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1 Derivation of Eq. (5) in the main text — turnover rate
for mixed inhibition with generally distributed transition

times
on Tcat
_‘ ES =) F | P
off
0ff1 LT Tof || 75!
ESI

Figure S1: A generic scheme for mixed inhibition at the single enzyme level. Transition rates
were replaced by generally distributed transition times.

A generic scheme describing enzymatic catalysis under mixed inhibition is illustrated in Fig. S1.
We now analyze this scheme to derive an expression for the enzymatic turnover rate, and will
later on show that results in the main text follow as special cases. Consider a single enzyme
that is found initially in its free state (E), and further consider the random time it takes the
enzyme to reach state (E + P) having started there. We refer to this time as the turnover time
of the reaction, denote it by T3,,, and further note that it is given by

Fgs if Ty, < TOE;LI
Tturn = FE - WE + (1)
Fgr if T,y > T(ﬂI.

Here, Fg, Frs, and Fg; denote the random times taken to reach the (E + P) state, for the
first time, having started at states (E), (ES), and (EI) correspondingly. In addition, Ty, is
the random time taken to bind a substrate molecule, TET is the random time taken to bind
an inhibitor molecule, and Wg = min(T,,, TEl) is the random time spent at state (E) prior
to its departure. What determines the nature of the transition from state (E) to one of its
two neighboring states is whether binding of a substrate molecule preceded that of an inhibitor
molecule, T, < TEL or vice versa T,,, > TE!. In the former case Ty ., = Wg + Fgg while in
the latter we have Tty = Wg + Fgr. We thus see that T}, cannot be determined in isolation
as it also requires knowledge of Fgs and Fgj.

To proceed, let us first note that Fg; is related to other times in the problem via the following
relation

FEI = WEI + Tturn = OL;}“I} + Tturn P (2)

where we noted that Wg; = Tﬁ? since the random time spent in state £ prior to its departure
is simply the time it takes for the inhibitor to unbind the enzyme. In addition, we see that

0 lf Tcat < Toff ) T£LSI
FES’ = WES + Tturn if TOff < Tcat7 ToEnSI (3)

Frsr if T(ELSI < Toff7 Teat

where T, is the random time taken to complete the catalytic step, and T,;; and TZ5! are

respectively the random times taken for the substrate to unbind and the inhibitor to bind the
(ES) state. Finally, we note that



Fgsi = Wgsi + Fgs =T + Fis, (4)

where we have again noted that Wggr = Tf}?l since the random time spent in state EST is
simply the time taken for the inhibitor to unbind this state.

Equations (1-4) completely specify the set of relations between the random times Tyyn, Frr, FEs
and Fggy. Taking expectations we then have a set of four equations

(Trurn) = (Wg) + Pr (Ton < T5!) (Fes) + Pr (Ton > T (Fer)

(Fpr) = (Tof}) + (Tourn)

(5)
(Fps) = (Wes) + Pr (Togs < Teat s THZ") (Tourn) + Pr (T5" < Togy , Teat) (Fusi)
<FESI> = <T0Ef§1> + <FES> )
for the unknowns (Tyyrn) , (FEI), (FEs) and (Fgsr), and solving for (Tiy.r) gives
(1—Pr(TE <Tops Teat) ) (W) + (Wes)
P’I‘(Tcat <Toff,T£LSI)PT(T0n<TOE;‘LI) PT(Tcat <Toff ,TOL:lSI)
(Tourn) = " (1=Pr(Ton<TH!)) (1—Pr(TES <Top s, Tear) ) (T5) (6)

Pr(Teat<Topf TEST)Pr(To, <TEI)

Pr(T55" <Tops Teat){To75")
Pr(Teat<Toys, TEST)

The right hand side of Eq. (6) depends on certain probabilities and expectations values but
these can all be computed given information on the underlying transitions times which govern
the problem. Indeed, with fx(¢) denoting the probability density of a random variable X and
Fx(t)=Pr(X >t)=1- fg fx(#')dt’" as the complimentary cumulative distribution function
of this random variable, we have

Pr(TEST < Topp,Tear) = [;° fres: (t) Fr,,, (t) Pr,,, (t) dt,

Pr(Tear < Togs, TEST) = [° fr.a, (t) Fr,,, (t) Fres: () dt, (7)

Pr(Ton <TEN) = [07 fr,, (t) Fre: (t)dt.

The mean times (Wg) and (Wgg) can also be written in a similar way exploiting the fact
that the time spent at a state is a minimum over the occurrence times of competing processes
governing the departure from this state. For example, Wg is nothing but a minimum over T,
and TEI. We thus have Fyy, (t) = Pr(Wg > t) = Fr, (t) FTO%I (t) and hence

We) = [ B0t = [ Fr,, () Frg (0)dr. @
0 0
Similarly, we find that

W%QAme@ﬁAwﬂmﬁﬁmﬁ@E@@ﬁ- (9)

1.1 Simplified expressions for the case of exponential binding times

The result in Eq. (6) can be simplified by taking advantage of the fact that many substrate
molecules independently compete for the binding of the same enzyme. And so, while the stochas-
tic time characterizing the binding of a single substrate molecule may be complex, the amalga-
mation of many independent binding attempts will follow Poisson statistics. This in turn means
that the binding time T,, comes from an exponential distribution with density



I, (8) = kon [S] e~ konlSIt (10)

Using the same rational for the binding time of the inhibitor to the enzyme, TZ! and to the
enzyme substrate complex, TE5T gives

Frei(t) = KEL (1) e~ kom0t

on

fT(ngI (t) — kfnSI [I] e*kff[[l]t,

for the probability density functions of these random variables.

1.1.1 Turnover in the absence of inhibition

In the absence of inhibitor molecules the probability of binding one is zero, and we thus have
Pr (Tfﬁl < Toff,Tcat) =0, Pr (T,m < TOI”;I) =1,and Pr (th < T£SI,Toff) = Pr(Teat < Togf)-
It then follows that the mean time spent in state F is simply the time it takes a substrate to
bind the enzyme, (Wg) = (T,,), and Eq. (6) becomes

<Ton> + (mm (Tcata Toff)> )

Turn = 12
< ! > Pr (Tcat < Toff) ( )
Equation (10) then implies that (T,,)~ " = kop [S] and rearmament of (12) gives
1 min (Tear, Ty
<Tturn> < ( t ff)> (13)

T Pr (Toat < Togf) kon [S] | Pr(Tear < Topr)

Comparing the result in Eq. (13) to the classical Michaelis-Menten equation (Tjy.,) = 2= ﬁ +
1

Umaz’

we identify the constants

v _ Pr(Tca:<Tofs) _ I -{Tcat (t)F:Toff(t)dt
max = (min(Tcat»Toff» - JOOO FTcat (t)FToff (t)dt ’

(14)
— 1
Kon [‘000 FT(:a,t (t)FToff (t)dt ’

Ky =

1
kon(min(Teat;Tors))
and note that in order to get these expressions we did not make any assumptions on the distri-
butions of the catalysis time T¢,; and unbinding time T, .

1.1.2 Turnover with inhibition

To progress analysis in the case where inhibitors are present, we first note that Eq. (14) asserts
that

i T /Uma:r
t) F t)dt = 1
| I 0P, = e (15)
and - )
Fr.,, @) Fr,,, (t)dt = . 16
0 Teat ( ) Togy ( ) K, kon ( )
Using this fact, we define two normalized probability density functions fys (t) and fp (¢)
Im (t) = KmkonFTcat (t) FToff (t) )
(17)

fp (t) = %chat (t) FToff )

Umax

and their corresponding Laplace transforms fy (s) and fp (s)



fﬂf(s) = fooo eisthkOnFTcat (t) FToff (t) dtv
. B (18)
fP(S) = fooo e_St%chat (t) FToff (t)dt :

Umax

Using these definitions, and by use of Eq. (11), Eq. (7) can be simplified and written in the
following form

ESI

0o _pESI ESI[] ~
Pr (TOEnSI < ToffaTcat) = ];g:lk([i] fo e Fon [I]th (t) dt = ’;g:nk([i] fM (koEnSI [ID )

Pr (Tur < Togy, TEST) = gimas [ k0T Ut fp (1) dt = pmee fo (KEST(T)) . (19)
EI\ _ _ konlS]
Pr(Ton <T53') = moqstnermm -

Doing the same for Eqgs. (8-9) we find

1
— e 2
W) = g ST+ kBT 2
(Wis) = —— /maﬁ?Wnuwﬁ: L (kEST (D)) (21)
Kmkon 0 Kmkon on
Substituting Eq. (19-21) back into Eq. (6) the latter can be simplified to give
Ko (1 REL(TEN ) 4y (1+ REST(TES) 1) B (1)
<Tturn> = v [S] + v ’ (22)
where
ESI ~
)
A1) = —EnFen TV , (23)
Ip (kon [I])
and

fo (KESTT
B([I]) = w (24)

fP (kon [ID

Equations (23-24) coincide with Eqs. (M3-M4) in the methods section of the main text. Re-
—1 —1

Cauing that <Tturn> = ]-/kturn; KEI - (kfnl <TOEfIf>) 5 and KESI = <kOEnSI <T£‘c§[>> , we
see that Eq. (22) coincides with Eq. (5) in the main text, and we will now show that all of the
results in the main text could be derived from it.

2 Proof that Eq. (5) in the main text reduces to Eq. (1)
when all transition times are exponentially distributed

When all the transition times in Fig. S1 are exponentially distributed Egs. (10-11) remain valid,
and in addition we have



chat (t) = kcate_kcat,t ,

fToff (t) = kOffe_kofft’

(25)
Frzs (= Kty
_LESI
Frgip (0 = K,
for the probability density functions of T¢q¢, Tosf, Tf}lf, and Tf}?l . We then find that
o0 _ oo k(.a
Pr (Tear < Topyp) = / JTowe (t) Fr, ), (1) dt = / egre Featte Rosstqy — — Tcat ,  (26)
0 ] 0 koff + kcat
and
oo B o) 1
min (Toat, Tors)) = Fr.., (t)Fr, .. (t)dt = e Reatte=horstgy — — — (27
(min (Tt T ) = [ Pree () Pr, 0t = [ o @
from which it follows that
_ PT(TCat<Toff) —
Umazx = i (Teat Tor 1)) keat
(28)
_ 1 _ korrtkeat
Km - kon<min(TcataToff)> - kon :
In addition, from Eqgs. (17-18) we now have
r ESI _ kosstkeat 00 _KESIE —keart ,—ko _ kogrtkeat
Far (kT 1)) = =t keon [ e For MlteReortemker st dt = gt ierry
(29)

kofftkcat k

f (LESI _ " kon  Mom oo _gESI[q]t —kecatt p—kosst gy — _ Forftkear
fe(kyy " [1]) = e fo e keare e At = o R TREST -

Substituting the above back into Eq. (23-24) we conclude that

ko kear + KEST[I kKESIIT ko kea
A(]) = Kers & kear & Ko H{_ on ] g T Fear ]:17 (30)
koff + kcat koff + kcat koff + kcat + kon [I}
and
B([I]))=1. (31)
Equation (25) moreover asserts that k2, = 1/ <T£I§> and kF5H =1/ <T£;§I >, which in turn
means that
ETI ESI
ETRE D
Tiurn) = - Tl = y 32
< k > VUmax [S] + Umax ( )

and we see that the result in Eq. (32) coincides with Eq. (1) in the main text.



3 Derivation of Eq. (2) in the main text — turnover rate for
competitive inhibition with generally distributed transi-
tion times

Competitive inhibition can be seen as a special case of mixed inhibition in which the binding
rate of the inhibitor to the enzyme-substrate complex is zero (k£ = (). Keeping in mind Egs.
(15-17), and the definition Eq. (18), we see that

Pkt (1) =0) = [§° Kmkon Pr,,, (t) Fr,,, () dt = [§° far(t)dt =

- (33)

frkg? 1) = 0) = [J° Bmben fr,, (t) Pr,,, ()dt = [ fp(t)dt =
and thus have

A(KESTI=0) =B (k5P [I=0) =1. (34)
Equation (22) then becomes
Ko (L4 REL(TENM) 1 4
Tyurn) = T ’

which coincides with Eq. (2) in the main text.
4 Derivation of Eq. (3) in the main text — turnover rate

for uncompetitive inhibition with generally distributed
transition times

Uncompetitive inhibition can also be seen as a special case of mixed inhibition. Here, the
binding rate of the inhibitor to the free enzyme is zero (kZ! = 0), and since A[I] and B[I] do
not dependent on kZ! Eq. (22) reduces to

Ko A([I]) (1 +hgn ! <TESI> [I]) B([1))

Umazx [S] Umax

<Tturn> = ) (36)

which coincides with Eq. (3) in the main text.

5 The two-state model

The two state model described in the bottom panel of Fig. 4 in the main text is a special case
of the more general scheme for uncompetitive inhibition that is described in the top panel of
the same figure. Indeed, the two can be shown to coincide by allowing the catalysis time in the
general scheme to come from a distribution whose density is

e '

chat( ) pkcate catt + ( )kcate Feat (37)

and otherwise taking all transition times to be exponentially distributed with proper rates. To
see this, note that in the two state model the ES complex can be found in one of two states:
ES, or ES;. However, these states have the same substrate unbinding rate, ks ¢, and inhibitor
binding rate, kZ5![I], and only differ in their catalytic rates which are correspondingly given by

kD) and £ )

ot cat- Moreover, a transition from the free enzyme E occurs with rate k,,[S] and leads



to ES7 with probability p and to ESs with probability 1 — p, and these states are reached with
the exact same probabilities after an inhibitor unbinds, with rate kffs}f , from the EST complex.
We thus see that ES; and ES; could be effectively merged into a single E'S state whose catalysis
rate is randomly drawn to be kcat with probability p and k:cat with probability 1 — p every time
this state is visited. This asserts that the probability density function of T, is given by Eq.
(37) above, and we further note that from the construction of the two state model it follows
that Ty, T s, 7251 and TOL}*?I are all exponentially distributed with rates ko, [S], koss, kET[1]

and kEfffl , respectively.

5.1 Derivation of explicit expressions for the functions A([I]) and
B([1)

With the above at hand we can derive explicit expressions for A ([I]) and B ([I]). We first note
that in the case of the two state model Eq. (18) can be written as

> e (ko Ul+hoss ) L1y (Rog s+l T
Frt(KESTII)) = Kooy [0 e~ (e Ukrs) (1) dt = Kyl - Tko‘;;ﬁfﬂfrm )y

ESI ~
fo(REST(I]) = Kmken [ ¢ (ko +kors)t pr (8 dt = Bmbon . fr (kops + kET(T)),
(38)
with
e [T 1) 1)
Frouo) = [ € (0t = pie b (1= p) g2 (39)
0 kcat +s kcat + 'S

standing for the Laplace transform of fr, (t). Substituting Eq. (38) into Eqs. (23-24) then
gives

_ Umax kioff
AW = G T REST (1) Koo <f o Urory + REST)) o [I]) ’ o
and
VUmax 1
BUD = G+ wEsT) <me< Fors + RESTT]) 1) ' )

To further proceed, we observe that in the case of the two state model Eq. (14) reduces to

) —kgt 3
S g (e I Al Kopg Frig, (Ross) Koy (PR +(1—p)k D) +E( K

Umaz = Yo e Foritdt | 1=Frg, (korr) (1—p)k D, +pk P, +koy s
(42)
K. = _ 1 — oy (R Ahos )k Hkos )
m Kon jo"o Fr,,. (t)e*kofftdt kon(l—chat(koff)) Kon ((1 p)kiat-"_p cat+k0ff>
Substituting Eq. (42) into Egs. (40-41) and making use of Eq. (39) we find
2
busr (= (= oy ) RS
Ay =1- L)
(1+) (i) (1o (i + ) s+ w00 00)
and
( .
B(I) =1~ (44)

p)p
+ P+
1 2 1 2

(k(l)t + kﬁ)f) (kors + k5! [I]))



It could now be observed that A([I]) and B([I]) are both monotonically decreasing functions
of the inhibitor concentration [I], and that at high inhibitor concentrations these functions
approach their asymptotic values

cat

2
koss(1—p)p (,(3(111 - k<2> >

A(ll] = 00) >~ 1 — : (45)
(i) (i) (4 )
and
2
- (g - )
B([I] = o0) ~1— : (46)
(32 + i) (1)
6 Derivation of Eq. (4) in the main text — a condition

asserting the emergence of inhibitor-activator duality

To derive a general condition for the emergence of inhibitor-activator duality we start from the
expression for the mean turnover time in Eq. (22), and ask when will % (1]=0 < 07 In other
words, we would like to determine when will an increase in the concentration of the inhibitor,
from an initial value of zero, result in a decrease of the mean turnover time, and hence in an
increase of the turnover rate. To answer this question we first note that

ATrurn Kmkon (T3 KEST(TES!
<d[I] ) =0 = vmaj[s]ff> + Ui”ff>
K, [1]) I L dB(n), (47)
vmaw[S] 1= Vmaw _dll] I]1=0"

Now, since fys (s) and fp (s) are the Laplace transforms of the random variables M and P
defined by the normalized densities in Eq. (17) we have

Far (REST(I) =1 — KEST (1] (M) + O(([1)?), (48)

and
fo (KEST[D) =1 k55T (11 (P) + O([1]%), (49)
from which we find that

ESI
1 — ko [I]f (kESI [I]) LESI 1]
A([1)) = —Fater = 1+ k5T [1)(P) - == 1 O(11)) 50
() = —FaFa s sormey -t o), e
and
B([I 7f”f(kESI[])—1 KEST(11(P) — kEST (11 (M) + O([I]? 1
(1)) = 22 Won )y ST (1) (p) — KEST (1) (M) + O(IIT?). (51)
fp (RGP (T])
Plugging these equations back into Eq. (47) we find
ATy Kmkfl TOEI kESI TOESI
ol o = “mpem i) 4 2ot
(52)

I
ESI
Km <kun (P)— K,,LkU,L) + kEST(py_kEST(0f)

Umaz[s] Umax

10



Rearranging we see that da;‘[’ﬁ‘") lin=o0 < 0 if and only if

K kBl (TEL -
M + (1 + %) (Py+ (T3 - kml[s] < (M) . (53)

To make sense of this condition and some more progress we return to the definitions of (P)
and (M) and recall that these are given by

(M) = K kon t-Fr,, (t)Fr,,, (t)dt, (54)
0
and Kok -
(P) =22 [t pr (0 Py, (00, (59)
max 0

which in turn means that they could be related to the life time, W]%S =min (Teat, Tosy), of the
enzyme substrate complex in the absence of inhibition. Indeed, recalling the definitions of K,
and vUp,q. in Eq. (14) we observe that

n f ca,(t)F o (t)
fp(t) = Enken g (t) Fr,,, (t) = ;{Tgﬁ;”

YUmax
(56)
= [{Teat Tear<Toy 3 () = frwoms— i py(E) )

where f{WgS|ESﬁE+P}(t) is simply the probability density function of the life time Wg given
that the stay in the E'S state resulted in product formation (catalysis occurred prior to unbind-
ing). This in turn means that

(P) = /0 t fiwems—repy(t)dt = (Wps|ES — E+ P) . (57)

Regarding (M), we first note that

Fyo_ (t) = Pr(Wgg >t) = Pr(min (Tea, Toss) > 1)

- - 58
:PT(Tcat>t)PT(Toff>t):FTmt (t)FToff (t), ( )

i.e., that the life time of the ES state (in the absence of inhibition) is larger than ¢ if and only
if neither catalysis nor unbinding occurred by that time. Equation (54) could then be written
as

Sl _ [Xt-Fr,, (t)Fr,, (t)dt [, t- Fyo_(t)dt
(M) = Kpkon t-Fr,, (t) Fr, (t) dt = =2 — oL = 22 )
0 ff (min (Teat, Toss)) <W]%S>
(59)
where we have once again used the definition of K, in Eq. (14). The nominator can be worked
out using integration by parts and we find

o 2 o1, 1, 1 0 \2
| Py, Ot = SRy, () +5 [ g, (Od = Jim | 58, 0 +§<(WES) ).
(60)

11



We now assume that fyyo (t) decays to zero “fast enough” in the sense that there exists some
€ > 0 such that tlggo {fWE;S (t)/t’(?’*a)} = 0. This condition asserts that tlggo {%t2ﬁ’wgs (t)} =
lim {%t2 17 fwe, (z)dz} =0 and that 5 [~ % - fyo _(t)dt = 5 <(W]%S)2> < 0. Substituting

t—o00

back into Eq. (59) we obtain

1 <(Wgs)2>

_ _ 1,0 2
(M) = 5y = 5 (W) (Vi +1) (61)
o2 (WO wo )N (wo )2
where CV2, = (WESQ) = <( Bs) > <2 bs) is the normalized variance, a.k.a coefficient of
WEgs <Wgs> <W19;s>

variation, of Ws.

Substituting Eqgs. (57) and (61) back into Eq. (53) we rewrite the condition for the emergence
of inhibitor-activator duality in terms of the mean, conditional mean, and fluctuations in the
life time of the E'S complex in the absence of inhibition

LWl (CVVQVgS + 1) >

kEIKm TfI
ERATIN) 4 (14 %) (WasIBS — B+ P)+ (TEST) - g

Rearranging and recalling that K, ko, = <Wgs>71 we get

(Tmiz) + (THF 0 |ES — E+P
< ff><;(cvvgvgs_l>+<l_<WEsl S—E+ >> <1+Km>7 (63)

(Wes) (Wgs) [S]
here (Thiz) = Yeafm (TELY . Finally, in th f titive inhibition k2! = 0
where (Tpiz) = w858 ( Tofy )- Finally, in the case of uncompetitive inhibition k,, = 0,
(Thniz) = 0, and one is left with
TESI 0
1 WO ES - E+P K,
<];f> 7<CVV%,0 —1)+ 1 (Wl _ 2\ (14 En (64)
Wgs) 2 BSs Wgs) 5]

which coincides with Eq. (4) in the main text.
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