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1 Experiment 1

1.1 Apparatus and stimuli

Apparatus. Subjects were seated in a dark room, at a viewing distance of 32 cm from the screen, with their
chin in a chinrest. Stimuli were presented on a gamma-corrected 60 Hz 9.7-inch 2048-by-1536 display. The
display (LG LP097QX1-SPA2) was the same as that used in the 2013 iPad Air (Apple); we chose it for
its high pixel density (264 pixels/inch). The display was connected to a Windows desktop PC using the
Psychophysics Toolbox extensions46,47 for MATLAB (Mathworks).

Stimuli. The background was mid-level gray (199 cd/m2). The stimulus was either a drifting Gabor (Subjects
3, 6, 8, 9, 10, and 11) or an ellipse (Subjects 1, 2, 4, 5, and 7). The Gabor had a peak luminance of 398
cd/m2 at 100% contrast, a spatial frequency of 0.8 cycles per degrees of visual angle (dva), a speed of 6
cycles per second, a Gaussian envelope with a standard deviation of 4.8 dva, and a randomized starting
phase. Each ellipse had a total area of 1 dva2, and was black (0.01 cd/m2). We varied the contrast of the
Gabor and the elongation (eccentricity) of the ellipse (Section 1.2).

Categories. In Task A, stimulus orientations were drawn from Gaussian distributions with means µ1 = ≠4¶

(category 1) and µ2 = 4¶ (category 2) and standard deviations ‡1 = ‡2 = 5¶. In Task B, stimulus orientations
were drawn from Gaussian distributions with means µ1 = µ2 = 0¶, and standard deviations ‡1 = 3¶ (category
1) and ‡2 = 12¶ (category 2) (Fig. 1b). We chose these category means and standard deviations such that
the accuracy of an optimal observer would be around 80%.

1.2 Procedure

Each subject completed 5 sessions. Each session consisted of two parts; the subject did Task A in the
first part, followed by Task B in the second part, or vice versa (chosen randomly). Each part started with
instruction and was followed by alternating blocks of 96 category training trials and 144 testing trials, for
a total of three blocks of each type, with a block of 24 confidence training trials immediately after the first
category training block. Combining all sessions and both tasks, each subject completed 4320 testing trials,
2880 category training trials, and 240 confidence training trials; we did not analyze category training or
confidence training trials.

Instruction. At the start of each part of a session, subjects were shown 30 (72 in the first session) exemplar
stimuli from each category. Additionally, we provided them with a printed graphic similar to Figure 1b,
and explained how the stimuli were generated from distributions. We answered any questions.

Category training. To ensure that subjects knew the stimulus distributions well, we gave them extensive
category training. Each trial proceeded as follows (Fig. 1a): Subjects fixated on a central cross for 1 s.
category 1 or category 2 was selected with equal probability. The stimulus orientation was drawn from the
corresponding stimulus distribution (Fig. 1b). Gabors had 100% contrast, and ellipses had 0.95 eccentricity
(elongation). The stimulus appeared at fixation for 300 ms, replacing the fixation cross. Subjects were asked
to report category 1 or category 2 by pressing a button with their left or right index finger, respectively.
Subjects were able to respond immediately after the o�set of the stimulus, at which point verbal correctness
feedback was displayed for 1.1 s. The fixation cross then reappeared.

Confidence training. To familiarize subjects with the button mappings, they completed a short confidence
training black at the start of every task. We told subjects that in this block, it would be harder to tell
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what the stimulus orientation was, there would be no correctness feedback, and they would be reporting
their confidence on each trial in addition to their category choice. We provided them with a printed graphic
similar to the buttons pictured in Figure 1a, indicating that they had to press one of eight buttons to
indicate both category choice and confidence level, the latter on a 4-point scale. The confidence levels
were labeled as “very high,” “somewhat high,” “somewhat low,” and “very low.” Gabors had 0.4%, 0.8%,
1.7%, 3.3%, 6.7%, or 13.5% contrast, and ellipses had 0.15, 0.28, 0.41, 0.54, 0.67, or 0.8 eccentricity, chosen
randomly with equal probability on each trial (Fig. 1c). Stimuli were only displayed for 50 ms. Trial-to-trial
feedback consisted only of a message telling them which category and confidence level they had reported.
Other than these changes, the trial procedure was the same as in category training.

Subjects were not instructed to use the full range of confidence reports, as that might have biased them
away from reporting what felt most natural. Instead, they were simply asked to be “as accurate as possible
in reporting their confidence” on each trial.

Testing. The trial procedure in testing blocks was the same as in confidence training blocks, except that
trial-to-trial feedback was completely withheld. At the end of each block, subjects were required to take at
least a 30 sec break. During the break, they were shown the percentage of trials that they had correctly
categorized. Subjects were also shown a list of the top 10 block scores (across all subjects, indicated by
initials) for the task they had just done. This was intended to motivate subjects to score highly, and to
reassure them that their scores were normal, since it is rare to score above 80% on a block.

1.3 Subjects

11 subjects (2 male), aged 20-42, participated in the experiment. Subjects received $10 per 40-60 minute
session, plus a completion bonus of $15. The experiments were approved by the University Committee on
Activities Involving Human Subjects of New York University. Informed consent was given by each subject
before the experiment. All subjects were naïve to the purpose of the experiment. No subjects were fellow
scientists.

1.4 Descriptive statistics

The following statistical di�erences were assessed using repeated-measures ANOVA.

In Task A, there was a significant e�ect of true category on category choice (F1,10 = 285, P < 10≠7).
There was no main e�ect of reliability, which took 6 levels of contrast or ellipse elongation, on category
choice (F5,50 = 0.27, P = 0.88). In other words, subjects were not significantly biased to respond with a par-
ticular category at low reliabilities. There was a significant interaction between reliability and true category,
which is to be expected (F5,50 = 59.6, P < 10≠15) (Fig. 3a).

In Task B, there was again a significant e�ect of true category on category choice (F1,10 = 78.3, P < 10≠5).
There was no main e�ect of reliability (F5,50 = 2.93, P = 0.051). There was again a significant interaction
between reliability and true category (F5,50 = 28, P < 10≠12) (Fig. 3b).

In Task A, there was a significant e�ect of true category on response (F1,10 = 136, P < 10≠6). There was
no main e�ect of reliability (F5,50 = 0.61, P = 0.642). There was a significant interaction between reliability
and true category (F5,50 = 58.7, P < 10≠13) (Fig. 3c).

In Task B, there was a significant e�ect of true category on response (F1,10 = 54.2, P < 10≠6). There was
a significant e�ect of reliability (F5,50 = 4.84, P = 0.0128). There was a significant interaction between
reliability and true category (F5,50 = 29.2, P < 10≠8) (Fig. 3d).

In Task A, there was a main e�ect of confidence on the proportion of reports (F3,30 = 7.75, P < 10≠3); low-
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confidence reports were more frequent than high-confidence reports. There was no significant e�ect of true
category (F1,10 = 0.784, P = 0.397) and no interaction between confidence and category on proportion of
responses (F3,30 = 1.45, P = 0.25) (Fig. 3e).

In Task B, there was a main e�ect of confidence on the proportion of reports (F3,30 = 4.36, P = 0.012). There
was no significant e�ect of category (F1,10 = 0.22, P = 0.64), although there was an interaction between
confidence and category (F3,30 = 8.37, P = 0.003). This is likely because for task B, category 2 has a higher
proportion of “easy” stimuli (Fig. 3f).

In both tasks, reported confidence had a significant e�ect on performance (F3,30 = 36.9, P < 10≠3). Task also
had a significant e�ect on performance (F1,10 = 20.1, P = 0.001); although we chose the category parameters
such that the performance of the optimal observer is matched, subjects were significantly better at Task A.
There was no interaction between task and confidence (F3,30 = 0.878, P = 0.436) (Fig. 3g).

Fig. 3l-m shows psychometric choice curves for both tasks, at all 6 levels of reliability. Each point represents
roughly the same number of trials.

Fig. 3n-o shows a similar set of psychometric curves. These curves di�er from Fig. 3l-m in that they
represent the mean button press rather than mean category choice.

In Task A (Fig. 3l,n), mean category choice and mean button press depend monotonically on orientation,
with a slope that increases with reliability. In Task B (Fig. 3m,o), the mean category choice and mean
button press tends towards category 1 when stimulus orientation is near horizontal, and tends towards
category 2 when orientation is strongly tilted; this reflects the stimulus distributions.

Since some subjects only saw Gabors and some only saw ellipses, we used Spearman’s rho to measure the
di�erence in model rankings among the two groups. Spearman’s rho is a measure of rank correlation for
which a value of 1 indicates that the rankings of two variables are identical. Spearman’s rho between Gabor
and ellipse subjects for the summed LOO scores of the model groupings in Figure 6 and Figure S13 was
0.952 and 0.944, respectively. In both model groupings, the identities of the lowest- and highest-ranked
models was the same for both Gabor and ellipse subjects. This indicates that the choice of stimulus did not
have a systematic e�ect on model rankings.

2 Experiment 2: Separate category and confidence responses and

testing feedback

This control experiment was identical to experiment 1 except for the following modifications:

• Subjects first reported choice by pressing one of two buttons with their left hand, and then reported
confidence by pressing one of four buttons with their right hand.

• Subjects reported confidence in category training blocks, and received correctness feedback after re-
porting confidence.

• There were no confidence training blocks.

• In testing blocks, subjects received correctness feedback after each trial.

• 8 subjects (0 male), aged 19-23, participated. None had participated in experiment 1, and again, none
were fellow scientists.

• Drifting Gabors were used; no subjects saw ellipses.
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3 Experiment 3: Task B only

This experiment was identical to experiment 1 except for the following modifications:

• Subjects completed blocks of Task B only.

• 15 subjects (7 female), aged 19-30, participated. None had participated in experiments 1 or 2.

• Drifting Gabors were used; no subjects saw ellipses.

4 Modeling

4.1 Measurement noise

For models where the relationship between reliability (i.e., contrast or ellipse eccentricity) and noise was
parametric, we assumed a power law relationship between reliability c and measurement noise s.d. ‡, with
additive orientation-dependent noise in the form of a rectified 2-cycle sinusoid48:

‡(c) =


“

2 + –c

≠— + Â|sin 2s| (1)

4.2 Response probability

We coded all responses as r œ {1, 2, . . . , 8}, with each value indicating category and confidence. For all
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Because we only use a small range of orientations, we can safely approximate measurement noise as a normal
distribution, rather than a Von Mises. We find the boundaries (b

ri≠1(‡
i

), b

ri(‡i

)) in measurement space, as
defined by the fitting model and parameters ◊, and then compute the probability mass of the measurement
distribution between the boundaries:

p

m,◊

(r
i

| s

i

, ‡

i

) =
⁄

bri

bri≠1

N (x; s

i

, ‡

2
i

)dx (2)

For Task A, b0 = ≠Œ¶ and b8 = Œ¶. For Task B, b0 = 0¶ and b8 = Œ¶; since the task is symmetric around
0¶, we only use |s| in our computation of the log likelihood.

To obtain the log likelihood of the dataset, given a model with parameters ◊, we compute the sum of the log
probability for every trial i, where t is the total number of trials:
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4.3 Model specification

4.3.1 Bayesian

Derivation of dA and dB. The log posterior ratio d is equivalent to the log likelihood ratio plus an additive
term representing the prior probability over category:

d = log p(C = 1 | x)
p(C = 2 | x) = log p(x | C = 1)

p(x | C = 2) + log p(C = 1)
p(C = 2) (4)

To get dA and dB, we need to find the task-specific expressions for p(x | C). The observer knows that the
measurement x is caused by the stimulus s, but has no knowledge of s. Therefore, the optimal observer
marginalizes over s:

p(x | C) =
⁄

p(x | s)p(s | C)ds (5)

We substitute the expressions for the noise distribution and the stimulus distribution, and evaluate the
integral:
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⁄
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Plugging in the task- and category-specific µ

C

and ‡

C

, and substituting these expressions back into equa-
tion (4), we get:
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In all of our Bayesian models, the 8 possible category and confidence responses are determined by comparing
the log posterior ratio d to a set of decision boundaries k = (k0, k1, . . . , k8). k4 is equal to the log prior ratio
log p(C=1)

p(C=2) , which functions as the boundary on d between the 4 category 1 responses and the 4 category 2
responses; k4 is the only boundary parameter in models of category choice (and not confidence). k0 is fixed
at ≠Œ and k8 is fixed at Œ. In all models, the observer chooses category 1 when d is positive.

The posterior probability of category 1 can be written as as p(C = 1 | x) = 1
1+exp(≠d) .

Levels of strength.

In BayesUltrastrong, k is symmetric across k4: k4+j

≠ k4 = k4 ≠ k4≠j

for j œ {1, 2, 3}. Furthermore, in
BayesUltrastrong, kA = kB. So BayesUltrastrong has a total of 4 free boundary parameters: k1, k2, k3, k4.
BayesUltrastrong is equivalent to the observer comparing |dA| and |dB| to a task-general set of boundaries to
determine the response (Fig. S1, left column).

BayesStrong is identical to BayesUltrastrong except that kA is allowed to di�er from kB. So BayesStrong has
a total of 8 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B. BayesStrong is equivalent to the
observer comparing |dA| to one set of boundaries, and |dB| to a di�erent set of boundaries (Fig. S1, middle
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Figure S1: Distributions of posterior probabilities of being correct, with confidence criteria for Bayesian models with three
di�erent levels of strength. Solid lines represent the distributions of posterior probabilities for each category and task in the
absence of measurement noise. Dashed lines represent confidence criteria, generated from the mean of subject 4’s posterior
distribution over parameters. Each model has a di�erent number of sets of mappings between posterior probability and
confidence report. In Bayes

Ultrastrong

, there is one set of mappings. In Bayes
Strong

, there is one set for Task A, and another
for Task B. In Bayes

Weak

, there is one set for Task A, and one set for each reported category in Task B. Plots were generated
from the mean of subject 4’s posterior distribution over parameters as in Figure 2.

column).

BayesWeak is identical to BayesStrong except that symmetry is not enforced for kB. So BayesWeak has a total
of 11 free boundary parameters: k1A, k2A, k3A, k4A, k1B, k2B, k3B, k4B, k5B, k6B, k7B. BayesWeak is equivalent
to the observer comparing |dA| to a set of boundaries, and dB to a di�erent set of boundaries (Fig. S1, right
column).

Decision boundaries.

In the Bayesian models without d noise, we plug the parameters k into the left-hand side of equations (7)
and (8) and solve for x at the fitted levels of ‡. These values were used as the measurement boundaries
b(‡).

In the Bayesian models with d noise, we assume that, for each trial, there is an added Gaussian noise term
on d, ÷

d

≥ p(÷
d

), where p(÷
d

) = N (0, ‡

2
d

), and ‡

d

is a free parameter. We pre-computed 101 evenly spaced
draws of ÷

d

and their corresponding probability densities p(÷
d

). We used equations (7) and (8) to compute
a lookup table containing the values of d as a function of x, ‡, and ÷

d

. We then used linear interpolation
to find sets of measurement boundaries b(‡) corresponding to each draw of ÷

d

49. We then computed 101
response probabilities for each trial (Section 4.2), one for each draw of ÷

d

, and computed the weighted
average according to p(÷

d

).

4.3.2 Fixed

In Fixed, the observer compares the measurement to a set of boundaries that are not dependent on ‡. We
fit free parameters k, and use measurement boundaries b

r

(‡) = k

r

.
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4.3.3 Lin and Quad

In Lin and Quad, the observer compares the measurement to a set of boundaries that are linear or quadratic
functions of ‡. We fit free parameters k and m, and use measurement boundaries b

r

(‡) = k

r

+ m

r

‡ (Lin)
or b

r

(‡) = k

r

+ m

r

‡

2 (Quad).

4.3.4 Orientation Estimation

In Orientation Estimation, the observer uses their knowledge of the stimulus distributions to compute a
maximum a posteriori estimate of the stimulus:

ŝ = argmax
s

p(s | x) (9)

= argmax
s

p(x | s)p(s) (10)

= argmax
s

#
N (s; x, ‡

2)(p(s | C = 1) + p(s | C = 2))
$

(11)

The observer then compares ŝ to a set of boundaries k to determine category and confidence response.

Decision boundaries. To find the decision boundaries in measurement space, we used gmm1max_n2_fast
from Luigi Acerbi’s gmm1 Gaussian mixture model toolbox to solve equation (11), computing a lookup table
containing the value of ŝ as a function of x and ‡

35. We then found, using linear interpolation, the values
of x corresponding to ‡ and the free parameters k. These values were used as the measurement boundaries
b(‡).

4.3.5 Linear Neural

In this section, r refers to neural activity, not button responses.

This model is di�erent from all other models in that the generative model does not include measurement x.
The model can be derived as follows.

All neurons have Gaussian tuning curves with variance ‡

2
TC and gain g = 1

‡

2 . Tuning curve means
are contained in the vector of preferred stimuli s̃. The number of spikes in the population is r ≥
Poisson(gN (s; s̃, ‡

2
TC)). Neural weights are a linear function of the preferred stimuli: w = as̃.

On each trial, we get some quantity that is a weighted sum of each neuron’s activity, z = w · r.
E [z | s] = w · E [r | s] = ag

q
j
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j

exp
1

≠ (s≠s̃j)2

2‡

2
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2
.

Rather than sum over all neurons, we assume an infinite number of neurons uniformly span-
ning all possible preferred stimuli s̃. This allows us to replace the sum with an integral.
The expected value of z is ag

s
s̃ exp

1
≠ (s≠s̃j)2
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2
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2
ds̃ = ags
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TC. The variance of z is
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s
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2
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
2fi‡

2
TC(‡2

TC + s

2).

Now that we have the mean and variance of z, we are going to assume that z is normally distributed. This is
equivalent to assuming that there are a high number of spikes, because the Poisson distribution approximates
the normal distribution as the rate parameter becomes high. To compute response probability, we fit neural
activity boundaries k, and replace equation (2) with:
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4.4 Lapse rates

In confidence and category models, we fit three di�erent types of lapse rate. On each trial, there is some
fitted probability of:

• A “full lapse” in which the category report is random, and confidence report is chosen from a distri-
bution over the four levels defined by ⁄1, the probability of a “very low confidence” response, and ⁄4,
the probability of a “very high confidence” response, with linear interpolation for the two intermediate
levels.

• A “confidence lapse” ⁄confidence in which the category report is chosen normally, but the confidence
report is chosen from a uniform distribution over the four levels.

• A “repeat lapse” ⁄repeat in which the category and confidence response is simply repeated from the
previous trial.

In category choice models, we fit a standard category lapse rate ⁄, as well the above “repeat lapse” ⁄repeat.

4.5 Parameterization

Because of tradeo�s when directly fitting parameters “, –, —, we re-parameterized equation (1) as

‡(c) =

Û

‡

2
L + (‡2

L ≠ ‡

2
H)(c≠— ≠ c

≠—

L )
(c≠—

L ≠ c

≠—

H )
+ Â|sin 2s|, (13)

where cL and cH were the values of the lowest and highest reliabilities used. This way, ‡L and ‡H were free
parameters that determined the s.d. of the measurement distributions for the lowest and highest reliabilities,
with — determining the curvature of the function between the two reliabilities. For models where the
relationship between reliability and noise was non-parametric, the first term in equation (1) was replaced
with free s.d. parameters (‡rel. 1, . . . , ‡rel. 6) corresponding to each of the six reliability levels.

For models where subjects had incorrect knowledge about their measurement noise, we fitted two sets of
uncertainty-related parameters. One set was for the generative noise (used in equation (2)), and the other
set was for the subject’s believed noise (used in equations (7), (8), and (11)).

All parameters that defined the width of a distribution (‡L, ‡H, ‡

d

, ‡1, . . . ) were sampled in log-space and
exponentiated during the computation of the log likelihood. See model_parameters.xls for a complete list of
each model’s parameters.

4.6 Model fitting

Rather than find a maximum likelihood estimate of the parameters, we sampled from the posterior distribu-
tion over parameters, p(◊ | data); this has the advantage of maintaining a measure of uncertainty about the
parameters, which can be used for both model comparison and for plotting model fits. To sample from the
posterior, we use an expression for the unnormalized log posterior:
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log p(◊ | data) = log p(data | ◊) + log p(◊) + constant, (14)

where we assumed a factorized prior over each parameter j:

log p(◊) =
nÿ

j=1
log p(◊

j

), (15)

where j is the parameter index and n is the number of parameters. We used log-normal priors for parameters
that were standard deviations. For the other parameters, we took uniform priors over reasonable, su�ciently
large ranges35.

We sampled from the probability distribution using a Markov Chain Monte Carlo (MCMC) method, slice
sampling50. For each model and dataset combination, we ran between 4 and 7 parallel chains with random
starting points. For each chain, we took 40,000 to 600,000 total samples (depending on model computational
time), discarded the first third of the samples, and kept 10,000 of the remaining samples, randomly selected.
All samples with log posteriors less than 40 below the log posterior of the sample with the highest log posterior
were discarded. Marginal probability distributions of the sample log likelihoods were visually checked for
convergence across chains. In total we had 842 model and dataset combinations, with a median of 26,668
kept samples (IQR = 13,334).

4.7 Model comparison

A more complex model is likely to fit a dataset better than a simpler model, even if only by chance. Since we
are interested in our models’ predictive accuracy for unobserved data, it is important to choose a metric for
model comparison that takes the complexity of the model into account, avoiding the problem of overfitting.
Roughly speaking, there are two ways to compare models: information criteria and cross-validation.

Information criteria such as AIC, BIC, AICc, and WAIC, are widely used metrics that add corrections to the
negative log likelihood of the dataset. Most information criteria are based on a point estimate for ◊, typically
◊MLE, the ◊ that maximizes the log likelihood of the dataset (equation (3)). AIC adds a correction for the
number of parameters n to the log likelihood of the dataset: AIC = ≠2

q
t

i=1 log p(r
i

| ◊MLE) + 2n. BIC and
AICc add corrections that are functions of the number of parameters and the number of trials. WAIC is a
more Bayesian approach which is based on samples from the full posterior of ◊ (equation (14)), and adds
a correction for the e�ective number of parameters51. Although information criteria are computationally
convenient, they are based on asymptotic results and assumptions about the data that may not always
hold51.

An alternative way to estimate predictive accuracy for unobserved data is to cross-validate, fitting the model
to training data and evaluating the fit on held out data. Leave-one-out cross-validation (LOO) is the most
thorough way to cross-validate, but is very computationally intensive; it requires that you fit your model t

times, where t is the number of trials. Here we use a method proposed by Vehtari et al.32 for approximating
LOO with the full posterior obtained through MCMC:

LOO =
tÿ

i=1
log

q
u

w

i,u

p(r
i

| ◊

u

)q
u

w

i,u

, (16)

where w

i,u

is the importance weight of trial i for sample u, and ◊

u

is the u-th sampled set of parameters.

In model comparison studies, we are often concerned about whether our conclusions are dependent on the
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choice of model comparison metric. Would our model rankings be substantially di�erent if we had used an
information criterion instead of LOO?

We computed AIC, BIC, AICc, WAIC, and LOO for all models in the 8 model groupings in Figure S13-
Figure S20, multiplying the information criteria by ≠ 1

2 to match the scale of LOO. For AIC, BIC, and
AICc, we used the parameter sample with the highest log likelihood as our estimate of ◊MLE. Then we
computed Spearman’s rho for every possible pairwise comparison of model comparison metrics for all model
and dataset combinations, producing 80 total values (8 model groupings ◊ 10 possible pairwise comparisons of
model comparison metrics). All values were greater than 0.998, indicating that, had we used an information
criterion instead of LOO, we would not have changed our conclusions. Furthermore, there are no model
groupings in which the identities of the lowest- and highest-ranked models are dependent on the choice of
metric. The agreement of these metrics strengthens our confidence in our conclusions.

4.8 Visualization of model fits

Model fits were plotted by bootstrapping synthetic group datasets with the following procedure: For each
task, model, and subject, we generated 20 synthetic datasets, each using a di�erent set of parameters
sampled, without replacement, from the posterior distribution of parameters. Each synthetic dataset was
generated using the same stimuli as the ones presented to the real subject. We randomly selected a number
of synthetic datasets equal to the number of subjects to create a synthetic group dataset. For each synthetic
group dataset, we computed the mean output (e.g., button press, confidence, performance) per bin. We then
repeated this 1,000 times and computed the mean and standard deviation of the mean output per bin across
all 1,000 synthetic group datasets, which we then plotted as the shaded regions. Therefore, shaded regions
represent the ±1 s.e.m. of synthetic group datasets.

For plots with orientation on the horizontal axis (e.g., Figure 3j-o), stimulus orientation was binned
according to quantiles of the task-dependent stimulus distributions so that each point consisted of
roughly the same number of trials. For each task, we took the overall stimulus distribution p(s) =
1
2 (p(s | C = 1) + p(s | C = 2)) and found bin edges such that the probability mass of p(s) was the same
in each bin. We then plotted the binned data with linear spacing on the horizontal axis, adjusting the
horizontal axis tick marks appropriately.

4.9 Model recovery

We performed a model recovery analysis52 to test our ability to distinguish our core models. We generated
synthetic datasets from each of the 8 core models in Figure 6, for both Tasks A and B, using the same
sets of stimuli that were originally randomly generated for each of the 11 subjects. To ensure that the
statistics of the generated responses were similar to those of the subjects, we generated responses to these
stimuli from 4 of the randomly chosen parameter estimates obtained via MCMC sampling (as described in
Section 4.6) for each subject and model. In total, we generated 352 datasets (8 generating models ◊ 11
subjects ◊ 4 datasets). We then fit all 8 models to every dataset. For computational e�ciency, we fit the
models with maximum likelihood estimation of parameters by an interior-point constrained optimization
(MATLAB’s fmincon) rather than with the more time-consuming MCMC sampling used for subject data.
We then computed AIC scores from the resulting fits.

We found that the true generating model was the best-fitting model, on average, in all cases (Fig. S2).
Overall, AIC “selected” the correct model (i.e., AIC scores were lowest for the model that generated the
data) for 86.6% of the datasets, indicating that our models are distinguishable. We believe that these results
would hold if we used the same fitting and comparison procedures as for the subject data (MCMC and
LOO, rather than MLE and AIC), because we found that AIC and LOO scores gave us near-identical model
rankings for data from real subjects (Section 4.7).
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Figure S2: Model recovery analysis. Shade represents the di�erence between the mean AIC score (across datasets) for each
fitted model and for the one with the lowest mean AIC score. White squares indicate the model that had the lowest mean
AIC score when fitted to data generated from each model. The squares on the diagonal indicate that the true generating
model was the best-fitting model, on average, in all cases.

5 Neural networks

5.1 Architecture

In this section, r and r refer to neural activity, not button responses.

We trained 3-layer feedforward neural networks to perform Task B42. The architecture, described below, is
pictured in Figure 7a. The input units were 50 independent Poisson neurons. The mean number of spikes
per trial was determined by Gaussian tuning curves with baselines, such that the neurons had spike count

rinput ≥ Poisson
!
gN (s, s̃, ‡

2
TC) + ’

"
. (17)

s̃ is the vector of preferred stimuli, which were linearly spaced from ≠40¶ to 40¶. All neurons had tuning
curve width ‡

2
TC = 100 and baseline ’ = 0.025 (to limit the number of trials with zero spikes). Gain g varied

from trial-to-trial, and was derived from fits to subject data. Input units were connected, all-to-all, to 200
hidden rectified linear units with responses

rhidden = max(0, Winputrinput), (18)

where Winput was the weight matrix applied to the input units. Both input and hidden layers included a
bias unit with a constant response of 1, which, when multiplied by the fitted weights, e�ectively adds a fitted
bias to the hidden units and output unit. Hidden units were connected to a sigmoidal output unit with
response

routput = 1
1 + exp(≠whidden · rhidden) , (19)

where whidden was the weight vector applied to the hidden units.

Supplementary Information 11



0  

25 

50 

75 

100

in
fo

rm
at

io
n 

lo
ss

 (%
)

b

0.5

0.6

0.7

pr
op

. c
or

re
ct

c
neural net.
human subjects

101 102 103 104 105 106

# training trials

1

0.75

0.5

0.25

0

ex
pe

ct
ed

 p
os

te
rio

r p
ro

ba
bi

lit
y 

of
 m

od
el

d

Lin

Bayes
S

Bayes
W

Ori. Est.

Lin. Neur.

Quad

Fixed

0 0.25 0.5 0.75 1
p(C = 1 j rinput)

0

0.25

0.5

0.75

1

r o
u
tp

u
t

a
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formance, and model comparison. (a) Posterior
probabilities decoded optimally from input unit
activity, scattered against network output. Each
point is a test trial from a neural network that
was trained on the maximum number of training
trials. For clarity, a randomly selected subset of
test trials is plotted. (b) Fractional information
loss as a function of the number of training trials.
Error bars represent ±1 s.e.m. across the means
of datasets generated with the gains derived from
each subject. (c) Black line indicates network test
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the Task B performance of subjects in experiment
1; all subjects completed 1440 training trials. (d)
Expected posterior probabilities of each model 53

as a function of the number of training trials.

5.2 Training networks and generating

datasets

Stimuli s were drawn from the same distributions used for the
human experiments in Task B. Gains di�ered from trial-to-
trial; to ensure that the reliability of the information available
to the networks was similar to the reliability of the subjects’
sensory information, the gains were derived from the fits to
the Task A choice data in experiment 1. Indeed, the perfor-
mance of the networks roughly matched the performance of
the subjects (Fig. S3c). We used 15 di�erent values for the
number of training trials, ranging from 10 to 4.6 ◊ 105, loga-
rithmically spaced (Figure 7b-d only depicts results from the
most highly trained networks).

We used standard back-propagation54 to minimize cross-
entropy between network output and category labels; as with
the human subjects, the networks did not receive probabilis-
tic feedback during training. Weights were initialized to small
random values drawn from a zero-mean Gaussian distribution
with s.d. 0.05. We used mini-batch gradient descent with a
batch size of 10, over a single epoch. We used L2 regulariza-
tion with regularization term – = 10≠4.

We decoded the optimal posterior p(C = 1 | rinput), which al-
lowed us to compute fractional information loss. Fractional
information loss was defined as the KL-divergence between
p(C = 1 | rinput) and routput, normalized by the mutual in-
formation between the category labels and rinput

55.

Learning rate ÷ decreased as a function of the batch number
j:

÷

j

= ÷0
1 + ·j

(20)

We used a constrained pattern search optimization (MAT-
LAB’s patternsearch) to find, for the gains associated with
each subject, the ÷0 and · that minimized fractional informa-
tion loss on a validation set. We used patternsearch because,
unlike fmincon, it is well-suited for optimizing stochastic ob-
jective functions.

From each trained network, we generated a test set consisting
of 2160 trials, the same number of Task B trials completed by
subjects in experiment 1. routput was mapped onto the 8 cat-
egory and confidence responses using quantiles. We produced
datasets from 4 separately trained networks for gains associ-
ated with each subject, generating 660 datasets in total (15
numbers of training trials ◊ 11 subject-derived sets of gains ◊
4 datasets).
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We found that routput was a fairly good approximation of the optimal posterior p(C = 1 | rinput), with some
positive bias when the posterior was low (Fig. S3a). We also found that information loss and performance
went down as the number of training trials increased (Fig. S3b-c). Both information loss and performance
appear to reach asymptote around 2 ◊ 104 trials; therefore, it is unlikely that our results are due to insu�cient
training.

5.3 Behavioral models

We fit the 660 network-generated datasets, obtaining AIC scores for each dataset and model. The fitted
models were identical to the 7 Task B models described in the text (and shown in Figure S15 and Table S3),
except that we removed

the following mechanisms that we knew not to be present in the neural network generative process:

• All lapse rates except for a uniform lapse rate over all 8 responses

• Orientation-dependent noise

• d noise (applicable to Bayesian models only)

As with model recovery (Section 4.9), we used MLE and AIC (rather than MCMC and LOO) for compu-
tational e�ciency, due to the large number of datasets being fitted.

After fitting, we used the spm_BMS function in the SPM12 software package to compute the expected
posterior probability distribution over models at each number of training trials, using a random e�ects
method of Bayesian model selection53. We found that Lin and Quad fit the data best, with Quad fitting
best for data generated from less well-trained networks, and Lin fitting best for data generated from highly
trained networks (Fig. S3d). This transition is consistent with previous results42. We plotted the summed
AIC di�erences for data generated from the most highly trained networks in Figure S4, blue bars.

Fixed

Ori. Est.

Lin

Lin. Neur.

Quad

Bayes
W

Bayes
S

-2 0 2 4 6

'(AIC - AIC
Bayes

S

) #10
4

optimal decoder data

neural network data

Figure S4: Model comparison for data generated from an optimal decoder of spikes, and from neural networks trained with
4.6 ◊ 105 training trials. Models are ordered by quality of fit to optimal decoder data. As in Figure 7b, but for all models.

5.4 Control

To ensure that our results were not due to overfitting, we performed a model recovery analysis. This was
similar to the previously described model recovery, except that we used input layer activity rinput rather
than x and ‡. For the rinput used in the test set of the 44 most highly trained networks (11 subject-derived
sets of gains ◊ 4 datasets), we decoded the per-trial optimal posteriors p(C = 1 | rinput). We then mapped
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the posterior onto the 8 category and confidence responses using quantiles (this is also how we mapped
the trained networks’ routput onto responses, see above). We then fit these datasets with the same models
used to fit the datasets produced by the trained networks. We found that BayesStrong was the best-fitting
model (Fig. S4, black). This suggests that the architecture or the training procedure of the neural networks
constrains the type of behavior that can be produced.

6 Data and code availability

All data and code used for running experiments, model fitting, and plotting is available on GitHub.
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Figure S9: Fixed fits, as in Figure 3.
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Figure S10: Orientation Estimation fits, as in Figure 3.
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Figure S11: Linear Neural fits, as in Figure 3.
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Figure S12: Lin fits, as in Figure 3.
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Figure S13: Model comparison, experiment 1. Models were fit jointly to Task A and B category and confidence responses. Medians and 95% CI of bootstrapped
sums of LOO di�erences, relative to the best model. Higher values indicate worse fits.
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Ori. Est. + sep. meas. and inf. noise

≠2265 [≠4253, ≠498]
≠3595 [≠5323, ≠1995]
≠4312 [≠6151, ≠2610]
≠2944 [≠4744, ≠1329]
≠4294 [≠5857, ≠2733]
≠5134 [≠6764, ≠3509]
≠3080 [≠4409, ≠1862]
≠3959 [≠5540, ≠2506]
≠6596 [≠8279, ≠4812]
≠6832 [≠8810, ≠4810]
≠3313 [≠5206, ≠1581]
≠4586 [≠6336, ≠2866]
≠5436 [≠7248, ≠3675]
≠3295 [≠4793, ≠1910]
≠4180 [≠5901, ≠2591]
≠6602 [≠8290, ≠4809]
≠7161 [≠9294, ≠4986]
≠1015 [≠2165, ≠209]

≠3737 [≠5664, ≠2089]
≠5342 [≠7118, ≠3637]
≠6059 [≠7909, ≠4192]
≠3756 [≠5025, ≠2562]
≠4806 [≠6759, ≠2996]
≠5802 [≠7674, ≠3955]
≠6460 [≠8426, ≠4486]
≠4356 [≠5945, ≠2727]

≠1298 [≠1951, ≠747]
≠1987 [≠3104, ≠1204]

≠657 [≠1217, ≠214]
≠1983 [≠2814, ≠1263]
≠2824 [≠3938, ≠1866]

≠779 [≠2498, 767]
≠1645 [≠3429, ≠125]

≠4246 [≠5658, ≠3164]
≠4494 [≠5853, ≠3399]
≠1030 [≠1503, ≠666]

≠2276 [≠3132, ≠1568]
≠3113 [≠4280, ≠2194]

≠993 [≠2755, 523]
≠1863 [≠3689, ≠357]

≠4249 [≠5664, ≠3167]
≠4818 [≠6203, ≠3697]

1211 [≠620, 3272]
≠1549 [≠2740, 46]

≠3056 [≠3956, ≠2240]
≠3751 [≠4929, ≠2706]

≠1456 [≠3049, 22]
≠2507 [≠3204, ≠1980]
≠3499 [≠4427, ≠2629]
≠4135 [≠5389, ≠3054]
≠2042 [≠3756, ≠457]

≠695 [≠1222, ≠353]
607 [≠8, 1501]

≠662 [≠1150, ≠307]
≠1517 [≠2086, ≠999]

564 [≠1154, 1997]
≠309 [≠2049, 1036]

≠2916 [≠4196, ≠2106]
≠3189 [≠4257, ≠2329]

251 [≠264, 910]
≠971 [≠1397, ≠613]

≠1824 [≠2424, ≠1293]
351 [≠1428, 1801]
≠529 [≠2321, 828]

≠2920 [≠4204, ≠2108]
≠3521 [≠4673, ≠2545]

2551 [826, 4356]
≠202 [≠1392, 1367]

≠1726 [≠2524, ≠1084]
≠2434 [≠3274, ≠1724]

≠110 [≠1651, 1199]
≠1211 [≠1932, ≠541]

≠2189 [≠2894, ≠1565]
≠2837 [≠3750, ≠2030]

≠701 [≠2310, 596]

1301 [514, 2625]
14 [≠497, 691]

≠804 [≠1134, ≠510]
1239 [≠480, 2938]
373 [≠1405, 1978]

≠2213 [≠3458, ≠1318]
≠2463 [≠3458, ≠1757]

940 [243, 2018]
≠275 [≠715, 262]

≠1114 [≠1377, ≠858]
1018 [≠782, 2782]
151 [≠1673, 1764]

≠2217 [≠3462, ≠1323]
≠2795 [≠3913, ≠1923]

3269 [1479, 5190]
495 [≠765, 2112]

≠1044 [≠1888, ≠126]
≠1710 [≠2481, ≠1120]

571 [≠970, 2109]
≠514 [≠1354, 466]

≠1476 [≠2216, ≠755]
≠2110 [≠2954, ≠1451]

≠3 [≠1623, 1474]

≠1295 [≠2051, ≠734]
≠2105 [≠3353, ≠1281]

≠77 [≠1881, 1321]
≠953 [≠2922, 565]

≠3545 [≠5177, ≠2401]
≠3799 [≠5455, ≠2521]

≠361 [≠675, ≠135]
≠1581 [≠2477, ≠986]

≠2401 [≠3750, ≠1551]
≠290 [≠2170, 1090]
≠1172 [≠3186, 358]

≠3549 [≠5189, ≠2402]
≠4136 [≠5848, ≠2777]

1910 [72, 3813]
≠847 [≠2103, 660]

≠2361 [≠3442, ≠1517]
≠3043 [≠4489, ≠1974]

≠757 [≠2413, 579]
≠1840 [≠2828, ≠1005]
≠2814 [≠3970, ≠1846]
≠3442 [≠4979, ≠2233]

≠1347 [≠3191, 222]

≠819 [≠1369, ≠441]
1261 [≠526, 2571]
381 [≠1490, 1720]

≠2234 [≠3628, ≠1364]
≠2509 [≠3784, ≠1487]

941 [441, 1478]
≠293 [≠522, ≠96]

≠1120 [≠1794, ≠646]
1042 [≠803, 2396]
155 [≠1768, 1536]

≠2238 [≠3637, ≠1362]
≠2837 [≠4189, ≠1685]

3270 [1468, 4897]
449 [≠798, 2020]

≠1041 [≠1953, ≠377]
≠1742 [≠2745, ≠984]

588 [≠1004, 1747]
≠538 [≠1444, 329]

≠1501 [≠2335, ≠814]
≠2146 [≠3244, ≠1241]

≠3 [≠1698, 1290]

2041 [385, 3623]
1188 [≠588, 2704]

≠1398 [≠2644, ≠571]
≠1667 [≠2698, ≠858]

1763 [981, 2774]
535 [131, 1006]

≠306 [≠505, ≠120]
1823 [84, 3478]

966 [≠876, 2526]
≠1401 [≠2652, ≠573]

≠1996 [≠3163, ≠1026]
4073 [2379, 5781]

1296 [34, 2933]
≠234 [≠1088, 650]

≠908 [≠1661, ≠318]
1370 [≠100, 2776]
298 [≠645, 1325]
≠667 [≠1425, 36]

≠1310 [≠2175, ≠580]
802 [≠784, 2223]

≠878 [≠1325, ≠450]
≠3485 [≠4519, ≠2515]
≠3714 [≠5206, ≠2408]

≠302 [≠1745, 1556]
≠1548 [≠3013, 304]

≠2355 [≠4056, ≠683]
≠217 [≠405, ≠47]

≠1101 [≠1639, ≠572]
≠3490 [≠4532, ≠2508]
≠4049 [≠5567, ≠2649]

2025 [1280, 2914]
≠720 [≠2280, 1032]

≠2268 [≠3377, ≠1157]
≠2956 [≠4401, ≠1654]

≠671 [≠940, ≠403]
≠1732 [≠3025, ≠441]

≠2724 [≠4031, ≠1403]
≠3351 [≠4857, ≠2005]
≠1271 [≠1836, ≠613]

≠2607 [≠3513, ≠1694]
≠2840 [≠4117, ≠1671]

570 [≠962, 2571]
≠680 [≠2096, 1279]
≠1487 [≠3074, 259]

662 [272, 1105]
≠222 [≠381, ≠76]

≠2612 [≠3524, ≠1691]
≠3180 [≠4493, ≠1931]

2921 [2044, 3904]
136 [≠1487, 2235]

≠1406 [≠2436, ≠253]
≠2084 [≠3410, ≠761]

212 [≠337, 805]
≠869 [≠2064, 423]

≠1844 [≠3000, ≠522]
≠2486 [≠3789, ≠1230]

≠379 [≠888, 186]

≠233 [≠790, 244]
3188 [2125, 4785]
1945 [1114, 3372]
1104 [264, 2301]

3259 [2324, 4317]
2388 [1475, 3310]

≠5 [≠16, 8]
≠555 [≠1198, ≠19]

5539 [4089, 7019]
2736 [1604, 4310]
1220 [656, 1856]
518 [≠39, 1156]

2823 [1994, 3670]
1755 [1022, 2541]

760 [172, 1530]
126 [≠492, 750]

2226 [1419, 3120]

3449 [2328, 4882]
2186 [1351, 3450]
1351 [686, 2291]

3487 [2225, 4992]
2612 [1437, 3898]

229 [≠234, 773]
≠325 [≠535, ≠141]

5767 [4106, 7522]
2960 [1706, 4864]
1451 [894, 2145]
768 [399, 1144]

3043 [1877, 4395]
1976 [1336, 2764]
1005 [579, 1549]

362 [162, 602]
2459 [1384, 3640]

≠1221 [≠1854, ≠748]
≠2052 [≠3165, ≠1304]

113 [≠1858, 1515]
≠768 [≠2847, 708]

≠3171 [≠4764, ≠2142]
≠3760 [≠5309, ≠2594]

2306 [386, 4270]
≠502 [≠1809, 1147]

≠1969 [≠2982, ≠1262]
≠2677 [≠3916, ≠1764]

≠358 [≠2089, 995]
≠1453 [≠2343, ≠791]

≠2438 [≠3427, ≠1641]
≠3077 [≠4407, ≠2038]

≠946 [≠2853, 571]

≠839 [≠1353, ≠449]
1346 [≠645, 2818]
469 [≠1586, 1905]

≠1945 [≠3376, ≠1111]
≠2525 [≠3864, ≠1557]

3574 [1698, 5324]
752 [≠598, 2436]

≠736 [≠1688, ≠104]
≠1436 [≠2402, ≠841]

891 [≠831, 2182]
≠236 [≠1144, 609]

≠1191 [≠2016, ≠624]
≠1834 [≠2890, ≠1085]

305 [≠1532, 1634]

2119 [382, 3940]
1268 [≠548, 2929]

≠1102 [≠2291, ≠243]
≠1676 [≠2730, ≠839]

4378 [2598, 6266]
1600 [337, 3343]

61 [≠690, 985]
≠589 [≠1260, ≠125]

1669 [193, 3223]
590 [≠246, 1651]

≠370 [≠1019, 325]
≠995 [≠1764, ≠388]

1109 [≠468, 2587]

≠886 [≠1362, ≠434]
≠3269 [≠4337, ≠2329]
≠3830 [≠5348, ≠2504]

2259 [1384, 3301]
≠536 [≠2021, 1277]

≠2072 [≠3135, ≠932]
≠2740 [≠4192, ≠1444]

≠450 [≠822, ≠85]
≠1543 [≠2769, ≠234]

≠2519 [≠3800, ≠1171]
≠3132 [≠4639, ≠1802]
≠1042 [≠1639, ≠447]

≠2396 [≠3326, ≠1474]
≠2950 [≠4252, ≠1743]

3141 [2140, 4228]
345 [≠1261, 2460]

≠1191 [≠2191, ≠32]
≠1868 [≠3190, ≠546]

431 [≠205, 1100]
≠661 [≠1797, 642]

≠1645 [≠2775, ≠325]
≠2260 [≠3579, ≠1009]

≠153 [≠701, 413]

≠550 [≠1181, ≠15]
5532 [4088, 7029]
2739 [1604, 4248]
1206 [662, 1861]
515 [≠47, 1160]

2811 [1978, 3684]
1741 [1029, 2544]

752 [168, 1526]
129 [≠480, 743]

2218 [1411, 3136]

6097 [4323, 7901]
3289 [1961, 5318]
1779 [1144, 2487]
1096 [607, 1571]

3363 [2110, 4752]
2303 [1651, 3088]
1331 [826, 1925]
689 [389, 1017]

2790 [1653, 3984]

≠2758 [≠4820, ≠565]
≠4291 [≠5905, ≠2865]
≠5009 [≠6718, ≠3406]
≠2699 [≠3673, ≠1845]
≠3751 [≠5537, ≠2211]
≠4754 [≠6422, ≠3195]
≠5404 [≠7167, ≠3772]
≠3298 [≠4486, ≠2152]

≠1535 [≠3085, ≠678]
≠2199 [≠3914, ≠1144]

45 [≠1494, 1448]
≠1003 [≠2673, ≠29]

≠1948 [≠3783, ≠905]
≠2575 [≠4535, ≠1366]

≠525 [≠2391, 1009]

≠678 [≠1261, ≠291]
1591 [639, 2624]

525 [161, 945]
≠439 [≠773, ≠172]

≠1072 [≠1730, ≠641]
1007 [42, 1957]

2275 [1176, 3602]
1210 [585, 1979]
248 [≠140, 657]

≠393 [≠711, ≠115]
1708 [589, 2876]

≠1062 [≠2289, 112]
≠2041 [≠3242, ≠871]

≠2672 [≠4062, ≠1494]
≠607 [≠1133, 76]

≠971 [≠1459, ≠544]
≠1602 [≠2390, ≠1007]

472 [≠726, 1685]
≠636 [≠1043, ≠347]

1464 [296, 2531] 2094 [1015, 3281]

Table S1: Cross comparison of all models in Figure S13. Cells indicate medians and 95% CI of bootstrapped summed LOO score di�erences. A negative median
indicates that the model in the corresponding row had a higher score (better fit) than the model in the corresponding column. For readability, see table_S1.xls.
See model_parameters.xls for the parameters of each model.
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Figure S14: Model comparison, experiment 1. Models were fit to Task A category and confidence responses. Medians and 95% CI of bootstrapped sums of LOO
di�erences, relative to the best model. Higher values indicate worse fits.

12 pars. 13 pars. 12 pars. 13 pars. 16 pars.
Fixed Bayes + d noise Ori. Est. Lin. Neur. Lin

13 pars.
12 pars.
13 pars.
16 pars.
16 pars.

Bayes + d noise
Ori. Est.

Lin. Neur.
Lin

Quad

≠2956 [≠3723, ≠2163]
≠2302 [≠2881, ≠1705]
≠3255 [≠4343, ≠2231]
≠3532 [≠4353, ≠2651]
≠3534 [≠4552, ≠2529]

651 [425, 885]
≠313 [≠724, 75]

≠572 [≠799, ≠339]
≠581 [≠938, ≠278]

≠972 [≠1599, ≠412]
≠1232 [≠1566, ≠863]
≠1241 [≠1798, ≠767]

≠259 [≠609, 124]
≠270 [≠436, ≠117] ≠14 [≠325, 246]

Table S2: Cross comparison of all models in Figure S14. See Table S1 caption.
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Figure S15: Model comparison, experiment 1. Models were fit to Task B category and confidence responses. Medians and 95% CI of bootstrapped sums of LOO
di�erences, relative to the best model. Higher values indicate worse fits.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS + d noise BayesW + d noise Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS + d noise
BayesW + d noise

Ori. Est.
Lin. Neur.

Lin
Quad

≠1534 [≠2425, ≠634]
≠2230 [≠3239, ≠1307]
≠1043 [≠1962, ≠273]
≠1117 [≠2093, ≠349]

≠2480 [≠3323, ≠1645]
≠3234 [≠4390, ≠2099]

≠691 [≠1082, ≠390]
502 [≠934, 1693]

421 [≠1095, 1689]
≠919 [≠1788, ≠279]

≠1664 [≠2698, ≠958]

1184 [≠202, 2588]
1106 [≠374, 2583]
≠232 [≠900, 346]

≠978 [≠1756, ≠406]

≠80 [≠222, 62]
≠1415 [≠2439, ≠439]

≠2156 [≠3352, ≠1192]
≠1326 [≠2442, ≠337]

≠2060 [≠3368, ≠1037] ≠744 [≠1387, ≠224]

Table S3: Cross comparison of all models in Figure S15. See Table S1 caption.
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Figure S16: Model comparison, experiment 1. Models were fit jointly to Task A and B category choices. Medians and 95% CI of bootstrapped sums of LOO
di�erences, relative to the best model. Higher values indicate worse fits.

8 pars. 9 pars. 8 pars. 9 pars. 10 pars.
Fixed Bayes + d noise Ori. Est. Lin. Neur. Lin

9 pars.
8 pars.
9 pars.
10 pars.
10 pars.

Bayes + d noise
Ori. Est.

Lin. Neur.
Lin

Quad

≠1095 [≠1657, ≠629]
≠1190 [≠2614, ≠144]

≠591 [≠2068, 460]
≠1690 [≠2534, ≠976]
≠1319 [≠2541, ≠611]

≠114 [≠1026, 579]
486 [≠504, 1211]

≠595 [≠927, ≠311]
≠236 [≠1072, 358]

591 [406, 789]
≠492 [≠1023, 238]
≠154 [≠772, 613]

≠1087 [≠1690, ≠245]
≠729 [≠1365, ≠38] 323 [≠423, 1127]

Table S4: Cross comparison of all models in Figure S16. See Table S1 caption.

Supplem
entary

Inform
ation

26



Lin

Quad

Bayes
Weak

 + d noise

Bayes
Strong

 + d noise

Linear Neural

Orientation Estimation

Fixed

0 2000 4000 6000

'(LOO
Lin

 - LOO)

Figure S17: Model comparison, experiment 1. Noise parameters were fit to Task A category choices and then fixed during the fitting of Task B category and
confidence responses. Medians and 95% CI of bootstrapped sums of LOO di�erences, relative to the best model. Higher values indicate worse fits.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS + d noise BayesW + d noise Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS + d noise
BayesW + d noise

Ori. Est.
Lin. Neur.

Lin
Quad

≠2704 [≠3351, ≠2027]
≠3257 [≠3965, ≠2494]
≠1498 [≠2877, ≠420]
≠1837 [≠3566, ≠378]

≠5016 [≠6727, ≠3090]
≠4367 [≠6304, ≠2391]

≠533 [≠920, ≠283]
1184 [23, 2129]

846 [≠609, 2092]
≠2303 [≠3578, ≠921]
≠1670 [≠3268, ≠39]

1724 [575, 2808]
1386 [≠13, 2732]

≠1773 [≠2845, ≠451]
≠1135 [≠2501, 333]

≠345 [≠933, 262]
≠3497 [≠4860, ≠1817]
≠2836 [≠4544, ≠1122]

≠3127 [≠4549, ≠1575]
≠2449 [≠4200, ≠969] 606 [6, 1269]

Table S5: Cross comparison of all models in Figure S17. See Table S1 caption.
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Figure S18: Model comparison, experiment 2. Models were fit jointly to Task A and B category and confidence responses. Medians and 95% CI of bootstrapped
sums of LOO di�erences, relative to the best model. Higher values indicate worse fits.

19 pars. 13 pars. 17 pars. 20 pars. 19 pars. 20 pars. 30 pars.
Fixed BayesU + d noise BayesS + d noise BayesW + d noise Ori. Est. Lin. Neur. Lin

13 pars.
17 pars.
20 pars.
19 pars.
20 pars.
30 pars.
30 pars.

BayesU + d noise
BayesS + d noise
BayesW + d noise

Ori. Est.
Lin. Neur.

Lin
Quad

≠907 [≠1572, ≠365]
≠1490 [≠2210, ≠886]

≠1678 [≠2542, ≠1007]
≠872 [≠1297, ≠487]
≠876 [≠1401, ≠395]

≠2095 [≠2889, ≠1344]
≠2014 [≠3036, ≠1186]

≠565 [≠1032, ≠266]
≠767 [≠1262, ≠386]

56 [≠561, 574]
55 [≠711, 693]

≠1160 [≠1780, ≠694]
≠1096 [≠1807, ≠530]

≠190 [≠363, ≠82]
620 [218, 1089]
623 [99, 1184]

≠589 [≠841, ≠375]
≠523 [≠893, ≠220]

813 [356, 1394]
801 [253, 1491]

≠396 [≠622, ≠186]
≠331 [≠562, ≠109]

≠7 [≠219, 216]
≠1218 [≠1680, ≠791]
≠1136 [≠1815, ≠638]

≠1205 [≠1757, ≠785]
≠1124 [≠1922, ≠613] 74 [≠195, 252]

Table S6: Cross comparison of all models in Figure S18. See Table S1 caption.
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Figure S19: Model comparison, experiment 3. Models were fit to Task B category and confidence responses. Medians and 95% CI of bootstrapped sums of LOO
di�erences, relative to the best model. Higher values indicate worse fits.

15 pars. 13 pars. 16 pars. 15 pars. 16 pars. 22 pars.
Fixed BayesS + d noise BayesW + d noise Ori. Est. Lin. Neur. Lin

13 pars.
16 pars.
15 pars.
16 pars.
22 pars.
22 pars.

BayesS + d noise
BayesW + d noise

Ori. Est.
Lin. Neur.

Lin
Quad

≠4505 [≠7282, ≠1816]
≠5967 [≠8702, ≠3369]

≠256 [≠841, 423]
≠450 [≠1535, 1290]

≠5759 [≠7866, ≠3694]
≠7326 [≠9955, ≠4905]

≠1454 [≠2179, ≠835]
4311 [1432, 7134]
4114 [733, 7796]

≠1240 [≠2567, 65]
≠2833 [≠3807, ≠1926]

5727 [3067, 8527]
5552 [2338, 9135]
226 [≠812, 1246]

≠1361 [≠2022, ≠777]

≠214 [≠1176, 1256]
≠5530 [≠7707, ≠3539]
≠7120 [≠9838, ≠4636]

≠5337 [≠8191, ≠2846]
≠6902 [≠10376, ≠3981] ≠1577 [≠2562, ≠750]

Table S7: Cross comparison of all models in Figure S19. See Table S1 caption.
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Figure S20: Model comparison, experiment 3. Models were fit to Task B category choices. Medians and 95% CI of bootstrapped sums of LOO di�erences, relative
to the best model. Higher values indicate worse fits.

7 pars. 8 pars. 7 pars. 8 pars. 8 pars.
Fixed Bayes + d noise Ori. Est. Lin. Neur. Lin

8 pars.
7 pars.
8 pars.
8 pars.
8 pars.

Bayes + d noise
Ori. Est.

Lin. Neur.
Lin

Quad

≠964 [≠1290, ≠663]
≠255 [≠987, 369]

215 [≠566, 827]
≠1084 [≠1675, ≠619]
≠777 [≠1361, ≠359]

707 [119, 1259]
1174 [535, 1772]
≠117 [≠436, 76]
162 [≠290, 670]

457 [254, 685]
≠830 [≠1317, ≠334]
≠531 [≠1059, ≠23]

≠1294 [≠1825, ≠778]
≠988 [≠1526, ≠549] 290 [≠138, 793]

Table S8: Cross comparison of all models in Figure S20. See Table S1 caption.
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