
VarMatch: robust matching of small variant

datasets using flexible scoring schemes

Chen Sun and Paul Medvedev

1 Supplemental Material

1.1 Exact branch and bound algorithm

In this section, we present an exact branch and bound algorithm for VarMatch
program. It takes as input two variant sequences V , W and reference genome
R. For 0 ≤ i ≤ |V |, 0 ≤ j ≤ |W |, a (i, j)-partial solution is a pair of selection
sequences ΦV and ΦW , such that ΦV has all the positions after the ith one
set to 0 and ΦW has all the positions after the jth one set to 0. Our algorithm
maintains a queue Q of partial solutions, initialized with a (0, 0)-partial solution.
The main body of our algorithm is a loop where in each step, we pop a partial
solution s from Q, pick from V or W the closest variant v that is not in s, and
create and push onto Q three new partial solutions corresponding to the three
selection options for v. The loop stops when Q contains only (|V |, |W |)-partial
solutions, and we output the highest scoring one.

We employ two main strategies to prune the search space. First, consider
an (i, j)-partial solution (ΦV ,ΦW) and the shortest genome sequence R′ that
is affected by the first i variants of V and the first j variants of W . We can
apply the partial solution to R′ to get two pairs of donor sequences v0, v1 and
w0, w1. We call these partial donors corresponding to the partial solution. We
can safely discard this partial solution if there exists an i ∈ {0, 1} such that vi
is not the prefix of wi, and wi is not the prefix of vi. In such cases, no matter
how the partial solution is extended, the donor strings will never be identical.
For the second pruning strategy, fix i and j and consider a set of (i, j)-partial
solutions with the same partial donor sequences lengths. We can discard all
partial solutions in such a set except for one with the highest score.

The algorithm’s running time and memory usage is Ω(3|V |+|W |), since this
is the number of possible solutions. However, the pruning strategies make the
algorithm fast in practice, since it is applied only on small subproblems gener-
ated by the LinearClustering algorithm discussed in main text Section 3.2. Our
algorithm is based on and similar to the algorithm of RTG Tools discussed in
main text. The novelty here is to properly formalize it into a branch and bound
framework, to branch the search tree on variants instead of on nucleotides, and
to optimize the pruning operations.

1

Supplementary Figure 1: An example where different numbers of matches are
made in the total scoring scheme then in the baseline scoring scheme. VCF
entries are represented by boxes but are grouped together into entry sets from
fb as baseline and ug as query. We put dashes into the reference (Seq) to
space it out for the purposes of illustrating insertions. Under the total scoring
scheme, the fb entry represented by a black box (with GAGA as the reference
allele) matches the four ug entries in red boxes (all SNVs). The total number
of variants in this match is five but only one is from the baseline. At the same
time, all the three fb variants match the two green ug variants (indels). The
total number of variants is five but there are three from the baseline.

Supplementary Figure 2: An example where different matches are made in unit
vs. edit distance cost model (UGT vs. EGT). The fb entry represented by a
black box (on the left) matches the ug entries in red and orange boxes (the right
three), giving a match with four total variants and an edit distance of seven.
At the same time, all the fb entries match the ug entries represented by green
and orange boxes, giving a match with four total variants and an edit distance
of eight.

2

Main text ref Dataset
Unit Cost Model Edit Distance Cost Model

Mode # Matches Mode # Matches

Table 1
fb

UGT
2,843,396

EGT
+0

hc 2,912,641 +0

Table 2
fb

UGT
4,197,138

EGT
+8

ug 4,322,083 -15

Table 4
bwa-fb

UGB
402,552

EGB
-4

pt 532,856 -20

Table 5 fb
UGB

2,896,841
EGB

+0
(genome-wide) pt 2,891,848 -1

Table 5 fb
UGB

24,188
EGB

+0
(dense regions) pt 24,522 -1

Supplementary Table 1: Difference of VarMatch in the unit cost and edit dis-
tance cost model. Datasets are used from the corresponding tables in the main
text. The number of matches in the edit distance cost model is shown as an
offset to the number of matches in the unit cost model.

Matched Benchmark Entries (Recall)
fb pt

genome-wide 2,896,841 (99.35%) 2,891,759 (99.17%)
dense regions 24,188 (84.69%) 24,486 (85.73%)

Supplementary Table 2: The number and recall of benchmark variants matched
by RTG Tools in fb and pt, from the whole genome (first row) and just the
dense regions (second row).

3

