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Haplotype-aware realignment of reads 
Mapped reads are preprocessed using an error-tolerant, local De-Bruijn-graph-based read 
assembly procedure which realigns them according to their most likely derived haplotype. 
Candidate windows across the genome are selected for reassembly by looking for any evidence 
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of possible genetic variation such as mismatching or soft clipped bases. The selection criteria 
for a candidate window are very permissive so that true variation is unlikely to be missed. All 
candidate windows across the genome are considered independently. De-Bruijn graphs are 
constructed using multiple fixed k-mer sizes (from 20 to 75, inclusive, with increments of 5) out 
of the reference genome bases for the candidate window as well as all overlapping reads. 
Edges are given a weight determined by how many times they are observed in the reads. We 
trim any edges with weight less than three, except edges found in the reference are never 
trimmed. Candidate haplotypes are generated by traversing the assembly graphs and the top 
two most likely haplotypes are selected which best explain the read evidence. The likelihood 
function used to score haplotypes is a traditional pair HMM with fixed parameters that do not 
depend on base quality scores. This likelihood function assumes that each read is independent. 
Finally, each read is then realigned to its most likely haplotype using a Smith-Waterman-like 
algorithm with an additional affine gap penalty score for homopolymer indels. This procedure 
updates both the position and the CIGAR string for each read.  

Finding candidate variants 
Candidate variants for evaluation with the deep learning model are identified with the following 
algorithm. We consider each position in the reference genome independently. For each site in 
the genome we collect all the reads that overlap that site. The CIGAR string of each read is 
decoded and the corresponding allele aligned to that site is determined, which are classified into 
either a reference-matching base, a reference-mismatching base, an insertion with a specific 
sequence, or a deletion with a specific length. We count the number of occurrences of each 
distinct allele across all reads. An allele is considered a candidate if it satisfies: 
 
def is_candidate(counts, allele): 
  allele_count = counts[allele] 
  total_counts = sum(counts.values()) 
  return not is_reference_base(allele)  

and allele_count >= min_count 
and allele_count / total_count >= min_fraction 

 
If any candidates pass our calling thresholds at a site in the genome, we emit a VCF-like record 
with chromosome, start, reference bases and alternate bases, where reference bases and 
alternate bases are the VCF-compatible representation of all of the passing alleles. 
 
We filter away any unusable reads (see is_usable_read() below) if it is marked as a duplicate, 
as failing vendor quality checks, isn't aligned or if this isn't the primary alignment, mapping 
quality is less than 10, or the read is paired and not marked as properly placed. We further only 
include read bases as potential alleles if all of the bases in the alleles have a base quality >= 10. 
We only emit variant calls at standard (ACGT) bases in the reference genome. It is possible to 
force candidate variants to be emitted (randomly with probability of p) at sites with no alternate 
alleles, which are used homozygous reference training sites. There's no constraint on the size of 
indels emitted, so long as the exact position and bases are present in the cigar string and they 
are consistent across multiple reads. 
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Creating images around candidate variants 
The second phase of DeepVariant encodes the reference and read support for each candidate 
variant into an RGB image. The pseudo-code for this component is shown below; it contains all 
of the key operations to build the image, leaving out for clarity error handling, code to deal with 
edge cases like when variants occur close to the start or end of the chromosome, and the 
implementation of non-essential and/or obvious functions.  
 
WIDTH = 221 
HEIGHT = 100; 
 

def create_pileup_images(candidate_variants): 
  for candidate in candidate_variants: 
    for biallelic_variant in split_into_biallelics(candidate): 
      start = biallelic_variant.start - (WIDTH-1) / 2 
      end = WIDTH - span_start 
      ref_bases = reference.get_bases(start, end) 
      image = Image(WIDTH, HEIGHT) 
      row_i = fill_reference_pixels(ref, image) 
      for read in reads.get_overlapping(start, end): 
        if row_i < HEIGHT and is_usable_read(read): 
          add_read(image, read, row_i) 
          row_i += 1 
      yield image 
 

def fill_reference_pixels(ref, image): 
  for row in range(5): 
    for col in range(WIDTH): 
      alpha = 0.4 
      ref_base = ref[col] 
      red = get_base_color(ref_base) 
      green = get_quality_color(60)   # The reference is high quality 
      blue = get_strand_color(True)   # The reference is on the positive strand 
      image[row, col] = make_pixel(red, green, blue, alpha) 
  return 5 
 

def add_read(image, read, row_i): 
  # Don't incorporate reads with a low quality base at the call position. This 
  # function still returns true because the image isn't yet full. 
  # base_quality_at_call_position() returns the quality of the base aligned to 
  # our call.start, or 255 if no bases are aligned there. 
  if base_quality_at_call_position(read) < MINIMUM_BASE_QUALITY: 
    return 
 

  for ref_pos, read_pos, cigar_elt in per_base_alignment(ref, read): 
    read_base = None 
    if cigar_elt in {'D', 'I'}: 
      col = ref_pos - 1 
      read_base = INDEL_ANCHORING_BASE 
    elif cigar_elt == 'M': 
      col = ref_pos 
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      read_base = read.bases[read_pos] 
 

    if read_base: 
      quality = min(read.quals[read_pos], read.mapping_quality) 
      alpha = get_base_alpha(read_base, ref[col], read, call) 
      red = get_base_color(read_base) 
      green = get_quality_color(quality) 
      blue = get_strand_color(read.is_on_positive_strand) 
      image[row_i, col] = make_pixel(red, green, blue, alpha) 
 

def make_pixel(red, green, blue, alpha): 
  return RGB(int(alpha * red), int(alpha * green), int(alpha * blue)) 
 

def get_base_alpha(read_base, ref_base, read, call): 
  # read_supports_alt_allele() returns True if the read supports the alt_allele. 
  # This is implemented by associating each alternative allele in our candidate 
  # variants with a list of the names of the reads that contained that allele. 
  alpha1 = 1.0 if read_supports_alt_allele(read, call.alt_allele) else 0.6 
  alpha2 = 0.2 if read_base == ref_base else 1.0 
  return alpha1 * alpha2 
 

def get_base_color(base): 
  base_to_color = {'A': 250, 'G': 180, 'T': 100, 'C': 30} 
  return base_to_color.get(base, 0) 
 

def get_quality_color(quality): 
  return int(254.0 * (min(40, quality) / 40.0)) 
 

def get_strand_color(on_positive_strand): 
  return 70 if on_positive_strand else 240 
 

def is_usable_read(read): 
  return (read.has_alignment and 
          not (read.is_duplicate or read.failed_vendor_quality_checks or 
               read.is_secondary or read.is_supplementary) and 
          (not read.is_paired or read.is_properly_placed) and 
          read.mapping_quality >= 10) 

 
The actual implementation of this code uses a reservoir sampler to randomly remove reads at 
locations where there's excessive coverage. This downsampling occurs conceptually within the 
reads.get_overlapping() function but occurs in our implementation anywhere where there's more 
than 10,000 reads in a tiling of 300 bp intervals on the chromosome. 

Deep learning 
 
DistBelief1 was used to represent models, train models on labeled images, export trained 
models, and evaluate trained models on unlabeled images. We adapted the inception v2 
architecture to our input images and our three-state (hom-ref, het, hom-alt) genotype 
classification problem. Specifically, we created an input image layer that rescales our input 
images to 299 x 299 pixels without shifting or scaling of our pixel values. This input layer is 
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attached to the ConvNetJuly2015v22 CNN with 9 partitions and weight decay of 0.00004. The 
final output layer of the CNN is a three-class Softmax layer with fully-connected inputs to the 
preceding layer initialized with Gaussian random weights and stddev of 0.001 and a weight 
decay of 0.00004. 
 
The CNN was trained using stochastic gradient descent in batches of 32 images with 8 
replicated models and RMS decay of 0.9. For the the Platinum Genomes, Precision FDA, 
NA12878 replicates, mouse and genome build experiments multiple models were trained (using 
the product of learning rates of [0.00095, 0.001, 0.0015] and momenta [0.8, 0.85, 0.9]) for 80 
hrs or until training accuracy converged, and the model with the highest accuracy on the training 
set selected as the final model. For the multiple sequencing technologies experiment, a single 
model was trained with learning rate 0.0015 and momentum 0.8 for 250,000 update steps. In all 
experiments unless otherwise noted the CNN was initialized with weights from the imagenet 
model ConvNetJuly2015v22. 

DeepVariant inference client and allele merging 
At inference time each biallelic candidate variant site represented as a pileup image is 
presented as input to the trained CNN. After a forward pass through the network a three-state 
probability distribution is returned. These probabilities correspond to the biallelic genotype 
likelihood states of {P(homozygous reference), P(heterozygous), P(homozygous variant)} and 
are encoded directly in the output VCF record as the phred scaled GL field. Variant calls are 
emitted for all sites where the most likely genotype is either het or hom-alt with at least a Q4 
genotype confidence. Finally all biallelic records at the same starting position are merged into 
multiallelic records to facilitate comparisons with other datasets. 

Genome in a Bottle human reference datasets 
 
We used version 3.2.1 of the Genome in a Bottle reference data3. We downloaded calls in VCF 
format and confident called intervals in BED format from: 
 

● NA12878: 
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.2.1/ 

● NA24385:  
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv
3.2.1/ 
 
The VCF files were converted to Global Alliance for Global Health (GA4GH) protocol buffer 
format but otherwise were used without further modification. 

Evaluating variant calls 
Truth variants and confident reference intervals were parsed from the Genome in a Bottle or 
other ground standard datasets from the VCF and BED files for their respective samples. Truth 
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variants outside the confident intervals were removed. The evaluation variants were loaded and 
variants marked as filtered or assigned homozygous reference genotypes were removed. 
Metrics such as the number of SNPs, number of Indels, insertion / deletion ratio, heterozygous / 
homozygous non-reference ratio, and transition / transversion ratio (Ti/Tv) were calculated from 
all remaining evaluation variants.  
 

Evaluation variants were matched to truth variants if they start at the same position on 
the same chromosome. To compute genotype concordance, we added to the list of matched 
pairs of evaluation / truth variants all of the unmatched evaluation variants that overlap the 
confidence intervals with a "virtual" homozygous reference genotype sample. The number of 
matching genotype is defined as the number of pairs where the genotype alleles of the 
evaluation variant and truth variant are equal, independent of order. From this we compute the 
genotyping concordance as: 

 
Genotype concordance = # matching genotypes / # of paired evaluation and truth 

variants 
 

The number of matched pairs is counted as the number of truth positives. Any truth 
variants without a matched evaluation variant are counted as false negatives. Any unmatched 
evaluation variants that occur within the confident intervals are counted as false positives. From 
the number of true positives (TP), false negatives (FN), and false positives (TP) we compute the 
sensitivity, PPV, and F1 as:  
 

Sensitivity = TP / (TP + FN)  
PPV = TP / (TP + FP) 
F1 = 2 TP / (2TP + FN + FP) 

 
Our evaluation metrics fall between the tolerant hapdip metric4 and the strict vcfeval5 metrics. In 
particular, our sensitivity and PPV metrics emphasize discriminating between variant and 
reference sites, allowing errors in the determination of the exact variant alleles and genotypes. 
These errors are tallied separately as an allelic error rate and a genotyping error rate. Though 
we believe this separation is informative and valuable for understanding the types of errors that 
occur in a variant callset, we appreciate the approaches pursued by other evaluation methods. 

GATK pipeline 
For all GATK6 analyses (except the Platinum Genomes analysis, see below) we used the Verily 
production GATK pipeline: 

Versions 
Reference: hg38.genome.fa 

dbSNP: v146 on b38 downloaded from NCBI 

1000 Genomes Phase 3 callset: 

1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf downloaded 

from 1000G FTP 
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BWA version: 0.7.12 

Samtools version: 1.1 

Picard version: 2.1.0 

GATK version: 3.5 

BWA 

bwa mem -t 32 fastq1.gz fastq2.gz  
  | samtools view -u -  
  | samtools sort -@ 12 -O bam -T sorted.bam.sort_tmp -o sorted.bam - 

 

Mark Duplicates 

java -Xmx12G -jar picard.jar MarkDuplicates INPUT=sorted.bam 
OUTPUT=sorted.deduped.bam ASSUME_SORTED=true CREATE_INDEX=true 
MAX_RECORDS_IN_RAM=2000000 METRICS_FILE=MarkDuplicates_metrics.txt 
REMOVE_DUPLICATES=false 

 
After MarkDuplicates, all lanes for the sample are merged into a single BAM file with 
MergeSamFiles in picard. 

Indel realignment 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
RealignerTargetCreator -I sorted.deduped.merged.bam -known 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf -o 
realignment_targets.interval_list -nt 8 -mismatch 0.0 
 
java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
IndelRealigner -I sorted.deduped.merged.bam -targetIntervals 
realignment_targets.chr1.interval_list -known 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
--consensusDeterminationModel KNOWNS_ONLY -o sorted.deduped.merged.realigned.bam 

Base recalibration 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T BaseRecalibrator -I 
sorted.deduped.merged.realigned.bam -knownSites dbsnp_146.hg38.vcf -o 
base_recalibration.table -nct 32 --useOriginalQualities --disable_indel_quals -cov 
ReadGroupCovariate -cov QualityScoreCovariate -cov CycleCovariate -cov 
ContextCovariate 
 
java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T PrintReads -nct 8 -I 
sorted.deduped.merged.realigned.bam -BQSR base_recalibration.table 
--disable_indel_quals --emit_original_quals -o 
sorted.deduped.merged.realigned.recalibrated.bam 
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HaplotypeCaller 

java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -ip 50 -T 
HaplotypeCaller -I sorted.deduped.merged.realigned.recalibrated.bam -ERC GVCF -o 
g.vcf --annotation QualByDepth 
 
java -jar CommandLineGATK_deploy.jar -Xmx4G -R hg38.genome.fa -T GenotypeGVCFs -o 
raw_calls.vcf -nt 8 -D dbsnp_146.hg38.vcf --variant g.vcf 

 

VQSR 

java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T VariantRecalibrator 
--max_attempts 4 -input raw_calls.vcf 
-resource:ALL_1000G_phase3,known=false,training=true,truth=true,prior=12.0 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_146.hg38.vcf 
-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -mode SNP -nt 4 
-tranche 99.5 -recalFile snps.recal -tranchesFile snps.tranches -allPoly 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T ApplyRecalibration 
-input raw_calls.vcf -mode SNP --ts_filter_level 99.5 -recalFile snps.recal 
-tranchesFile snps.tranches -o recal.snps.raw.indels.vcf 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T VariantRecalibrator 
--max_attempts 4 -input recal.snps.raw.indels.vcf 
-resource:ALL_1000G_phase3,known=false,training=true,truth=true,prior=12.0 
1000G_ALL.wgs.phase3_shapeit2_mvncall_integrated_v5b.20130502.sites.hg38.vcf 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_146.hg38.vcf 
-an QD -an DP -an FS -an SOR -an MQRankSum -an ReadPosRankSum -mode INDEL -nt 4 
-tranche 99.0 -recalFile indels.recal -tranchesFile indels.tranches -allPoly 
 
java -jar CommandLineGATK_deploy.jar -Xmx20G -R hg38.genome.fa -T ApplyRecalibration 
-input recal.snps.raw.indels.vcf -mode INDEL -ts_filter_level 99.0 -recalFile 
indels.recal -tranchesFile indels.tranches -o final.vcf 

 

DeepVariant and GATK on Platinum Genomes NA12878 
We trained a deep learning model as described above using only the reads aligned to 
chromosomes 1 through 18 and evaluated variant calling accuracy on chromosomes 20 to 22 
using both our algorithm and the community gold standard GATK best practices pipeline. We 
reserved chromosome 19 for hyperparameter optimization of the deep learning model. We 
created a non-overfitted GATK callset in which training does not see the data from chr20-22 by 
excluding that data during the GATK VQSR step.  
 
For a comparison, we ran GATK v3.3 following Broad best practices as implemented by Google 
Cloud Genomics + Broad in the alpha version (see https://cloud.google.com/genomics/), run in 
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January 2016 on the NA12878 Platinum Genomes BAM file from 
https://cloud.google.com/genomics/data/platinum-genomes. 
 

Figure 2A details and additional analyses 
 
In both Figure 2A and Figure S1, DeepVariant and GATK calling performance is shown for the 
Genome in the Bottle benchmark sample NA12878 using 2x101 Illumina HiSeq data from the 
Platinum Genomes project. The GATK was run in two ways. In the first, GATK best-practices 
were followed and the variant filtering step (VQSR) was provided data for known variants on 
both the training and test chromosomes, allowing VQSR to use population variation information 
to better call variants on the test chromosomes. In the second, we removed all population 
variation information for the test chromosomes chr20-22, relying on the VQSR model learned 
only on the training chromosomes, which is more representative of the GATK's calling 
performance on novel variation. Variants were sorted by QUAL score for DeepVariant and 
VQSLOD for GATK. Variants that are filtered out in the VCF files are included in the ranking to 
give a more complete picture of the effectiveness of these ranking methods. This means that 
the curve includes all candidate variants seen by DeepVariant except those with a 
homozygous-reference genotype according to the CNN and everything emitted by GATK, 
including those filtered with LOW_VQSLOD (which, by definition, have a low VQSLOD score). 
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Figure S1: Receiver operating characteristic (ROC) curve for DeepVariant (red) and GATK 
(green, blue) calls for the Genome in the Bottle benchmark sample NA12878.  
 
Figure 2A and S1 are similar but emphasize different things. The precision-recall plot in Figure 
2A gives a better sense of how the end-to-end assay (variant calling) is performing, while the 
ROC curve in Figure S1 emphasizes the effectiveness of the ranking of true positives relative to 
false positives, independent of the number of true and false positive variants in each SNP and 
indel class. In NGS variant calling, a traditional ROC curve can be misleading and is shown 
here only for completeness. The first of two issues is that the set of false positives is defined as 
variant calls made into confidently homozygous reference regions by a specific calling method, 
and so usually differs between calling methods. The second issue is that there is no clear 
definition of specificity since every allele at every position is a potential true negative. As a 
consequence, ROC curves across methods are not directly comparable, and so cannot be used 
to assess the quality of a callset produced by one method relative to another. Precision-recall 
plot, on the other hand, can be safely compared across methods despite differences in their 
total number of false positives. 

DeepVariant vs. GATK on NA12878 replicates 
Libraries were prepared from 35 independent replicates of 1ug aliquots of purified genomic DNA 
isolated from GM12878.  During the library preparation process, samples were acoustically 
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sheared to target fragment lengths of 400bp before proceeding through SPRI-based size 
selection, end repair, a-tailing, adapter ligation, and a final SPRI-based cleanup.  The resultant 
libraries were quantified by Picogreen, Fragment Analyzer, and qPCR.  Sequencing was 
performed using a 2x150 paired-end runs on Illumina HiSeq X sequencers with a targeted 
sequencing depth of 30x per sample. 
 
Chromosomes 1-18 of the first eight sequenced replicates were used to train a single 
DeepVariant model by concatenating the labeled pileup images from each replicate into a single 
training set for DistBelief as previously described. Due to the timing of this experiment, version 
2.19 of the Genome in a Bottle reference intervals and variant calls were used to label the 
genotypes in the training images and to evaluate the quality of the resulting variant calls on held 
out chromosomes 20-22. The previously described Verily GATK pipeline was used to process 
each NA12878 sample independently. 

Training and generalization of DeepVariant models across 
genome builds 
 
DeepVariant was trained on data from human genome builds b37 and applied to b38. 80 hours 
of training was performed using data from chromosomes chr1-19 of the human NA12878 
sample and evaluated on the held out human chromosomes chr20-22 (Table S1). The model 
trained with read data aligned to b37 of the human reference and applied to b38 data had 
similar performance (overall F1 = 99.45) to one trained on b38 and then applied to b38 (overall 
F1 = 99.53) thereby demonstrating the generalizability of the model (Table S1). 
 
Supplementary Table S1: DeepVariant calling across genome builds 

Variants Training data Evaluation data PPV Sensitivity F1 

SNPs + indels b37 chr1-19 b38 chr20-22  99.93% 98.98% 99.45% 

 b38 chr1-19 b38 chr20-22  99.87% 99.21% 99.53% 

SNPs b37 chr1-19 b38 chr20-22  99.98% 99.23% 99.60% 

 b38 chr1-19 b38 chr20-22  99.93% 99.35% 99.64% 

Indels b37 chr1-19 b38 chr20-22  99.60% 97.35% 98.46% 

 b38 chr1-19 b38 chr20-22  99.42% 98.22% 98.81% 

 

Training and generalization of DeepVariant models across 
species  
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In order to evaluate the transferability of a DeepVariant model across species we devised the 
following experiment. We trained a model using the Platinum Genomes NA12878 read set 
(aligned to b38) and Genome in a Bottle ground truth labels as described previously. We then 
applied that model to call variants in the synthetic mouse strain 129S1_SvImJ from the Mouse 
Genome Project (MGP)7. For the sake of comparison we also trained models from the mouse 
read set using as ground truth the genotypes as provided by MGP. 
 
We downloaded the read files (BAM) and variant calls (VCF) for the synthetic mouse strain 
129S1_SvImJ from the MGP website (Table S2).  
 
Supplementary Table S2: Mouse dataset sources 

Sample Data Location 

129S1_SvImJ BAM ftp://ftp-mouse.sanger.ac.uk/REL-1502-BAM/129S1_SvImJ.bam 

 VCF A combed VCF of 
ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/mgp.v5.merg
ed.indels.dbSNP142.normed.vcf.gz and 
ftp://ftp-mouse.sanger.ac.uk/REL-1505-SNPs_Indels/mgp.v5.merg
ed.snps_all.dbSNP142.vcf.gz  

 REF GRCm38 from ftp://ftp-mouse.sanger.ac.uk/ref/GRCm38_68.fa 

 
The v5 of the mouse callset was created, according to this README, with the following 
procedure: 
 

Reads were aligned to the reference genome (GRCm138) using BWA-MEM v0.7.5-r406 
(Li and Durbin, 2009; Li, 2013). Reads were realigned around indels using GATK 
realignment tool v3.0.0 (McKenna et al., 2010) with default parameters. SNP and indel 
discovery was performed with the SAMtools v1.1 with parameters: 
 
  Samtools mpileup -t DP,DV,DP4,SP,DPR,INFO/DPR -E -Q 0 -pm3 -F0.25 –d500 
 
and calling was performed with BCFtools call v1.1 with parameters: 
 
  Bcftools call -mv -f GQ,GP -p 0.99 
 
Indels were then left-aligned and normalized using bcftools norm v1.1 with parameters: 
 
  bcftools norm -D -s -m+indels 
 
The vcf-annotate function in the VCFtools package was used to soft-filter the SNP 
and indel calls. SNP calling was performed for each strain independently. A single list of 
all polymorphic sites across the genome was then produced from all of the 36 strains' 
SNP calls. This list was then used to call SNPs again, this time across all 36 strains 
simultaneously, using the 'samtools mpileup -l' option. The calls from all 36 strains were 
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then merged into a single VCF file. All strain specific information was retained in the 
sample columns for each strain. For indels, the same approach was taken with the 
addition of the indel normalisation step after the initial variant calling. Information 
regarding the filtering of SNP and indel calls can be found in the VCF file 
headers in the '##FILTER' and '##source' lines. 

 
DeepVariant was run using the computational pipeline described above with all default settings. 
SNP and Indel mutations that were identified in the MGP ground truth set with genotype as 0/0 
for this specific mouse were given the hom-ref label and likewise for heterozygous and 
homozygous variants. No-called sites were ignored during model training.  
 
In order to protect against model overfitting, we divided our human and mouse genomes into a 
training set of chromosomes and an independent, held-out set of chromosomes (Table S3): 
 
Supplementary Table S3: Training and evaluation chromosomes 

 Training chromosomes Evaluation chromosomes 

Human NA12878 chr1-19 chr20-22 

Mouse 129S1_SvImJ chr1-17 chr18-19 

 
80 hours of training was performed using images prepared from the training chromosomes. 
After training the model was frozen and applied to call the variants from the read set. The 
resulting callsets were evaluated on variants on the held out chromosomes only (Table S4). As 
the Mouse project did not provide confident regions like the Genome in a Bottle project for 
NA12878, only non-reference variant calls that occur at a site present in the MGP with a 
genotype of homozygous reference are counted as false positives.  
 
Supplementary Table S4: Calling performance of DeepVariant on human and mouse datasets 

Variants Training data Evaluation data PPV Sensitivity F1 

SNPs + indels Human chr1-19 Mouse chr18-19 99.53% 97.07% 98.29% 

 Mouse chr1-17 Mouse chr18-19 99.90% 95.85% 97.84% 

SNPs Human chr1-19 Mouse chr18-19 99.98% 97.86% 98.91% 

 Mouse chr1-17 Mouse chr18-19 99.99% 99.10% 99.54% 

Indels Human chr1-19 Mouse chr18-19 96.41% 91.75% 94.02% 

 Mouse chr1-17 Mouse chr18-19 99.15% 73.80% 84.62% 

 

13 



 
Poplin et al. Supplementary materials for "Creating a universal SNP and small indel variant 
caller with deep neural networks" 
 

DeepVariant training on multiple sequencing technologies 
 
BAM files were downloaded from the Genome in a Bottle project FTP server (Table S5). After 
downloading the BAM files are fixed up as indicated and converted to GA4GH protocol buffer 
format for processing with DeepVariant. The conversion preserves all of the essential read 
information in the BAM. 
 
Supplementary Table S5: Multiple sequence technologies datasets 

Dataset Sample BAM FTP location Notes 

TruSeq exome NA12878 Nebraska_NA12878_HG001_TruSeq_Exome/NIST-hg
001-7001-ready.bam 

Exome 

10X GemCode 
34x WGS 

NA12878 10XGenomics/NA12878_phased_possorted_bam.bam Fixed BAM header 

10X Chromium 
75x WGS 

NA12878 10Xgenomics_ChromiumGenome/NA12878_GRCh37.
bam 

Fixed BAM header 

PacBio raw reads 
40x WGS 

NA12878 NA12878_PacBio_MtSinai/sorted_final_merged.bam Fixed BAM header 

Ion AmpliSeq 
exome 

NA24385 ion_exome/HG002_NA24385_SRR1767409_IonXpres
s_020_rawlib_24038.bam 

Exome; Fixed BAM 
header; Trimmed 
unneeded BAM tags 

HiSeq 60x WGS NA24385 NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI
_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d
5.60x.1.bam 

 

HiSeq 31x WGS NA24385 NIST_Illumina_2x250bps/novoalign_bams/HG002.hs3
7d5.2x250.bam 

 

SOLID 85x WGS NA24385 NIST_SOLiD5500W/alignment/5500W_HG002_merge
d.b37.bam 

Trimmed unneeded 
BAM tags 

FTP paths are given relative to: 
● For NA12878: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/ 
● For NA24385: 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/  
 
Once converted to GA4GH format, candidate variants are identified using the read bases, 
qualities, QC flags, and mapping information in the original BAM file. The optional local 
assembly step was skipped for all datasets, as the assembler is tuned for Illumina data. The two 
exome datasets were trained and evaluated using confident intervals derived from the 
intersection of the Genome in a Bottle confident intervals and the RefSeq8 exon intervals.  
 

For training of each dataset, candidate variants were identified using default parameters* 
as well as emitting reference "variants" at ~0.1% of randomly selected reference bases. Pileup 

14 

http://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data//AshkenazimTrio/HG002_NA24385_son/
https://paperpile.com/c/M2rhlP/AaQ8


 
Poplin et al. Supplementary materials for "Creating a universal SNP and small indel variant 
caller with deep neural networks" 
 

images were created for each candidate variant and labels assigned using Genome in a Bottle 
truth variants and intervals for the dataset's sample (see methods for details). These labeled 
images were filtered to only variants occurring on chromosomes 1-19, leaving 20-22 as an 
independent evaluation set. Training of the deep learning model was carried out for 250,000 
steps starting from a model trained against chr1-19 variants from eight NA12878 replicates (see 
section DeepVariant vs. GATK on NA12878 replicates for details). After training completed the 
model was frozen and used to evaluate genotype likelihoods as the "technology-trained model". 
 

For evaluation, candidate variants were identified using default parameters* and pileup 
images were created for each candidate variant on chromosomes 20-22 only. The 
technology-trained model for the dataset was applied to these images to compute genotype 
likelihoods and the likelihoods were combined with the candidate variants to create final variant 
calls (see methods for details). The candidate variants and the final callset were evaluated 
again using only chr20-22. 
 

*The RAW PacBio read set was called with a slightly different parameter for the 
minimum fraction required for an alternate indel allele; we require a fraction of 0.18 rather than 
the default of 0.12 for all other datasets. At 0.12 over ~150M candidates are found, while at 0.18 
we only have ~25M variants to consider. Using 0.18 significantly reduces indel sensitivity, from 
~60% with 0.12 to around ~40% with 0.18, but is required to make the creation of pileup images 
tractable in the current implementation. The SNP threshold remains at 0.12 and produces a 
highly sensitive set at >99%. 

Comparison of DeepVariant exome calls with technology-specific variant 
calls submitted to Genome in a Bottle  
 
We sought to compare the quality of DeepVariant calls to baseline callsets for each technology. 
As we already established the relative performance of DeepVariant and GATK on Illumina WGS 
data, we focused primarily on non-Illumina WGS and exome datasets. The challenge is that 
each technology uses a different data processing pipeline needing dataset-specific settings that 
are often not documented to produce optimal results. Therefore, we first sought SNP and indel 
variant calls submitted to Genome in a Bottle by the read data depositors as these are likely 
already optimized for calling performance on that technology. If not available, we applied the 
Verily GATK pipeline or, when that proved impossible, samtools, as an alternative variant calling 
option. The dataset and comparison callsets are given in Table S6. 
 
It's important to recognize that these are apples-to-oranges comparisons. There is no way to 
ensure information on our evaluation chromosomes were not used to tune the submitters calling 
pipelines. Given that many tools, like the GATK, make direct use of population variation 
information to aid in filtering variants, we should expect these callsets to be biased towards 
higher quality calls. Additionally, in some cases the submitters have used more information than 
DeepVariant to make calls, such as Ion AmpliSeq exome calls which used four lanes of data 
rather than our single lane. Finally, the callsets can differ in what regions of the genome were 
called, an acute issue for the exome datasets. To mitigate differences in exome intervals, we 
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further intersected our RefSeq intervals down to those overlapping the calling intervals provides 
for the two exome datasets. Nevertheless, we feel that these issues are outweighed by the 
value of natural comparison points to assess the effectiveness of DeepVariant on these 
technologies. 
 
Supplemental Table S6: Comparison datasets for Genome in a Bottle analysis 

Dataset Comparator callset Comparator notes 

TruSeq exome ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
Nebraska_NA12878_HG001_TruSeq_Exome/NIST-hg
001-7001-ensemble.vcf and GATK 

An ensemble callset that includes 
calls from the GATK 
HaplotypeCaller, 
UnifiedGenotyper, and FreeBayes 
over the TruSeq exome targeted 
regions (BED). 

10X GemCode 
34x WGS 

None No callset submitted to Genome in 
a Bottle. Focusing on Chromium 
callset from 10x  instead. 

10X Chromium 
75x WGS 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/1
0Xgenomics_ChromiumGenome_LongRanger2.1_093
02016/NA12878_hg19/NA12878_hg19_phased_varia
nts.vcf.gz and GATK 

 

PacBio raw reads 
40x WGS 

Samtools; we could not get GATK to run on this 
dataset. 

Only structural variant calls were 
submitted for the Pacific 
BioSciences WGS data. 

Ion AmpliSeq 
exome 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/Ashkenazi
mTrio/analysis/IonTorrent_TVC_03162015/AmpliseqE
xome.20141120.NA24385.vcf and GATK 

variant calls from the Torrent 
Variant Caller (VCF) made on the 
Ion effective intervals (BED). The 
TVC caller used all four lanes of 
Ion torrent exome data, but 
DeepVariant made its call only 
one a single lane of data. 

HiSeq 60x WGS None Not analyzed as DeepVariant 
performance already 
well-established on Illumina data 

HiSeq 31x WGS None Not analyzed as DeepVariant 
performance already 
well-established on Illumina data 

SOLID 85x WGS GATK No calls submitted to Genome in a 
Bottle for NA24385. There appear 
to be no maintained variant callers 
for SOLID data. 

 
Samtools calling on PacBio raw reads 40x WGS 

#!/bin/bash 
 
# Only calling on chromosomes 20, 21, and 22. 
CHROMS=('20:1-20,000,000' '20:20,000,000-40,000,000' '20:40,000,000-63025520' 
'21:1-20,000,000' '21:20,000,000-40,000,000' '21:40,000,000-48129895' 
'22:1-20,000,000' '22:20,000,000-40,000,000' '22:40,000,000-51304566') 
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# Run calling on each interval separately. 
parallel -j ${#CHROMS[@]} "samtools view -u NA12878_PacBio-RAW.bam {} \ 
  | samtools mpileup -ugf GRCh37.genome.fa - \ 
  | bcftools call -vmO z -o NA12878_PacBio-RAW.samtools.calls.{}.vcf.gz" ::: 
${CHROMS[*]} 
 
# Conconcate parallel calling VCFs. 
bcftools concat -a -O z --rm-dups all \ 
 NA12878_PacBio-RAW.samtools.calls.??\:*.vcf.gz \ 
 -oNA12878_PacBio-RAW.samtools.calls.vcf.gz 
tabix NA12878_PacBio-RAW.samtools.calls.vcf.gz 
 
# Filter recommendations taken from bcftools website with depth of 40x. 
bcftools filter -O z -o NA12878_PacBio-RAW.samtools.calls.filtered.vcf.gz \ 
  -s FAIL -i'DP < 67 && QUAL > 10 & DP >= 3' --SnpGap 3 \  
  NA12878_PacBio-RAW.samtools.calls.vcf.gz 
tabix NA12878_PacBio-RAW.samtools.calls.filtered.vcf.gz 

 
 
Table S7 shows the PPV, sensitivity, and F1 metric of the DeepVariant and comparator callsets 
on the previously-indicated regions on the held-out chromosomes 20-22. For exomes the 
evaluation interval is the intersection of the targeted regions with the RefSeq intervals on 
chromosomes 20-22. 
 
Supplementary Table S7: Comparison of technology specific callsets and DeepVariant for SNPs 
+ indels combined 

Data Caller Sensitivity PPV F1 

Ion AmpliSeq exome DeepVariant 94.12% 99.79% 96.87% 

 TVC 96.47% 98.11% 97.28% 

 GATK 93.24% 19.15% 31.78% 

Illumina TruSeq exome DeepVariant 93.01% 99.39% 96.09% 

 Ensemble 92.92% 98.08% 95.43% 

 GATK 91.02% 99.30% 94.98% 

10X Chromium 75x WGS DeepVariant 98.73% 99.91% 99.32% 

 Long-ranger 98.13% 98.26% 98.19% 

 GATK 99.08% 94.62% 96.80% 

PacBio raw reads 40x WGS DeepVariant 88.51% 97.25% 92.67% 

 samtools 89.34% 40.89% 56.10% 

SOLID 85x DeepVariant 76.62% 99.01% 86.39% 
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 GATK 73.91% 84.26% 78.75% 

  
As noted in the "evaluation of variants" section, the difference between evaluation methods may 
be exaggerated in this multiple sequencing technologies experiment. We intentionally chose to 
use the already aligned BAM files as provided by Genome in a Bottle in order to highlight the 
robustness of DeepVariant to variation in input alignments without applying local assembly, 
which may perform better on Illumina read than other NGS read types. One consequence of this 
choice, though, is that DeepVariant will only call alleles present in the CIGAR elements of the 
BAMs, which vary in their accuracy depending on the sophistication of the aligner and 
post-alignment cleanup steps performed during processing by each technology's data depositor. 
The DeepVariant CNN is sufficiently robust to train accurate genotyping models even with 
errorful allele determination, as evident by the high PPV values, but inevitably produces variant 
calls with incorrect alleles at any site where the reads have been aligned with an incorrect allele 
in their CIGAR elements. As noted in the main text, better pre-processing via tools like the 
GATK's IndelRealigner6 or technology-agnostic local assembly will improve the alleles emitted 
by DeepVariant.  Additionally, it is possible that our comparator callsets may use variant 
representations that are differentially penalized by our evaluation tool. Because of these 
concerns, we ran both our internal evaluation tool and vcfeval (version 3.6.2) and note that the 
results are quite concordant between both methods. The full output is available as a 
supplementary datafile. 
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