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Methods

The ordinary differential equations (ODE) model and the Markov-chain Monte Carlo (MCMC) fitting

approach herein used are based on the framework previously proposed to study the introduction of

dengue into the island of Madeira in 2012 [1]. We have changed this framework to relax major modelling

assumptions on the mosquito sex ratio and success of egg hatching, have included humidity and rainfall

as critical climate variables, and have also transformed the original least squares based MCMC into a

Bayesian MCMC. The resulting framework is described in the following sections.

Ento-Epidemiological Dynamic Model

The dynamics of infection within the human population are defined in equations 1-5. In summary, the

human population is assumed to have constant size (N) with mean life-expectancy of µh years, and to be

fully susceptible before introduction of the virus. Upon challenge with infectious mosquito bites (λv→h),

individuals enter the incubation phase (Eh) with mean duration of 1/γh days, later becoming infectious

(Ih) for 1/σh days and finally recovering (Rh) with life-long immunity.
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dSh

dt
= µhN − λv→h − µhSh (1)

dEh

dt
= λv→h − γhEh − µhEh (2)

dIh

dt
= γhEh − σhIh − µhIh (3)

dRh

dt
= σhIh − µhRh (4)

N = Sh + Eh + Ih +Rh (5)

For the dynamics of the mosquito population (equations 6-10), individuals are divided into two per-

tinent life-stages: aquatic (eggs, larvae and pupae, A) and adult females (V ) as in [2]. The adults are

further divided into the epidemiologically relevant stages for arboviral transmission: susceptible (Sv), in-

cubating (Ev) for 1/γ̇v days and infectious (Iv) for life. The ˙ (dot) notation is here adopted to distinguish

climate-dependent entomological factors (further details in the following sections).

dA

dt
= ċvfθ̇v

(
1− A

K (R+ 1)

)
V − (ε̇vA + µ̇vA)A (6)

dSv

dt
= ε̇vAA− λh→v − µ̇vV Sv (7)

dEv

dt
= λh→v − γ̇vEv − µ̇vV Ev (8)

dIv

dt
= γ̇vEv − µ̇vV Ev (9)

V = Sv + Ev + Iv (10)

Here, the coefficient ċv is the fraction of eggs hatching to larvae and f the resulting female proportion.

For simplicity and lack of quantifications for local mosquito populations, it is assumed that the sex ratio

remains at 1:1 (i.e. f = 0.5). Moreover, ε̇vA denotes the rate of transition from aquatic to adult stages,

µ̇vA the aquatic mortality, µ̇vV the adult mortality, and θ̇v is the success rate of oviposition. The logistic

term (1− A
K(R+1) ) can be understood as the ecological capacity to receive aquatic individuals [3], scaled

by a carrying capacity term K (R+ 1) in which K determines the maximum capacity and R is the local

rainfall contribution (further details on following sections).

From equations 6-10, the mean number of viable female offspring produced by one female adult during
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its life-time, i.e. the basic offspring number Q, was derived (equation 11). Most parameters defining Q are

climate-dependent, and for fixed mean values of the climate variables (ex. mean rainfall R̄), expressions

were derived for the expected population sizes of each mosquito life-stage modelled (A0, V0) which are

used to initialize the vector population (equations 12-13).

Q =
ε̇vA

ε̇vA + µ̇vA

ċf θ̇v

µ̇vV
(11)

A0 = K
(
R̄+ 1

)(
1− 1

Q

)
(12)

V0 = K
(
R̄+ 1

)(
1− 1

Q

)
˙εvA
µ̇vV

(13)

Viral Transmission

In respect to the infected host-type being considered, the vector-to-human (λv→h) and human-to-vector

(λh→v) incidence rates are assumed to be, respectively, density-dependent and frequency-dependent

(equations 14-15). Here, ȧv is the biting rate and φ̇v→h and φh→v are the vector-to-human and human-to-

vector transmission probabilities per bite. Conceptually, this implies that (i) an increase in the density of

infectious vectors should directly raise the risk of infection to a single human, while (ii) an increase in the

frequency of infected humans raises the risk of infection to a mosquito biting at a fixed rate. The basic

reproductive number (R0) is defined similarly to previous modelling approaches (equation 16) [4, 5]. We

further derived an expression for the effective reproductive ratio (Re, equation 17), taking into account

the susceptible proportion of the population in real-time.

λv→h =
(
ȧvφ̇v→hIvSh/N

)
∝ Iv (14)

λh→v =
(
ȧvφ̇h→vIhSv/N

)
∝ Ih/N (15)

R0 =
(V/N) ȧv ȧv φ̇v→h φh→v γ̇v γh

µ̇vV (σh + µh)(γh + µh)(γ̇v + µ̇vV )
(16)

Re = (Sh/N)× (Sv/N)×R0/(V/N) (17)
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Markov Chain Monte Carlo Fitting Approach

For the fitting process, the MCMC algorithm by Lourenco et al. is here altered to a Bayesian approach by

formalising a likelihood and parameter priors [1]. For this, the jumping distributions of each parameter

were kept as Gaussian (symmetric), effectively retaining a random walk Metropolis kernel. We define our

acceptance probability α of a parameter set Θ, given model ODE output y as:

α = min{1, π(y|Θ?)π(Θ?)

π(y|Θo)π(Θo)
} (18)

where Θ? and Θo are the proposed and current (accepted) parameter sets (respectively), and π(y|Θ?)

and π(y|Θo) are the likelihoods of the ODE output representing the epidemic data, given each parameter

set. We assume uniform priors to all estimated parameters, and the likelihoods to be the product of the

conditional Poisson probabilities of each epidemic data and ODE point:

π(y|Θ) =

N∏
i=1

[Pr{yi = di}] (19)

To address MCMC convergence, we quantified
√
R̂, the Gelman-Rubin statistic (which compares the

variance between and within M independent MCMC chains) [6]. This statistic is expected to approximate

1 when M independent chains have converged to the same stationary distributions. Values significantly

larger than 1, for instance, indicate that the between-chain variance is greater that the within-chain

variance, highlighting that the MCMC may need more time to converge or tuning of jump parameters is

required [6]. For calculation details please refer to [1].

Fitted Parameters

With the MCMC approach described above, all combinations of the open parameters in the ODE system

that most likely represent the outbreak are explored (Table 3). In summary, the MCMC estimates

distributions for: (1) the carrying capacity K, used to indirectly estimate the number of adult mosquitoes

per human; (2) time point of the first case t0, assumed to be in a human; (3) a linear coefficient η that

scales the effect of temperature on aquatic and adult mortality rates; (4) a linear coefficient α that scales

the effect of temperature on the extrinsic incubation period; (5) a non-linear coefficient ρ that scales the

effects of humidity and rainfall on entomological parameters; (6) the human infectious period 1/σh; and
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(7) the human incubation period 1/γh.

By introducing the linear coefficients η and α, the relative effect of temperature variation on mortality

and incubation is not changed per se, but instead the baselines are allowed to be different from the

laboratory ideal conditions used by Yang et al. in laboratory experiments [2]. For MCMC solutions

in which η, α → 1 the laboratory-based relationships are kept. For a discussion on possible biological

factors that may justify η and α please refer to the original description of the method [1] and [7]. Finally,

the introduction of ρ allows the MCMC to vary the strength with which entomological parameters react

to significant deviations from local humidity and rainfall means. In practice, the effect of rainfall and

humidity can be switched off by the MCMC when ρ → 0 and made stronger when ρ → +∞ (details

below).

Constant Parameters

The framework described above has only 4 fixed parameters that are neither climate-dependent nor esti-

mated in the MCMC approach (Table 2). Amongst these, φh→v is the per bite probability of transmission

from human-to-mosquito, which we assume to be 0.5 [8,9]; the sex ratio of the adult mosquito population

f is assumed to be 1:1 [8, 9]; the life-expectancy of the human population is assumed to be an average

of 75 years [10]; and the biting rate is taken to be on average 0.25 although with the potential to vary

dependent on humidity levels (details below) [11,12].

Climate-Dependent Parameters

For each of the temperature-dependent entomological parameters, polynomial expressions are found de

novo or taken from previous studies fitting laboratory entomological data with temperature (T) values

used in Celsius. For rainfall (R) and humidity (U), positive or negative relationships to entomological

parameters are introduced using simple expressions, with values used after normalization to [0, 1]. We

assume that some parameters are affected by a combination of temperature with either rainfal or humidity,

but take their effects to be independent. A list of climate-dependent parameters and references is found

in Table 1.

Polynomials of 4th degree for the mortality (µvA, µ
v
V ) and success ovipositon (θv) rates are taken from

the study by Yang and colleagues under temperature-controlled experiments on populations of Aedes

aegypti (equations 19-21) [2]. We simplify the 7th degree polynomial for aquatic to adult (εvA) rate of the
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same study into a 3rd degree one (equation 20). For the relationship between the extrinsic incubation

period (1/γv) and temperature we apply a similar simplification to the formulation by Focks et al. which

assumes that replication is determined by a single rate-controlling enzyme [13–15] (equation 24). The

probability of transmission per mosquito bite (φv→h) is here modelled (equation 25) as estimated by

Lambrechts and colleagues [16]. Finally, the relationship between temperature and the fraction of eggs

that successfully hatch (cv) is estimated de novo (equation 26) by fitting a 3rd degree polynomial to

Aedes aegypti and albopictus empirical data described by Dickerson et al. (see Figure S1) [9, 17].

εvA(T ) = 0.2506− 0.0488T + 0.0029T 2 − 0.00004T 3 (20)

µvA(T ) = 2.13− 0.3797T + 0.02457T 2 − 0.0006778T 3 + 0.000006794T 4 (21)

µvV (T ) = 0.8692− 0.1599T + 0.01116T 2 − 0.0003408T 3 + 0.000003809T 4 (22)

θv(T ) = −5.4 + 1.8T − 0.2124T 2 + 0.01015T 3 − 0.0001515T 4 (23)

γv(T ) = 1.0/((1245.0− 49.6T + 0.49T 2)/24.0) (24)

φv→h(T ) = 0.001044T × (T − 12.286)× (32.461− T )1/2 (25)

cv(T ) = (−184.8 + 27.94T − 0.9254T 2 + 0.009226T 3)/100.0 (26)

We normalise the time series of rainfall (R) and humidity (U), further using the mean normalised

values (R̄, Ū) as reference for extreme deviations from the expected local tendencies [3, 18]. Rainfall is

assumed to affect positively the fraction of eggs that successfully hatch (cv) [3,19–21]. A similar positive

relationship is taken for the vector biting rate (av) and humidity levels [12], in contrast to a negative

effect on the adult mosquito mortality rate (µvV ) [19].

cv(R) = (R− R̄)/
√

1 + (R− R̄)2 (27)

av(U) = (U − Ū)/
√

1 + (U − Ū)2 (28)

µvV (U) = Ū − (U − Ū)/
√

1 + (U − Ū)2 (29)

Below is the complete formulation for each entomological parameter in time (t), depending on the
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climatic variables for which relationships are assumed to exist, including the MCMC fitter linear (α, η)

and non-linear (ρ) factors described above.

εvA(t) = εvA(T ) (30)

µvA(t) = ηµvA(T ) (31)

µvV (t) = ηµvV (T )[1 + µvV (U)]
ρ

(32)

θv(t) = θv(T ) (33)

γv(t) = αγv(T ) (34)

φv→h(t) = φv→h(T ) (35)

cv(t) = cv(T )[1 + cv(R)]
ρ

(36)

av(t) = av[1 + av(U)]
ρ

(37)
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Tables

Table 1. Climate-dependent parameters.

notation description

εvA(t) transition rate from aquatic to adult mosquito life-stages

µvA(t) mortality rate of aquatic mosquito life-stage

µvV (t) mortality rate of adult mosquito life-stage

θv(t) (human) intrinsic oviposition rate of adult mosquito life-stage

γv(t) (vector) extrinsic incubation period of adult mosquito life-stage

φv→h(t) vector-to-human probability of transmission per infectious bite

cv(t) egg hatching success

av(t) adult vector biting rate

Table 2. Constant parameters.

notation value description references
av 0.25 per day mosquito biting rate [11,12]
f 0.5 proportion of females (sex ratio) [8, 9]

φh→v 0.5 human-to-vector probability of transmission per infectious bite –
1/µh 75 years human mean lifespan [10]

Parameters that are fixed in the ODE system.
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Table 3. Estimated parameters.

notation description ranges / priors
t0 time point of first case (in a human) (∞, ∞)
K aquatic carrying capacity (0, ∞)
η linear factor for mosquito mortality (0, ∞)
α linear factor for extrinsic incubation period (0, ∞)
ρ non-linear factor for effects of humidity and rainfall (0, ∞)
σh human infectious period (0, 15)
γh human (intrinsic) incubation period (0, 15)
ζ observation rate (0, 1)

Free parameters used by the Bayesian MCMC approach to fit the data.
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Supporting Information Legends
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Supplementary Figure 1. Relationship between temperature and egg hatching success.
Empirical data on Aedes aegypti’s and albopictus’s egg hatching success (in the model ċ) is taken
from [17]. Data includes measurements of hatching for 5 different temperatures above 15 Celsius,
including 2 wild and 1 laboratory populations for each of the vector-species. Fitting implemented with
a third degree polynomial in R (which can be found in the Results section of the main text). When
modelling, negative proportions below 10 Celsius are manually corrected to zero (left of shaded grey
line).
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A Expected microcephaly cases per 100K (40% exposure)
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B C Expected microcephaly cases per 100K (90% exposure)
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Supplementary Figure 2. Sensitivity to microcephaly risk. Expected number of cases of
microcephaly (MC) and other neurological complications (NC) for theoretical ranges of birth rate (per
1K females) and risk of complications assuming (A) 25%, (B) 40%, or (C) 90% exposure of all
pregnancies. See Figure 5 of main text for details.


