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Supplementary Results 
Sensitivity analyses 
We explored several methods of sensitivity analyses to examine how model predictions change 
with different thermal response assumptions. Because no temperature-sensitive vector 
competence or extrinsic incubation period (EIP) data were available for CHIKV or ZIKV, we 
were particularly interested in the R0 model sensitivity to the thermal responses for these traits. 
We explored the impact of changes in b, c, and PDR by calculating R0 for all posterior parameter 
samples with those focal traits shifted in the following ways: entire curves shifted ±3°C and 
±5°C for all three traits, entire curves shifted ±3°C and ±5°C for each trait individually, and 
curves made 3°C wider or narrower without changing the mean for all three traits. We examined 
the impact of each modification on the thermal minimum, maximum, and optimum (T0, Tm, and 
Tpk) for R0. For Ae. albopictus, all shifts in trait thermal responses shifted Tpk by < 1°C, T0 by 
approximately the amount of the trait shift (e.g., +3°C for the models with the traits shifted by 
+3°C), and had little effect on Tm (Fig. S9). Similarly, for Ae. aegypti all models shifted Tpk by < 
2°C, T0 by less than or equal to the amount of the trait shift, and had little effect on Tm, with the 
exception of the -5°C trait shift, which reduced Tm by 5°C (Fig. S10). These analyses indicate 
that the optimal and maximum temperatures for transmission are robust to error in the vector 
competence and EIP thermal responses. By contrast, the minimum and maximum temperature 
for transmission may be sensitive to these trait thermal responses, so it is important to 
experimentally measure vector competence and EIP, particularly at low temperatures, for each 
mosquito and pathogen species pair of interest. 
 
We also used sensitivity analyses to characterize the degree to which the temperature response of 
each individual trait drives the overall temperature response of R0 (i.e., (1/ R0)(dR0/dX) for each 
parameter X). For both the Ae. aegypti and the Ae. albopictus models, we found that the PDR 
thermal response dramatically increased the response of R0 to temperature (Figs. S11-S12). The 
Ae. albopictus model was additionally sensitive to the thermal response of adult mosquito 
lifespan, which had a negative effect on the sensitivity of R0 to temperature (Fig. S11).  
 
We were interested in which trait’s thermal response was driving the difference in optimal 
temperature for Ae. aegypti versus Ae. albopictus transmission. To investigate this, we 
sequentially swapped thermal responses from one model to the other (e.g., calculated R0 with all 
Ae. albopictus trait thermal responses except one from Ae. aegypti and vice versa). Mosquito 
lifespan was the key driver in the difference between the two R0-versus-temperature models. 
Although the optimal temperatures for mosquito lifespan were similar, the thermal breadth was 
much narrower for Ae. albopictus than for Ae. aegypti. R0 is strongly limited by short mosquito 
lifespans at high temperatures, where viral extrinsic incubation is very rapid, so expanding the 
thermal breadth for this trait has a large effect on the optimum. 
 
Uncertainty analyses 
We estimated how uncertainty in the trait thermal responses contributed to uncertainty in R0 
versus temperature. First, we calculated the width of the 95% credible interval for R0 with all 
parameters sampled from their posterior distributions across temperatures. Then, we calculated 
the width of the 95% credible interval for R0 when each trait was sampled from its posterior 
distribution individually, while the remaining parameters were fixed at their posterior mean. We 
compared the width of the intervals when just one parameter was sampled from its posterior 
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distribution to the width when all parameters were sampled to calculate the relative contribution 
of each parameter to uncertainty at each temperature. For Ae. albopictus, mosquito lifespan (lf) 
contributed most to uncertainty from 24-35°C and transmission probability (b), followed by 
infection probability (c), contributed most to uncertainty from 16-24°C (Fig. S13). For Ae. 
aegypti, biting rate (a) contributed most to uncertainty from 29-35°C, transmission probability 
(b) contributed most to uncertainty from 13-28°C, and mosquito lifespan (lf), fecundity (EFD), 
and infection probability (c) all contributed substantially to uncertainty from 13-35°C (Fig. S14). 
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Fig. S1 
Thermal responses of Ae. albopictus and DENV traits that drive transmission (parameter names 
and data sources listed in Table S1). Informative priors based on data from additional Aedes spp. 
and flavivirus studies helped to constrain uncertainty in the model fits (see Materials and 
Methods; Table S3). Points are the data. Black solid lines are the mean model fits; red dashed 
lines are the 95% credible intervals. 
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Fig. S2 
Effects of relative humidity on relative R0 versus temperature for Ae. aegypti, assuming constant 
temperatures. Humidity increases R0 exponentially but does not affect the shape of the thermal 
response of R0 (i.e., minimum, maximum, or peak temperature). 
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Fig. S3 

Plots of the probability that R0 > 0 (GR0) versus the probability of transmission predicted from 
presence/absence model PA5, for different levels of percent tourism in GDP (TGDP) across 
different rows and population size (population) across different columns, at the median value of 
GDP (per capita GDP = $7274). Red lines: CHIKV and ZIKV. Blue lines: DENV. Lines are the 
mean model fits and shaded areas are the standard errors. Tick marks show the data. 
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Fig. S4 

Plots of R0 versus the log of incidence predicted from incidence model IM5, for different levels 
of percent tourism in GDP (pc TGDP) across different rows and of population size (pop) across 
different columns, at the median value of GDP (per capita GDP = $6516). Red lines: CHIKV and 
ZIKV. Blue lines: DENV. Lines are the mean model fits and shaded areas are the standard 
errors. 
  



 
 

11 
 

 
Fig. S5 
Map of predicted temperature suitability for virus transmission by Ae. albopictus (A) and Ae. 
aegypti (B). Color indicates the consecutive months in which temperature is permissive for 
transmission (predicted R0 > 0) for Aedes spp. transmission. Red, minimum likely range (> 
97.5% probability that R0 > 0), purple, median likely range (> 50% probability that R0 > 0), teal, 
maximum likely range (> 2.5% probability that R0 > 0). Black line indicates the CDC Aedes spp. 
range estimates in the United States. Model suitability predictions combine temperature mean 
and 8°C daily variation and are informed by laboratory data (Figs. 1, S1) and validated against 
field data (Fig. 3). 
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Fig. S6 
R0 versus temperature models for Ae. aegypti (dark blue line) and Ae. albopictus (light blue line) 
and models of DENV transmission by Ae. aegypti based on the thermal responses listed in three 
previous studies: Wesolowski et al. (1) (dashed gray line), Morin et al. (2) (wide dashed gray 
line), Liu-Helmersson et al. (3) (dash-dotted gray line), and Johansson et al. (4) (dotted gray 
line).  
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Fig. S7 
Top, uninformative prior model of Ae. albopictus R0 versus temperature model mean (black line) 
and 95% highest posterior density intervals (red dashed lines), for constant temperatures. 
Bottom, histograms of the minimum, maximum, and optimum temperatures for transmission. 
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Fig. S8 
Top, uninformative prior model of Ae. aegypti R0 versus temperature model mean (black line) 
and 95% highest posterior density intervals (red dashed lines), for constant temperatures. 
Bottom, histograms of the minimum, maximum, and optimum temperatures for transmission. 
  

10 15 20 25 30 35 40

0.
0

0.
5

1.
0

1.
5

Temperature (C)

re
la

tiv
e 

R
0

Temp of min R0

Fr
eq

ue
nc

y

14 16 18 20 22 24

0
20

0
40

0
60

0
80

0
10

00

Temp of peak R0

Fr
eq

ue
nc

y

27 28 29 30 31

0
50

0
10

00

Temp of max R0

Fr
eq

ue
nc

y

28 30 32 34 36 38

0
50

0
10

00
15

00



 
 

15 
 

 

 
Fig. S9 
Sensitivity analysis on the Ae. albopictus R0 model at constant temperatures for vector 
competence (b and c) and parasite development rate (PDR = 1/extrinsic incubation period), in 
which these traits are shifted individually and together +/-3°C (left panel), or all three are shifted 
+/-3°C, +/-5°C, or the curves are made 3°C narrower or wider with the same optimum (right 
panel). 
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Fig. S10 
Sensitivity analysis on the Ae. aegypti R0 model at constant temperatures for vector competence 
(b and c) and parasite development rate (PDR = 1/extrinsic incubation period), in which these 
traits are shifted individually and together +/-3°C (left panel), or all three are shifted +/-3°C, +/-
5°C, or the curves are made 3°C narrower or wider with the same optimum (right panel). 
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Fig. S11 
Sensitivity analysis on the Ae. albopictus R0 model, showing the derivative of R0 with respect to 
each parameter, divided by R0, at each temperature. Parasite development rate (PDR) has the 
largest effect on R0 for most of the temperature range, while mosquito lifespan (lf) has a strong 
negative effect at warm temperatures. Parameter names are listed in Table S1. 
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Fig. S12 
Sensitivity analysis on the Ae. aegypti R0 model, showing the derivative of R0 with respect to 
each parameter, divided by R0, at each temperature. Parasite development rate (PDR) has the 
largest effect on R0 for most of the temperature range. Parameter names are listed in Table S1. 
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Fig. S13 
Uncertainty analysis for Ae. albopictus R0 model, showing the relative width of the 95% HPD 
intervals on R0 that is due to each parameter, compared to the overall uncertainty. Each line 
shows the width of the 95% HPD interval on R0 when calculated using draws from the posterior 
distribution of the focal parameter and the posterior means of the other parameters, divided by 
the width of the 95% HPD interval on R0 when all parameters are drawn from their posterior 
distribution. This illustrates the degree to which uncertainty in R0 arises from uncertainty in the 
component parameters at each temperature value. Mosquito infection probability (b) and lifespan 
(LF) dominate model uncertainty. Parameters are defined in Table S1. 
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Fig. S14 
Uncertainty analysis for Ae. aegypti R0 model, as described in the caption for Fig. S13. 
Parameters are defined in Table S2.
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Table S1. Data used in the Ae. albopictus R0 model. Each trait parameter symbol, definition, data sources, and thermal response 
function (Quad = quadratic) are shown on the left. Mean and 95% credible interval (95% HPD interval) for the critical thermal 
minimum (T0), maximum, (Tm), and a rate constant (c) are given for each trait in the three right sections. * indicates unpublished data 
provided by Francis Ezeakacha. 

Trait Definition Refs Function 
T0 

    Mean              95% CI 

Tm 

Mean        95% CI 

c 

  Mean                  95% CI 

a biting rate, calculated as reciprocal 
of oviposition cycle length (1/days) 

(5) Brière 10.25 5.84 14.82 38.32 36.60 40.51 1.93E-04 1.27E-04 2.61E-04 

TFD eggs laid per female per 
gonotrophic cycle (number/female) 

(5,6) Brière 8.02 3.18 13.08 35.65 35.00 36.51 4.88E-02 3.21E-02 6.72E-02 

pEA mosquito egg-to-adult survival 
probability 

(5,7
–10) 

Quad 9.04 6.37 11.67 39.33 37.17 41.62 -3.61E-03 -4.74E-03 -2.59E-03 

MDR mosquito egg-to-adult development 
rate (1/days) 

(5–
8,10
–
14)* 

Brière 8.60 4.43 12.29 39.66 37.78 41.70 6.38E-05 4.67E-05 8.23E-05 

lf mosquito adult lifespan (days) (6,1
1,15
) 

Quad 13.41 10.53 16.11 31.51 29.14 33.57 -1.43E+00 -2.16E+00 -6.89E-01 

b probability that a mosquito infected 
with DENV becomes infectious 
(has virus in the salivary glands) 

(16) Brière 15.84 11.42 19.87 36.40 36.00 36.93 7.35E-04 4.36E-04 1.04E-03 

c probability that a mosquito fed on 
DENV-infected blood becomes 
infected 

(16) Brière 3.62 0.00 9.90 36.82 36.00 37.88 4.39E-04 3.29E-04 5.66E-04 

PDR DENV extrinsic incubation rate 
(reciprocal of the extrinsic 
incubation period: the time required 
for an exposed mosquito to become 
infectious; 1/days) 

(16) Brière 10.39 2.82 17.60 43.05 37.54 49.56 1.09E-04 5.45E-05 1.76E-04 
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Table S2. 

Data used in the Ae. aegypti R0 model. Each trait parameter symbol, definition, data sources, and thermal response function (Quad = 
quadratic) are shown on the left. Mean and 95% credible interval (95% HPD interval) for the critical thermal minimum (T0), 
maximum, (Tm), and a rate constant (c) are given for each trait in the three right sections.  

Trait Definition Refs Function 
T0 

    Mean              95% CI 

Tm 

Mean        95% CI 

c 

  Mean                  95% CI 

a biting rate, calculated as reciprocal 
of oviposition cycle length (1/days) 

(2,1
7) 

Brière 13.35 8.27 17.41 40.08 40.00 40.28 2.02E-04 1.20E-04 2.80E-04 

EFD eggs laid per female per day 
(number/female/day) 

(18,
19) 

Brière 14.58 8.08 20.60 34.61 34.00 35.77 8.56E-03 3.78E-03 1.41E-02 

pEA mosquito egg-to-adult survival 
probability 

(7,2
0–
23) 

Quad 13.56 12.56 14.51 38.29 37.54 39.02 -5.99E-03 -6.82E-03 -5.13E-03 

MDR mosquito egg-to-adult development 
rate (1/days) 

(7,2
0–
24) 

Brière 11.36 7.19 15.03 39.17 39.00 39.54 7.86E-05 5.75E-05 9.93E-05 

lf mosquito adult lifespan (days) (18,
19) 

Quad 9.16 6.69 12.33 37.73 35.68 39.89 -1.48E-01 -2.06E-01 -9.77E-02 

b probability that a mosquito infected 
with DENV becomes infectious 
(has virus in the salivary glands) 

(25–
27) 

Brière 17.05 12.56 21.26 35.83 35.06 36.69 8.49E-04 5.07E-04 1.20E-03 

c probability that a mosquito fed on 
DENV-infected blood becomes 
infected 

(25,
27) 

Brière 12.22 5.61 17.76 37.46 35.70 39.29 4.91E-04 3.33E-04 6.41E-04 

PDR DENV extrinsic incubation rate 
(reciprocal of the extrinsic 
incubation period: the time required 
for an exposed mosquito to become 
infectious; 1/days) 

(25,
27–
31) 

Brière 10.68 3.86 18.33 45.90 39.73 52.92 6.65E-05 3.60E-05 1.09E-04 
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Table S3.  

Aedes spp. trait thermal response data used to generate informative priors for the main Ae. albopictus and Ae. aegypti R0 models. 
Mean and 95% credible interval (95% HPD interval) for the critical thermal minimum (T0), maximum, (Tm), and a rate constant (c) are 
given for each trait in the three right sections.  

Trait Definition Refs Function 
T0 

    Mean              95% CI 

Tm 

Mean        95% CI 

c 

  Mean                  95% CI 

a biting rate, calculated as reciprocal 
of oviposition cycle length (1/days) 

(15) Brière 
14.67 10.67 18.34 41.00 37.56 44.99 2.71E-04 1.59E-04 4.09E-04 

EFD eggs laid per female per day 
(number/female/day) 

(32) Brière 
14.06 11.32 16.60 32.03 30.95 33.35 2.08E-02 1.36E-02 2.89E-02 

pEA mosquito egg-to-adult survival 
probability 

(33) Quad 
7.68 6.48 8.90 38.31 36.99 39.57 -3.36E-03 -4.02E-03 -2.72E-03 

MDR mosquito egg-to-adult development 
rate (1/days) 

(32,
33) 

Brière 
15.12 9.56 19.93 37.67 36.54 38.45 1.49E-04 8.59E-05 2.17E-04 

lf mosquito adult lifespan (days) (32) Quad 16.63 15.93 17.25 31.85 31.16 32.64 -1.24E+00 -1.50E+00 -9.76E-01 

b probability that a mosquito infected 
with flavivirus becomes infectious 
(has virus in the salivary glands) 

(34) Brière 

12.05 8.18 15.09 32.79 32.02 34.32 9.86E-04 5.97E-04 1.34E-03 

c probability that a mosquito fed on 
flavivirus-infected blood becomes 
infected 

(34) Brière 

1.51 0.00 4.11 34.74 32.87 37.18 5.23E-04 4.10E-04 6.32E-04 

PDR WNV, SLEV, WEEV extrinsic 
incubation rate (reciprocal of the 
extrinsic incubation period: the time 
required for an exposed mosquito to 
become infectious; 1/days) 

(35) Brière 

11.50 3.43 18.55 38.97 33.08 45.00 1.04E-04 3.79E-05 1.93E-04 
 


