculated at t = 50 and t = 100. The grey lines indicate the
initial condition and the arrows indicate the direction of increasing time. (c),(f) The time
evolution of the position of the leading edge of the wave front. All results are obtained with
δx = 0.1, δt = 0.01, ϵ = 10−6, P i

m = 0, P g
m = 1.0, P g

d = 0, (a)-(c) P i
p = 0.4, P g

p = 0.3,

P i
d = 0.3, v = 0.347; (d)-(f) P i

p = 0.6, P g
p = 0.2, P i

d = 0.3, v = 0.438.
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Figure S21. Parameter pairs that satisfy Kuzmin and Ruggerini’s Conditions
[37]. (a) Condition (S6.10); (b) Condition (S6.11); (c) Conditions (S6.10)-(S6.11) com-
bined. Orange regions correspond to parameter pairs that satisfy the respective condition(s),
whereas grey regions correspond to parameter pairs that do not.

v > 0 and v < 0 is shown in Figures S23(a)-(c) and Figures S23(d)-(f), respectively. Solutions of diffusion
equations, without any source terms, that contain shocks have been reported previously [50, 51]. Similarly,
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Figure S22. Travelling wave behaviour for Equation (S6.1) with the (a)-(c) weak
Allee effect and the (d)-(f) reverse Allee effect and positive-negative-positive
F (C) (Case 6.3). (a),(d) Phase plane for the system (S6.3)-(S6.4) with the numerical
solution to Equation (S6.1) (cyan, solid), in (C,U) co-ordinates, superimposed. The dashed
black lines denote a wall of singularities. Red circles correspond to equilibrium points and
purple circles correspond to holes in the wall. (b),(e) Numerical solution to Equation (S6.1)
calculated at (b) t = 200 and t = 400; (e) t = 100 and t = 200. The grey lines indicate the
initial condition and the arrows indicate the direction of increasing time. (c),(f) The time
evolution of the position of the leading edge of the wave front. All results are obtained with
δx = 0.1, δt = 0.01, ϵ = 10−6, P g

d = 0, (a)-(c) P i
m = 0.05, P g

m = 0.01, P i
p = 0.4, P g

p = 0.3,

P i
d = 0.3, v = 0.098; (d)-(f) P i

m = 0.5, P g
m = 0.1, P i

p = 0.6, P g
p = 0.2, P i

d = 0.3, v = 0.172.

shock-fronted travelling wave solutions arise in other kinds of models, including multispecies models of
combustion [54] and haptotactic cell migration [53]. However, the models presented here are very different,
and it is therefore of interest to determine the properties of the reaction-diffusion equation that lead to
shock-fronted travelling wave solutions.

Sub-case 6.4. Capacity-degenerate positive-negative nonlinear diffusivity function. Capacity-degenerate
positive-negative F (C), where F (1) = 0, arises if P g

m = 0 and includes an interval 1/3 < C < 1 where
F (C) < 0. For Case 2.4, despite the degenerate nature of the nonlinear diffusivity function at C = 1, we
did not obtain solutions with a sharp front near C = 1. Instead, the solution passes through the region
of negative diffusivity and a hole in the wall at C = 1/3 , leading to smooth travelling wave solutions. As
such, we expect similar solutions for both the weak and reverse Allee effect due to the qualitatively similar
behaviour of the R(C) function. It is of interest to examine whether smooth or shock-fronted travelling
wave solutions arise from Equation (S6.1) for the strong Allee effect, as for the positive-negative-positive
diffusivity examined for Case 6.3 no smooth travelling wave solutions could be found.
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Figure S23. Travelling wave behaviour for Equation (S6.1) with the strong Allee
effect and positive-negative-positive F (C) (Case 6.3). (a), (d) Phase plane for the
system (S6.3)-(S6.4) with the numerical solution of Equation (S6.1) (cyan, solid), in (C,U)
co-ordinates, superimposed. The dashed black lines denote a wall of singularities. Red
circles correspond to equilibrium points and purple circles correspond to holes in the wall.
(b), (e) Numerical solution of Equation (S6.1) calculated at (b) t = 200 and t = 400; (e)
t = 500 and t = 1000. The grey lines indicate the initial condition and the arrows indicate
the direction of increasing time. The insets correspond to the areas within the red dashed
lines, and highlight the shocks. (c), (f) The time evolution of L(t). All results are obtained
with δx = 0.05, δt = 0.001, ϵ = 10−6, P g

d = 0, (a)-(c) P i
m = 0.5, P g

m = 0.1, P i
p = 0.5,

P g
p = 0.4, P i

d = 0.6, v = 0.009; (d)-(f) P i
m = 0.5, P g

m = 0.1, P i
p = 0.4, P g

p = 0.2, P i
d = 0.5,

v = −0.028.

As expected, smooth travelling wave solutions for both the weak and reverse Allee effects with capacity-
degenerate positive-negative F (C) are obtained. The solution behaviour for both the weak and reverse
Allee effects are presented in Figure S24. For the strong Allee effect, we examine a considerable number of
parameter regimes and initial conditions and are unable to find travelling wave solutions.

Case 7. Equal motility rates, different death rates.

Without the restriction that only isolated agents are able to undergo death events (P g
d ̸= 0), death events

can be considered as either a co-operative mechanism (P i
d > P g

d ), such as group defence against predation, or
a competitive mechanism (P i

d < P g
d ), where a population is more easily discovered and eradicated, compared

to an isolated individual. In these parameter regimes, Equation (2) can be expressed as

(S7.1)
∂C

∂t
= D

∂2C

∂x2
+ (Ki −Kg − λi + λg)A1C

(
1− C

A1

)(
C −A2

)
,
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Figure S24. Travelling wave behaviour for the (a)-(c) weak Allee effect and the
(d)-(f) reverse Allee effect with capacity-degenerate F (C) (Case 6.4). (a), (d)
Phase plane for the system (S6.3)-(S6.4) with the numerical solution of Equation (S6.1)
(cyan, solid), in (C,U) co-ordinates, superimposed. The dashed black lines denote a wall of
singularities. Red circles correspond to equilibrium points and purple circles correspond to
holes in the wall. (b), (e) Numerical solution of Equation (S6.1) calculated at t = 50 and
t = 100. The grey lines indicate the initial condition and the arrows indicate the direction of
increasing time. (c), (f) The time evolution of L(t). All results are obtained with δx = 0.1,
δt = 0.01, ϵ = 10−6, P i

m = 0.01, P g
m = 0, P i

p = 1.0, P i
d = 0.1, P g

d = 0, (a)-(c) P g
p = 0.8,

v = 0.098; (d)-(f) P g
p = 0.95, v = 0.136.

where

A1 =
2λi − λ− 2Ki + 2Kg −

√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2(λi − λg −Ki +Kg)
,

A2 =
2λi − λ− 2Ki + 2Kg +

√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2(λi − λg −Ki +Kg)
,(S7.2)

provided that λg ≥ 2(Kg +
√
Kg(Ki − λi)) or λi > Ki. If this is not satisfied, R(C) ≤ 0 for 0 ≤ C ≤ 1 and

the population will tend to extinction. The corresponding ODE in travelling wave co-ordinates is

(S7.3) v
dC

dz
+D

d2C

dz2
+ (Ki −Kg − λi + λg)A1C

(
1− C

A1

)(
C −A2

)
= 0, −∞ < z < ∞,

and, making the substitution U = dC/dz, results in

dC

dz
= U,(S7.4)

dU

dz
= −vU

D
− (Ki −Kg − λi + λg)A1C

D

(
1− C

A1

)(
C −A2

)
.(S7.5)
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Introducing a new variable C = C/A1 which, upon substitution into Equation (S7.1), results in

(S7.6)
∂C

∂t
= D

∂2C

∂x2
+ (Ki −Kg − λi + λg)A

2
1C(1− C)

(
C −A

)
,

where

(S7.7) A =
A2

A1
=

2λi − λ− 2Ki + 2Kg +
√
λ2
g + 4Kg(λi − λg −Ki +Kg)

2λi − λ− 2Ki + 2Kg −
√
λ2
g + 4Kg(λi − λg −Ki +Kg)

.

Equation (S7.6) is a reaction-diffusion equation with Allee kinetics in terms of the scaled variable C. Both
the carrying capacity and Allee parameter are scaled by A1, which influences the maximum population
density as well as the threshold density required for positive growth. Following the analysis for Case 5, the
minimum wave speed for Equation (S7.6) with A < −1/2 is v∗ = 2

√
(λi −Ki)D. Interestingly, this implies

that introducing grouped agent death at a rate that does not result in a population tending to extinction has
no influence on the invasion speed of the population. Specifically, the condition for A < −1/2 in Case 5 cor-
responds to 3(λi−Ki) > λg. It can be shown that, with 3(λi−Ki) > λg, we require 3Kg < λg for A < −1/2.
This implies that there is a range of Kg values that result in a travelling wave with a minimum wave speed
that is independent of both Kg and λg. Interestingly, this suggests that if a control is implemented that
increases the death rate of grouped agents, there is a threshold value for the control to influence the invasion
speed and the subsequent persistence of the population. Introducing a non-zero Kg value for a parameter
regime that results in the strong Allee effect with Kg = 0 never changes the type of Allee effect. Hence it is
possible to go from a weak Allee effect to a reverse Allee effect by introducing a non-zero Kg value. Non-zero
Kg values correspond to a decreased benefit for grouped agents, which explains why the source term, previ-
ously a weak Allee effect, becomes the reverse Allee effect, corresponding to inhibited growth at high density.

For the strong Allee effect, corresponding to 0 < A2 < A1 ≤ 1, the unique wave speed is v = 2
√

(Ki −Kg − λi + λg)D(A1/2−
A2) [28]. This implies that for A2 > A1/2, v < 0 and v > 0 otherwise. Furthermore, the same wave speed
applies for −A1/2 < A2 < 0 [28]. For both intervals, the minimum wave speed does depend on the Kg value,
and hence implementing any kind of partial eradication of the grouped agents will either reduce the speed
of invasion or cause the extinction of the population.

Travelling wave behaviour for the weak and strong Allee effect and constant F (C) is shown in Figure S25.
For both numerical solutions, calculated with Kg = 0.1, the carrying capacity is reduced by approximately
27%. With the exception of Kg, the parameters used to obtain the numerical solutions in Figures S25(a)-(c)
are the same as in Figures S14(a)-(c) and we observe that, as expected, the wave speed is the same. This
demonstrates that, while the carrying capacity is reduced, the population is able to invade vacant space at
the same speed, even though a control measure for the grouped agents has been implemented. Results for
the reverse Allee effect are presented in Figure S24.

Case 8. Different motility rates, different death rates.

Setting P i
m ̸= P g

m and P i
d ̸= P g

d ̸= 0 allows for significant flexibility in describing a combination of competitive
and/or co-operative mechanisms, depending on the relevant motivation. In this case, Equation (2) can be
expressed as

(S8.1)
∂C

∂t
=

∂

∂x

(
F (C)

∂C

∂x

)
+ (Ki −Kg − λi + λg)A1C

(
1− C

A1

)(
C −A2

)
,

where F (C) = Di(1 − 4C + 3C2) + Dg(4C − 3C2). Note that, again, this simplification requires that

λg ≥ 2(Kg +
√

Kg(Ki − λi)) or λi > Ki, otherwise the population will tend to extinction. In travelling
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Figure S25. Travelling wave behaviour for the (a)-(c) weak Allee effect and the
(d)-(f) strong Allee effect with constant F (C) (Case 7). (a), (d) Phase plane for
the system (S7.4)-(S7.5) with the numerical solution of Equations (S7.1) (cyan, solid) and
(S7.3) (orange, dashed), in (C,U) co-ordinates, superimposed. Red circles correspond to
equilibrium points. (b), (e) Numerical solution of Equation (S7.1) calculated at (b) t = 50
and t = 100; (e) t = 100 and t = 200. The grey lines indicate the initial condition and
the arrows indicate the direction of increasing time. (c), (f) The time evolution of L(t).
All results are obtained with δx = 0.1, δt = 0.01, ϵ = 10−6, P g

d = 0.1, (a)-(c) P i
m = 0.5,

P g
m = 0.5, P i

p = 0.7, P g
p = 0.4, P i

d = 0.5, v = 0.44; (d)-(f) P i
m = 1.0, P g

m = 1.0, P i
p = 0.7,

P g
p = 0.5, P i

d = 0.8, v = 0.06.

wave co-ordinates, Equation (S8.1) is

(S8.2) v
dC

dz
+F (C)

d2C

dz2
+F ′(C)

(
dC

dz

)2

+(Ki−Kg−λi+λg)A1C

(
1− C

A1

)(
C−A2

)
= 0, −∞ < z < ∞,

and, making the substitution U = dC/dz, it corresponds to

dC

dz
= U,(S8.3)

dU

dz
= − vU

F (C)
− (Di −Dg)(6C − 4)U2

F (C)
− (Ki −Kg − λi + λg)A1C

F (C)

(
1− C

A1

)(
C −A2

)
.(S8.4)

Introducing the variable C = C/A1, Equation (S8.1) can be written as

(S8.5)
∂C

∂t
=

∂

∂x

(
FA(C)

∂C

∂x

)
+ (Ki −Kg − λi + λg)A

2
1C(1− C)(C −A),

where FA(C) = F (A1C) = Di(1 − 4A1C
2
+ 3A2

1C
2
) + Dg(4A1C − 3A2

1C
2
). The transformed nonlinear

diffusivity, FA(C), has the same characteristics as Fs(C), presented in Figure S10, albeit in terms of the
scaled Allee carrying capacity, A1. Here we examine the five types of FA(C) for A1 ̸= 1.
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Figure S26. Travelling wave behaviour for Equation (S7.1) with the reverse Allee
effect and constant Fs(C) (Case 7). (a) Phase plane for the system (S7.4)-(S7.5) with the
numerical solution to Equations (S7.1) (cyan, solid) and (S7.3) (orange, dashed), in (C,U)
co-ordinates, superimposed. Red circles correspond to equilibrium points. (b) Numerical
solution to Equation (S7.1) calculated at t = 25 and t = 50. The grey lines indicate the
initial condition and the arrow indicates the direction of increasing time. (c) The time
evolution of the position of the leading edge of the wave front. All results are obtained with
δx = 0.1, δt = 0.01, ϵ = 10−6, P i

m = 1.0, P g
m = 1.0, P i

p = 0.6, P g
p = 0.2, P i

d = 0.3, P g
d = 0.1,

v = 0.760.

Sub-case 8.1. Strictly positive nonlinear diffusivity function. For FA(C) > 0 on the interval 0 < C ≤
1, we follow the approach of Hadeler [42–44]. The integral condition for the wave speed to be positive,

(S8.6)

∫ 1

0

(Ki −Kg −λi +λg)A
2
1(Di(1− 4A1C

2
+3A2

1C
2
)+Dg(4A1C − 3A2

1C
2
))C(1−C)(C −A) dC > 0,

corresponds to

(S8.7) Di(5− 10A+ 6A2
1 − 9A1A2 − 12A1 + 20A2)−Dg(6A

2
1 − 9A1A2 − 12A1 + 20A2) > 0.

If Di = Dg, then A > 1/2 leads to v < 0. For the strong Allee effect, A1 > A2 = AA1, we can determine
the threshold value for the persistence of the population, namely,

(S8.8) A <
5Di + (Di −Dg)(6A

2
1 − 12A1)

10Di + (Di −Dg)(9A2
1 − 20A1)

.

Considering the two limiting cases, where Di = 0 and Di = 4Dg, A takes on a value of (6A2
1−12A1)/(9A

2
1−

20A1) and (18A2
1 − 36A1 + 20)/(27A2

1 − 60A1 + 30), respectively. These values reduce to 6/11 and 2/7 in
the case that A1 = 1, as in Case 6.1. To illustrate how the threshold value changes with A1, P

i
m and P g

m,
Figure S27 shows the maximum A2 and A values for three different P i

m and P g
m combinations. The A2 value

corresponds to the persistence threshold for a given A1 value. The A value can be interpreted as the highest
proportion of a given A1 value that will result in the persistence of the population. For example, in Figure
S27(a), we see that with P i

m = 0 and A1 = 0.5 we require A2 < 0.194 for persistence. This corresponds to
A < 0.388.

Travelling wave behaviour for Equation (S8.1) in a parameter regime corresponding to strictly positive FA(C)
and the strong Allee effect is shown in Figures S28(a)-(c). This parameter regime leads to A1 = 0.723 and
A2 = 0.2764, which is below the persistence threshold value of A2 = 0.315 for this P i

m and P g
m combination,

and hence the population persists.

Sub-case 8.2. Extinction-degenerate non-negative nonlinear diffusivity function. For extinction-
degenerate FA(C), P i

m = 0. As such, the persistence threshold corresponds to (6A2
1 − 12A1)/(9A

2
1 − 20A1).

For Case 6.2 we observe that sharp fronts for the strong Allee effect with a extinction-degenerate non-negative
F (C) only occur if v > 0. Hence for A < (6A2

1 − 12A1)/(9A
2
1 − 20A1) Equation (S8.1) should approach a
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Figure S27. Persistence threshold. Persistence threshold as a function of the carrying
capacity A1, expressed as (a) an explicit value, and (b) a proportion of the carrying capacity
for three different diffusivities, corresponding to P i

m = P g
m (black), P i

m = 4P g
m (orange) and

P i
m = 0 (cyan).

sharp-fronted travelling wave solution with v > 0, and a smooth travelling solution with v < 0 otherwise.
Results in Figures S28(d)-(f) show numerical solutions of Equation (S8.1) with A1 = 0.723 and A2 = 0.2764,
which satisfies the threshold for v > 0 and hence sharp-fronted travelling wave solutions exist. As expected,
results in Figure S28(e) indicate that the solution of Equation (S8.1) approaches a travelling wave with v > 0
and a sharp front near C = 0.

Sub-case 8.3. Positive-negative-positive nonlinear diffusivity function.

For a positive-negative-positive FA(C), there are exactly two zeros at C = α and C = β. In Case 6.3
the strong Allee effect does not give rise to smooth travelling wave solutions, even with real-valued holes
in the wall at C = α and C = β. However, interestingly, shock-fronted travelling wave solutions arise
from the Heaviside initial condition. Again, we are unable to find numerical travelling wave solutions of
Equation (S8.1) in parameter regimes with real-valued holes in the wall. Shock-fronted travelling wave
solutions of Equation (S8.1) are given in Figures S28(g)-(i) where the observed wave speed is v = 0.014 <

2
√
min{F ′(C)R(C)} on the interval 2A1/3 < C < A1. Smooth travelling wave solutions obtained from the

weak and reverse Allee effect are shown in Figure S29.

Sub-case 8.4. Capacity-degenerate positive-negative nonlinear diffusivity function. Capacity-degenerate
positive-negative FA(C) requires P i

m = 0 and, subsequently, FA(1) = 0. Furthermore FA(C) < 0 for
ω < C < S. For Case 6.4 we found smooth travelling wave solutions for both the weak and reverse Allee
effect with capacity-degenerate positive-negative F (C) but could not obtain stable solutions for the strong
Allee effect. As FA(C) is qualitatively similar to the F (C) considered for Case 6.4 similar results are expected
here.
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Figure S28. Travelling wave behaviour for Equation (S8.1) with various Allee
effects and FA(C). We consider the (a)-(c) scaled strong Allee effect with strictly positive
FA(C) (Case 8.1), (d)-(f) scaled strong Allee effect with extinction-degenerate non-negative
FA(C) (Case 8.2), (g)-(i) scaled strong Allee effect with positive-negative-positive FA(C)
(Case 8.3) and, (j)-(l) scaled reverse Allee effect with capacity-degenerate FA(C) (Case 8.4).
(a), (d), (g), (j) Phase plane for the system (S8.3)-(S8.4) with the numerical solution of
Equations (S8.1) (cyan, solid) and (S8.2) (orange, dashed), in (C,U) co-ordinates, superim-
posed. Red circles correspond to equilibrium points. (b), (e), (h), (k) Numerical solution
of Equation (S8.1) calculated at (b) t = 250 and t = 500; (e) t = 200 and t = 400; (h)
t = 250 and t = 500; (k) t = 100 and t = 200. The grey lines indicate the initial condition
and the arrows indicate the direction of increasing time. The inset corresponds to the area
within the red dashed lines, and highlights the shock. (c), (f), (i), (l) The time evolution
of L(t). All results are obtained with δx = 0.05, δt = 0.001, ϵ = 10−6, P g

d = 0.1, (a)-(c)
P i
m = 1.0, P g

m = 0.5, P i
p = 0.7, P g

p = 0.8, P i
d = 0.5, v = 0.02; (d)-(f) P i

m = 0, P g
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P i
p = 0.7, P g

p = 0.5, P i
d = 0.8, v = 0.098; (g)-(i) P i

m = 1.0, P g
m = 0.23, P i

p = 0.7, P g
p = 0.5,

P i
d = 0.8, P g

d = 0.05, v = 0.014; (j)-(l) P i
m = 0.05, P g
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p = 0.7, P g

p = 0.5, P i
d = 0.2,
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d = 6/70, v = 0.22.
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Figure S29. Travelling wave behaviour for Equation (S8.1) with the (a)-(c) weak
Allee effect and the (d)-(f) reverse Allee effect with positive-negative-positive
Fs(C) (Case 8.3). (a), (d) Phase plane for the system (S8.3)-(S8.4) with the numerical
solution to Equations (S8.1) (cyan, solid) and (S8.2) (orange, dashed), in (C,U) co-ordinates,
superimposed. Red circles correspond to equilibrium points. (b), (e) Numerical solution to
Equation (S8.1) calculated at (b) t = 250 and t = 500; (e) t = 50 and t = 100. The grey
lines indicate the initial condition and the arrow indicates the direction of increasing time.
(c), (f) The time evolution of the position of the leading edge of the wave front. All results
are obtained with δx = 0.1, δt = 0.01, ϵ = 10−6, (a)-(c) P i

m = 0.01, P g
m = 0.002, P i

p = 0.3,

P g
p = 0.4, P i

d = 0.3, P g
d = 0.02, v = 0.045; (d)-(f) P i

m = 0.05, P g
m = 0.01, P i

p = 0.6,

P g
p = 0.2, P i

d = 0.3, P g
d = 0.02, v = 0.172.

Again, smooth travelling wave solutions of Equation (S8.1) for both the weak (Figures S28(j)-(l)) and reverse
(Figure S30) Allee effects are obtained. As for Case 6.4, we consider a variety of parameter regimes corre-
sponding to the strong Allee effect with capacity-degenerate positive-negative FA(C), as well as a number
of initial conditions, but are unable to find long time travelling wave-type solutions.

Sub-case 8.5. Positive-negative nonlinear diffusivity function. For the case where FA(C) has exactly
one zero on the interval 0 ≤ C ≤ 1 at C = ω, Maini et al. [39] examine the existence of travelling wave
solutions, and provide the necessary conditions for existence,

(S8.9) A2 < ω, v > 0,

∫ ω

0

F (C)R(C) dC > 0,

where F (ω) = 0 and 0 < ω < 1. For the strong Allee effect in this parameter regime, the third part of
Condition (S8.9) corresponds to

Di(20(A1 +A2)ω − 30A1A2ω − 15ω2)+

(Di −Dg)((84A1 + 36A2)ω
3 − (45A1A2 + 60A1 + 60A2)ω

2 − 30ω4 + 80A1A2ω) > 0.(S8.10)
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Figure S30. Travelling wave behaviour for Equation (S8.1) with the weak Allee
effect and positive-negative capacity-degenerate Fs(C) (Case 8.5). (a) Phase plane
for the system (S8.3)-(S8.4) with the numerical solution to Equations (S8.1) (cyan, solid)
and (S8.2) (orange, dashed), in (C,U) co-ordinates, superimposed. Red circles correspond
to equilibrium points. (b) Numerical solution to Equation (S8.1) calculated at t = 200 and
t = 400. The grey lines indicate the initial condition and the arrow indicates the direction
of increasing time. (c) The time evolution of the position of the leading edge of the wave
front. All results are obtained with δx = 0.1, δt = 0.01, ϵ = 10−6, P i

m = 0.01, P g
m = 0.002,

P i
p = 0.6, P g

p = 0.5, P i
d = 0.3, P g

d = 0.08, v = 0.079.

As in Case 4.4, Equation (S8.1) is equivalent to

(S8.11)
∂C

∂t̂
=

∂2C

∂x2
+ (Ki −Kg − λi + λg)A1F (C)C

(
1− C

A1

)(
C −A2

)
, t̂ ≥ 0,

on the interval 0 ≤ C < ω, and equivalent to

(S8.12)
∂C

∂t̂
=

∂2C

∂x2
+ (Ki −Kg − λi + λg)A1F̂ (C)(1− C)

(
1− 1− C

A1

)(
1−A2 − C

)
, t̂ ≥ 0,

where F̂ (C) = −F (1 − C), on the interval ω < C ≤ A1. The final necessary and sufficient condition
from Maini et al. [39] for the existence of travelling wave solutions is that the minimum wave speed
for Equation (S8.11), v∗1 , is greater than, or equal to, the minimum wave speed for Equation (S8.12),
v∗2 . On the interval 0 ≤ C < ω, Equation (S8.1) has a strictly positive FA(C), where FA(C) ≤ Di,
and strong Allee kinetics. Hence, the minimum wave speed for Equation (S8.11) has an upper bound,

v∗1 ≤
√

2(λi −Ki)Di(1/2 − A2). On the interval ω < C < A1 Equation (S8.12) has a source term quali-
tatively similar to the Fisher-Kolmogorov equation and hence a lower bound for the minimum wave speed
exists [39], v∗2 ≥ 2

√
−F (A1)(λ2 + 4Kg(λi − λg −Ki +Kg))1/2. For all parameter regimes considered that

correspond to the strong Allee effect with positive-negative FA(C) we never observe a case where the upper
bound for v∗1 is higher than the lower bound for v∗2 and hence the conditions required for travelling wave so-
lutions are not met. As expected, numerical solutions of Equation (S8.1) in these parameter regimes did not
lead to travelling wave behaviour. For both the weak and the reverse Allee effect, we expect that solutions
do exist as the source terms on both intervals are qualitatively equivalent to a Fisher source term.

Numerical solutions demonstrating the travelling wave behaviour of Equation (S8.1) with positive-negative
FA(C) and both the reverse Allee effect and the weak Allee effect are given in Figures S31 and S32, respec-
tively.
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