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Datasets 

We analyzed seven published gene expression data sets (table S1). For each 

dataset, we generated an expression matrix 𝑋 (genes by samples). These include bulk 

RNA-Seq normalized by RPKM (GTEx, (14)) or RSEM (TCGA (45)), microarrays 

(ImmGen (44)), and single-cell RNA-Seq processed into UMI counts ((48)) or 

normalized by TPM ((47,49)). For each dataset, we capped expression at the 99.5th 

percentile value.  Unless otherwise noted, the data were not further normalized beyond 

the normalization applied in the original publication. 

 

Simulating compositional measurements 

For each measurement vector (i.e. one row of matrix 𝐴), we randomly sampled 𝑔 

i.i.d. Gaussian variables, where 𝑔 depended on the number of genes in a data set. These 

vectors were scaled to have a unit norm. We generated multiple measurement vectors 

sequentially, discarding any that had a modest correlation (>20%) with any already 

existing vector, to reduce linear dependency between the measurements. The matrix 𝐴 is 

a vertical concatenation of 𝑚 such measurement vectors, so that 𝐴 has dimensions 𝑚  𝑥  𝑔. 

In order to simulate 𝑚 noisy compositional observations for each of 𝑠 samples, 

we took the matrix product: 
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𝑌 = 𝐴(𝑋 + 𝑛𝑜𝑖𝑠𝑒) 

with i.i.d. random Gaussian noise added to each element of 𝑋 (i.e., 𝑛𝑜𝑖𝑠𝑒 is a random 

matrix of the same size as 𝑋). Thus, each element in a column of 𝑌 represents a linear 

combination of noisy expression levels in 𝑋 according to the weights given in a row of 𝐴. 

The magnitude of the noisy components was set by a signal-to-noise ratio (e.g. 

!
!"#$%

= 2). 

 

Sample-to-sample distances in low-dimensional embeddings 

The Johnson-Lindenstrauss lemma provides bounds on the distortion of Euclidean 

distances for points mapped to a low-dimensional embedding. Specifically, the lemma 

states that there exists a Lipschitz mapping 𝑓:  ℝ! →   ℝ! for 𝑛 points such that for any 

two points, 𝑢, 𝑣: 

1− 𝜖 𝑢 − 𝑣   ! ≤    𝑓 𝑢 − 𝑓 𝑣 ! ≤ 𝑢 − 𝑣   !(1+ 𝜖) 

where 𝑘 ≥ 𝑂 !"#!
!!

. Here, we do not search for the optimal embedding, but rather we 

project gene expression profiles onto a random embedding defined by the matrix 𝐴. We 

then calculate the Spearman rank and Pearson correlation coefficients between pairwise 

Euclidean distances for columns in 𝑌 and the corresponding distances for columns in 𝑋. 

The reported results (table S2) reflect the average of 50 random trials for each data set 

and a given number of measurements. For each trial, a new random measurement matrix 

was generated, and all pairwise distances were calculated for a maximum of 200 

randomly chosen samples. 

To determine if clusters of samples generated from the low dimensional 

embedding resembled clusters generated from the original data, we performed spectral 
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clustering (n=10 clusters) on the low dimensional and the original data, and then 

calculated cluster similarity by the adjusted mutual information score. Briefly, the mutual 

information between two sets of clusters quantifies how much information the clustering 

in low dimensional space provides about the clusters in high dimensional space. If all of 

the members of any given low dimensional cluster were also clustered together in high 

dimension, and vice versa, then the mutual information is 1. If one set of clusters appears 

random relative to the other, then the mutual information is 0. The adjusted mutual 

information score accounts for a bias with increasing cluster numbers, where the mutual 

information will tend to increase.  Both spectral clustering and similarity measures were 

implemented with scikit-learn (71) in Python 2.7. 

High-dimensional clusters were also compared with clusters derived from high-

dimensional gene expression, with the addition of noise (figure S1). The same clustering 

parameters were used, with the noisy input of (𝑋 + 𝑛𝑜𝑖𝑠𝑒) and an SNR=2. In datasets 

with clusters that were robust to noise (i.e. well separated), these clusters were highly 

similar to noiseless clusters (as quantified by mutual information). 

 

Module activity by matrix factorization 

 Our model of gene expression posits that abundance levels can be approximated 

as a linear combination of gene modules. Very generally, any decomposition of multiple 

expression profiles in the following form fits with this interpretation: 

𝑋 ≈ 𝑈𝑊 

Each column of 𝑈 is a vector of length 𝑔 (with one entry per gene), and the coefficients 

in each column of 𝑊 describe a linear combination of columns in 𝑈. We refer to the 



	   4	  

matrix 𝑈 as the module dictionary – each column is one element of the dictionary – and 

the matrix 𝑊 as the set of module activities. There are multiple ways to factorize any 

given expression matrix. We explored three different algorithms that apply different 

constraints to the dictionary, 𝑈, and activities, 𝑊.  

In Singular Value Decomposition (SVD), the columns of the module dictionary 

are orthonormal. This is an analytically convenient constraint, but there is no reason to 

suppose that it holds any particular relevance for gene expression.  

In Nonnegative Matrix Factorization (NMF), the entries of the module 

dictionary and the activities are nonnegative. With sparse NMF, additional sparsity 

constraints are enforced on the activity levels, such that there are relatively few nonzero 

entries in 𝑊 (this is a soft constraint on sparsity that does not explicitly enforce k-

sparsity). 

We also developed a third algorithm here, Sparse Module Activity 

Factorization (SMAF), which is a simple modification of sparse NMF to enforce k-

sparsity in the module activity, to allow for negative module activity (repression), and to 

enforce (soft) sparsity in the module dictionary. Like some algorithms for sparse NMF, 

SMAF optimization proceeds through alternating updates to 𝑈 and 𝑊: 

1   𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒  𝑈,𝑊 

2   𝑢𝑝𝑑𝑎𝑡𝑒  𝑈:  min
!

𝑈 !   𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   𝑋 − 𝑈𝑊 !
! < 𝜆! ,𝑢!,! ≥ 0,𝑎𝑛𝑑   𝑢! !

= 1  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖, 𝑗 

3   𝑢𝑝𝑑𝑎𝑡𝑒  𝑊:  min
!

𝑋 − 𝑈𝑊 !
!   𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   𝑤! ! < 𝑘  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖 

Step 2 is optimized by Lasso, and Step 3 is optimized by Orthogonal Matching Pursuit 

(OMP). Steps 2 and 3 can be iterated until convergence, or until a desired sparsity level is 
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reached. The algorithm can be initialized with the output of SVD or sparse NMF. 

However, in practice, we found the best results with a random initialization, although this 

takes a larger number of iterations to converge. The parameter 𝜆! can be used to set a 

desired level of accuracy in Step 2.  

Our implementations of SVD, sparse NMF and SMAF algorithms can be found in 

GitHub (https://github.com/brian-cleary/CS-SMAF), and make particular use of Sparse 

Modeling Software (SPAMS) for Python (72). 

 With each algorithm we can specify the number of dictionary elements. For SVD 

and sparse NMF, we used a truncated decomposition, keeping the vectors corresponding 

to the largest singular values. We used the minimally sized dictionary with at least a 99% 

fit to the original data: 

𝑓𝑖𝑡 = 1−
𝑋 − 𝑈𝑊 !

!

𝑋 !
!  

With SMAF, we set the desired fit according to constraints in steps 2 and 3. For very 

sparse dictionary elements, we would expect that in order to achieve the same fit as 

sparse NMF, more dictionary elements overall would be needed. We therefore set the 

SMAF dictionary size to be 4 times the size of the sparse NMF dictionary, without being 

larger than min  (1000, 1.5  𝑥  #𝑠𝑎𝑚𝑝𝑙𝑒𝑠). 

To quantify the effective module sizes and activity levels for each matrix 

factorization, we calculated the Shannon diversity of the absolute values in each column 

of 𝑈 or 𝑊: 

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦! = 𝑒!"#$%&'( !! ) 

where 𝑢!  denotes the absolute value of coefficients in column 𝑙. 
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Gene set enrichments 

Gene set enrichments in each module were calculated using Homer (73). For each 

module, the module genes were determined by keeping the top genes, sorted by absolute 

value, up to 99% (or 50% for truncated) of the total module ‘weight’ (𝑚𝑤! = 𝑢!,!!
!
! ). 

Significantly enriched gene sets in the Molecular Signatures Database (MSigDB) (57) 

were calculated using the list of all genes that participated in at least one module as a 

background set. Cutoff levels were based on an FDR q-value of 0.05, and only the top 5 

gene sets per module were considered. 

 

Compressed sensing for gene expression profiles 

For each dataset we simulated 50 random trials of gene expression recovery using 

noisy composite measurements and a dictionary learned from training data. In a given 

trial, we randomly selected 5,000 genes (for both computational efficiency and to check 

for robustness to random subsets of genes), and then learned a module dictionary from a 

set of training samples (5% of all available samples, selected uniformly at random 

without replacement). The module dictionary, 𝑈, was given by SVD, sparse NMF, or 

SMAF. Observations in testing samples (i.e., 95% of all available) were calculated as: 

𝑌 = 𝐴(𝑋!"#! + 𝑛𝑜𝑖𝑠𝑒) 

Then, using the training dictionary we search for k-sparse module activities such that: 

𝑌 ≈ 𝐴𝑈𝑊  (𝑒𝑞. 1) 

 where 𝑊 is an unknown set of sparsely-populated module activity coefficients. After 

optimizing 𝑊 by OMP, and enforcing that each column has only 𝑘 nonzero values, we 

recover the predicted gene abundances for each sample as 𝑋 = 𝑈𝑊. The sparsity level, 
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𝑘, was set to 15. Increasing the sparsity to 𝑘 = 5 did not dramatically alter the results 

(data not shown). 

 To demonstrate the significance of sparsity and random Gaussian measurements 

in this context, we briefly review some key concepts in compressed sensing. First, recall 

that if the true activity levels are not sparse in the chosen dictionary (e.g., with 𝑈!"# we 

expect many nonzero coefficients in the module activity matrix), and if there are far 

fewer measurements than genes, then the problem is ill posed. This can be seen by 

rewriting 𝑒𝑞. 1 as: 

𝑌 ≈ 𝐷𝑊 

and noting that if 𝐷 has fewer rows than columns, then the problem will not have a 

unique solution (again, if 𝑊 is dense). That is, for a given composite observation 𝑦! we 

will not be able to determine the true activity levels because there will be many 

indistinguishable solutions, such that 𝑦! = 𝐷𝑤! and 𝑦! = 𝐷𝑤! where 𝑤! ≠ 𝑤!. With the 

constraint that activity levels must be k-sparse, such solutions may be unique. The 

process might also fail if 𝑊 is sparse, but the columns of 𝐷 are linearly dependent. In 

compressed sensing it is common to control such linear dependency by bounding the 

spark of 𝐷. Briefly, the spark of a matrix is the smallest number of columns that are 

linearly dependent. If 𝑠𝑝𝑎𝑟𝑘 𝐷 >   2𝑘, then, for a given 𝑘-sparse 𝑤!, the set of 

compositional observations 𝑦! = 𝐷𝑤! are uniquely determined, meaning that 𝑦! ≠ 𝐷𝑤! if 

𝑤! ≠ 𝑤!. In other words, with sufficient linear independency in 𝐷, two samples will not 

result in the same set of compositional observations, unless those samples have identical 

expression profiles. By choosing random Gaussian entries in the measurement matrix, the 

spark condition is satisfied with high probability when 𝑈 is orthonormal. 
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Measures of correlation between predicted and observed data 

 We used several measures to compare predicted and observed expression levels. 

We first computed “overall” correlations. For these measures we considered all 

genes from all samples together by flattening the predicted and observed expression 

matrices into vectors, and then computing the correlation between the two vectors. We 

computed both the Pearson and Spearman rank correlation. Pearson correlation can be 

more sensitive to accuracy in the dynamic range of predicted values, but can also be 

dominated by very large values. When the data are not normally distributed, the 

Spearman rank correlation is often a better overall indicator of performance.  

We also considered the average Pearson correlation in gene- and sample-centric 

views. For the average gene correlation, we calculated the correlations across all samples 

for a given gene, and then averaged these correlations across all genes. Similarly, the 

average sample correlation was calculated from the correlation across all genes within a 

sample. 

 

Blind compressed sensing with SMAF (BCS-SMAF) 

 Our BCS-SMAF algorithm follows the conceptual steps of Aghagolzadeh and 

Radha (62). A critical element of the algorithm is the use of variable Gaussian 

measurements; for each sample we generate 𝑚 compositional observations using 

different measurement matrices, 𝐴!. The algorithm proceeds as follows: 

1. Get initial estimates of each sample as: 𝑥! = 𝐴!!(𝐴!!𝐴!)!!𝑦!. 

2. Based on current estimates, calculate 𝑆𝑀𝐴𝐹 𝑋 :    𝑋 ≈ 𝑈𝑊.  
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3. Update our estimate of the dictionary with a standard dictionary learning (DL) 

algorithm, using 𝑈 for initialization: 𝑈 = 𝐷𝐿(𝑋,𝑈). 

4. Estimate module activities using OMP: for each column 𝑤! = 𝑂𝑀𝑃(𝑦! ,𝐴!𝑈, 𝑘). 

5. Iterate steps 2-4. 

6. Return the estimated signals: 𝑋 = 𝑈𝑊. 

Our code, available at https://github.com/brian-cleary/CS-SMAF, provides an 

implementation of BCS-SMAF following the steps above. In step 3, we use a dictionary 

learning algorithm provided in the SPAMS library for Python (74).  

 

Composite measurements by hybridization and ligation-mediated amplification 

Probe library generation 

Each probe library has two groups of probes, upstream probes and downstream 

probes. Each of the probes will bind a short sequence on the target transcript, in this 

specific case the RNA (mRNA) molecule within a cell or sample. The two binding sites 

are juxtaposed so that once bound to target they can be ligated to yield a single ligation 

product, the abundance of which will then be measured. To ensure efficient ligation, we 

used T4 Polynucleotide Kinase (New England Biolabs) to phosphorylate the 5’ end of 

downstream probe by incubation the probes under 37ºC with T4 PNK enzyme, T4 ligase 

buffer, and ATP solution for 2 hours, and heat-inactivated the enzyme at 95ºC for 10 

minutes. The phosphorylated probes were then diluted to 5 uM and combined with 

upstream probes to form the probe pair mix for each individual gene at a final 

concentration of 2.5 uM per probe. The probe pairs for each target gene were then mixed 

as the designs specified by measurement matrix to yield the final detection probe library. 
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For large-scale library generation, Echo 550 Liquid Handler (Labcyte Inc.) was used to 

generate probe library mix from a source plate containing all gene-specific probe pairs. 

 

Cell culture and RNA sample preparation 

Human chronic myelogenous leukemia (CML) K-562 cells were cultured as 

recommended by the manufacturer (ATCC). Briefly, cells were maintained in Iscove's 

Modified Dulbecco's Medium (IMEM) supplemented with 10% FBS (HyClone), 2 mM 

GlutaMAX (Life Technologies), 100 U/ml penicillin, and 100 µg/ml streptomycin at 

37ºC with 5% CO2 incubation. Cells were seeded at a density of 1 million cells per mL 

for each subculture and a minimum of 2 million cells were used for each RNA extraction. 

Total RNA from cells was extracted using the RNease Mini Plus Kit (Qiagen) and 

normalized to 50ng per microliter concentration prior to downstream processing. For 

detection of background binding, genomic DNA was extracted with DNeasy Blood & 

Tissue Kit (Qiagen). 

To establish independent references for gene expression levels of all targets in the 

cell, we separately prepared a cDNA library from the same pool of extracted total RNA 

using qScript cDNA SuperMix (QuantaBio). The expression profile of each target gene 

used in our study was quantified individually by qRT-PCR, with gene specific primers 

and the PowerUp™ SYBR Green Master Mix (Thermo Fisher Scientific) in 384-well 

plates with at least four replicates per reaction in the LightCycler 480 Instrument (Roche 

Life Science). The final set of references was then calculated after second derivative 

maximum analysis as relative expression values. 
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Probe library hybridization and detection 

A probe library corresponding to the measurement matrix was added to the 

extracted RNA sample to a ladder of different concentrations to detect the optimal level 

of probe mix under each experimental condition. For the final sets of experiment, 10ng of 

total RNA were used for each reaction, and a final concentration of 25pM or 0.25nM 

probe mix were added to the RNA sample to a final reaction volume of 20uL along with 

SplintR ligase buffer (New England Biolabs) (66) and RNase Inhibitor. To hybridize the 

probe library to the RNA sample, a slow ramping protocol was applied by incubating the 

mixture first at 75ºC for 5 minutes for denaturing of any possible RNA/DNA secondary 

structure, then slowly ramping down to 37ºC at a ramping rate of 0.1ºC per second with 

one minute incubation for every degree drop in temperature in a cycling manner over ~ 4 

hours in Mastercycler Pro thermocycler (Eppendorf).  

The hybridized mixture containing probe pairs bound to the RNA samples was 

then subjected to two different downstream processing workflows. For the first pipeline, 

hybridized samples were purified with poly-T conjugated magnetic beads (New England 

Biolabs) or the Poly-T mRNA purification Dynabeads (Thermo Fisher Scientific), 

according to the manufacturer’s recommended protocol with slight modification to adapt 

to the small volume and large number of samples used in our experimental set-up. The 

purified samples were then ligated according to the protocol detailed below. For the 

second pipeline, the samples were processed in reverse order, where ligation reactions 

were first carried out followed by bead purification of ligated samples. For the ligation 

step, the hybridized library-RNA mix was ligated using SplintR ligase (New England 

Biolabs) or Taq DNA ligase (New England Biolabs) with additional RNase Inhibitor to 
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generate the ligated products at 37ºC and 42ºC (for SplintR ligase) or 45ºC (for Taq 

ligase) for a period of 4 hours (Splint ligase) or 6 hours (Taq ligase). The enzymatic 

activity was then heat-inactivated at 65ºC for 20 minutes. For control experiments, 

negative control reactions without the addition of extracted RNA samples were also 

hybridized and ligated at the same time under the same experimental conditions.  

All samples were then subjected to the same detection protocol at the same time 

to minimize variability between experiments. Briefly, 2uL of the ligation product were 

added to reaction mix for amplification using the library-amplification primer designed 

based on the measurement-specific adapter sequence of the probe library. To measure the 

abundance of ligated products in each condition we qRT-PCR with PowerUp™ SYBR 

Green Master Mix (Thermo Fisher Scientific) in 384-well plates with at least four 

replicates per reaction in the LightCycler 480 Instrument (Roche Life Science). Data 

analysis were carried out using second derivative maximum method followed by 

normalization of probe abundance value with reference to the total amount of probes 

detected in each experiment. 
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Figure S1: Clusters in well-separated datasets are preserved in low dimension 

For each dataset (red: individual TCGA tumor types; green: GTEx; grey: TCGA 

“combined” dataset; blue: all other datasets) clusters were created from high-dimensional 

gene expression, gene expression plus random noise (SNR=2), and low-dimensional 

noisy projections (100 projections, SNR=2). Scatter plot shows the mutual information 

between high-dimensional clusters and high-dimensional plus noise clusters (x axis) 

compared to the mutual information between high-dimensional clusters and noisy low-

dimensional clusters (y axis). Similar levels of mutual information were found with an 

alternative clustering method that does not specify the number of clusters (data not 

shown).  
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Figure S2: Modules across TCGA tumor types 
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For each of three algorithms, SVD (left), sNMF (middle), and SMAF (right), violin plots 

indicate the distribution of number of active modules per sample (top) and the effective 

number of genes per module (bottom) for each TCGA tumor type (columns).  

  



	   16	  

 

Figure S3: Compressed sensing across TCGA tumor types 

For each of three algorithms (SVD, sNMF, and SMAF) module dictionaries were 

calculated in training data for each tumor type (individual columns). In testing data, 25 

noisy composite measurements of 5,000 genes were simulated. These measurements were 

used to estimate module activity levels, and to predict 5,000 expression values. 

Compressed sensing was compared to measuring 25 signature genes, and using a model 

built on training data to predict the remaining unobserved genes (bottom right panel). Bar 
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heights indicate the Spearman correlation between predicted and actual values. Error bars 

indicate one standard deviation across 50 random trials. 
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Figure S4: Compressed sensing with a different numbers of measurements 

Compressed sensing and signature gene models were used to predict 5,000 gene 

expression values on the basis of 10-100 measurements (SNR=2, x axis). For each dataset 

(colors) and model (panels), the plotted data indicate the Spearman correlation (y axis) 

between predicted and actual values. For signature genes, different models (built on 

training data) and measurements (simulated in testing) are used for each number of 

measurements, while for compressed sensing the same module dictionary and 

measurement design (random composite) can be used in each experiment.  
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Figure S5: Gene expression recovery from different numbers of composite 

measurements as assessed by correlations averaged overs genes or over samples 

In random trials, a variable number of measurements (x-axis) were used to predict 5,000 

expression levels. Shown are the average Pearson correlation coefficients (y axis) across 

samples, averaged over all genes (top), or across genes, averaged over all samples 

(bottom) for each dataset (color code, legend). Error bars indicate one standard deviation 

across 50 random trials. 
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Figure S6: Gene expression recovery from 25 measurements as assessed by Pearson 

vs. Spearman correlation 

In each dataset 25 random composite measurements were used to predict the abundance 

of 5,000 genes. Shown is the Spearman (top), or Pearson (bottom) correlation coefficient 

(y axis) between predicted and observed values. Error bars indicate one standard 

deviation across 50 random trials. 
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Figure S7: SMAF module activities in each GTEx sample 

SMAF was used to calculate a module dictionary and module activity levels in each 

sample of the GTEx dataset. Heatmap shows the activity (blue: activated, red: repressed, 

white: not active; colorbar, right) of the modules (columns) in each sample (rows), where 

modules are hierarchically clustered by their similarity in the module dictionary (i.e. by 

cosine similarity of the module weights across genes), and samples are clustered by their 

similarity in high-dimensional gene expression levels.  
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Figure S8: Calculating sample similarity by composite measurements vs. signature 

genes 

For each dataset, 100 noisy composite observations and 100 signature measurements 

were simulated for each sample. Predicted pairwise distances were calculated based on 

these measurements, and compared with pairwise Euclidean distances calculated from the 

high-dimensional gene expression values. Shown are the Pearson correlation coefficients 

(y axis) between predicted and actual pairwise distances in each dataset. Error bars 

indicate one standard deviation across 50 random trials. Right: individual TCGA tumor 

types. Left: remaining datasets. 
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Figure S9: Composite measurements in practice 

A. Overview of procedure. From top left: (Step 1) For each target gene, paired probes 

were designed to hybridize immediately adjacent to each other. Probes for all genes in a 

given measurement ((1) or (2)) share a common barcode. (Step 2) The probe library is 

hybridized to an RNA sample, and probe pairs are ligated using splintR ligase. (Step 3) 

Hybridized and ligated probe pairs are purified and then (Step 4) each measurement is 

performed by qPCR of the common barcodes (green and purple curves). B. Composite 
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measurements of 23 genes. Each composite measurement was designed with random 

weights across 23 genes, and measurements performed according to the procedure in (A). 

Scatter plots show the expected composite measurement value (log-transformed) based 

on (computational) linear combination of the individual gene’s qPCR values (x axis), 

compared to the observed composite measurements (log-transformed, y axis). The two 

panels indicate replicates performed with the same compositions, but using probe 

libraries with different measurement barcodes.  


