Semiparametric methods for estimation of a non-linear

exposure—outcome relationship using instrumental variables with

application to Mendelian randomization: Supplementary Data

James R ${\rm Staley^1}$  & Stephen  ${\rm Burgess^1}$ 

<sup>1</sup>Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care,

University of Cambridge, United Kingdom.

Correspondence:

Dr Stephen Burgess

Department of Public Health & Primary Care

Strangeways Research Laboratory

Wort's Causeway

Cambridge

CB1 8RN

UK

Email: sb452@medschl.cam.ac.uk

Telephone: +44 (0) 1223 748651

1

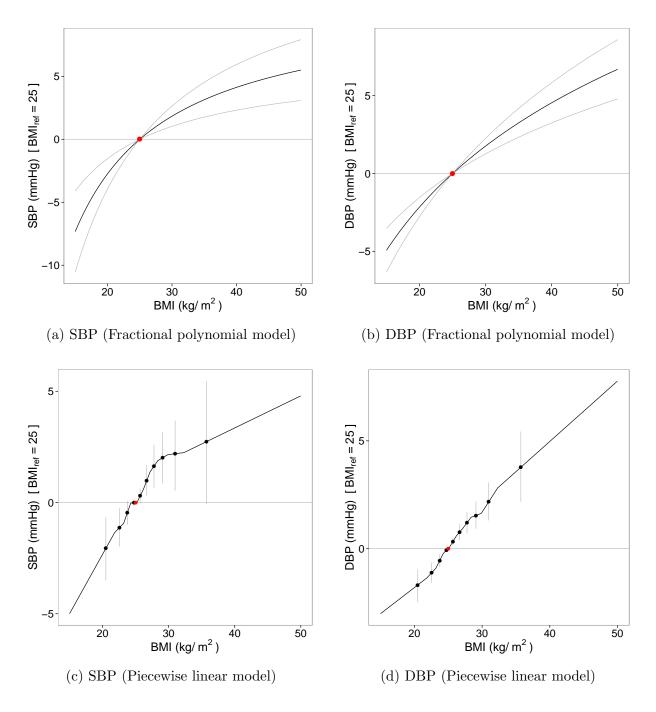



Figure S1 Causal effects of body mass index (BMI) on blood pressure (systolic blood pressure, SBP; diastolic blood pressure, DBP) in individuals with no history of hypertension using the fractional polynomial and piecewise linear methods on data from UK Biobank. The red point represents the reference point of BMI of  $25 \text{ kg/m}^2$ . Grey lines represent 95% CIs. The fractional polynomial method used 100 strata, whereas the piecewise linear method used 10 strata.

Table S1: Simulation results for fractional polynomials of degree 1.

|   |      | Fitting correct             | Fitting all FPs |         |       |              |                |  |  |
|---|------|-----------------------------|-----------------|---------|-------|--------------|----------------|--|--|
|   |      | Mean (SD) [Mean SE]         | Coverage        | Powers  |       | Heur         | ristic         |  |  |
| β | p    | $\hat{eta}_1$               | ${\hat{eta}_1}$ | Correct | Set   | Correct FP   | Best FP        |  |  |
| 0 | -2   | $0.030 \ (0.953) \ [0.933]$ | 0.946           | -       | -     | -            | -              |  |  |
| 1 | -2   | $1.006 \ (0.924) \ [0.929]$ | 0.960           | 0.434   | 0.952 | 1.14(0.87)   | 1.21(0.85)     |  |  |
| 2 | -2   | 2.012(0.956)[0.933]         | 0.928           | 0.496   | 0.942 | 1.17(0.92)   | 1.29(0.92)     |  |  |
| 0 | -1   | $0.046 \ (0.700) \ [0.646]$ | 0.932           | -       | -     | -            | -              |  |  |
| 1 | -1   | $0.936 \ (0.635) \ [0.643]$ | 0.956           | 0.070   | 0.950 | 1.03(0.80)   | 1.13(0.84)     |  |  |
| 2 | -1   | $1.921 \ (0.654) \ [0.641]$ | 0.946           | 0.142   | 0.956 | 1.06(0.81)   | 1.21(0.82)     |  |  |
| 0 | -0.5 | -0.013 (0.774) [0.742]      | 0.922           | -       | -     | -            | -              |  |  |
| 1 | -0.5 | $0.981 \ (0.724) \ [0.743]$ | 0.946           | 0.050   | 0.946 | 0.95(0.75)   | 1.07(0.79)     |  |  |
| 2 | -0.5 | $1.959 \ (0.752) \ [0.740]$ | 0.938           | 0.088   | 0.912 | 0.99(0.78)   | 1.17(0.83)     |  |  |
| 0 | 0    | -0.009 (0.221) [0.211]      | 0.934           | -       | -     | -            |                |  |  |
| 1 | 0    | $0.979 \ (0.215) \ [0.210]$ | 0.944           | 0.172   | 0.918 | 0.95(0.74)   | 1.20(0.79)     |  |  |
| 2 | 0    | 1.976 (0.210) [0.212]       | 0.954           | 0.386   | 0.910 | 0.94(0.72)   | 1.22(0.76)     |  |  |
| 0 | 0.5  | 0.000(0.246)[0.233]         | 0.930           | -       | -     | -            | -              |  |  |
| 1 | 0.5  | $1.003\ (0.246)\ [0.234]$   | 0.936           | 0.194   | 0.892 | 0.93(0.70)   | 1.19(0.75)     |  |  |
| 2 | 0.5  | $1.987 \ (0.239) \ [0.235]$ | 0.932           | 0.340   | 0.904 | 0.91(0.68)   | 1.21(0.79)     |  |  |
| 0 | 1    | 0.003 (0.064) [0.064]       | 0.938           | -       | -     | -            | -              |  |  |
| 1 | 1    | $0.997 \ (0.066) \ [0.065]$ | 0.944           | 0.748   | 0.938 | 0.88(0.64)   | 1.12(0.79)     |  |  |
| 2 | 1    | 1.997 (0.071) [0.068]       | 0.938           | 0.912   | 0.958 | 0.92(0.70)   | 1.08(0.91)     |  |  |
| 0 | 2    | 0.000(0.009)[0.008]         | 0.942           | -       | -     | -            | -              |  |  |
| 1 | 2    | 1.015 (0.012) [0.012]       | 0.756           | 1.000   | 1.000 | 1.66(1.07)   | 1.66(1.07)     |  |  |
| 2 | 2    | 2.031 (0.015) [0.015]       | 0.436           | 1.000   | 1.000 | 3.16(1.49)   | $3.16\ (1.49)$ |  |  |
| 0 | 3    | 0.000(0.001)[0.001]         | 0.942           | -       | -     | -            | -              |  |  |
| 1 | 3    | 1.034 (0.006) [0.005]       | 0.000           | 1.000   | 1.000 | 17.75 (3.10) | 17.75 (3.10)   |  |  |
| 2 | 3    | 2.068 (0.011) [0.009]       | 0.000           | 1.000   | 1.000 | 35.74(5.64)  | 35.74(5.64)    |  |  |

 $\beta$  is the effect parameter, and p is the power. Coverage refers to the number of replications where the true  $\beta$  was contained within the corresponding 95% confidence interval. The power was correctly chosen (Correct) if the best-fitting fractional polynomial was also the correct fractional polynomial, whilst the correct model was within the set of powers that fit the data equally as well as the best-fitting fractional polynomial (Set) if the difference between twice the log-likelihood for the correct model and the best-fitting model was less than the 90th percentile of the relevant  $\chi^2$  distribution. The heuristic statistic (mean (SD) across simulations) is the sum of the absolute values of the predicted value of the outcome minus the correct value of the outcome at the mean value of the exposure in deciles of the IV-free distribution. The heuristic statistic is calculated both for the correct fractional polynomial (Correct FP), and for the best-fitted fractional polynomial (Best FP). SD, standard deviation; SE, standard error; FP, fractional polynomial.

Table S2: Simulation results for fractional polynomials of degree 2 with  $\beta_1 = 1$  and  $\beta_2 = 2$ .

|       |       | Fit                         | ting correct FP             | Fitting all FPs |               |         |       |                |                 |  |
|-------|-------|-----------------------------|-----------------------------|-----------------|---------------|---------|-------|----------------|-----------------|--|
| 1     | p     | Mean (SD) [Mean SE]         |                             |                 | Coverage      |         | ers   | Heuristic      |                 |  |
| $p_1$ | $p_2$ | $\hat{eta}_1$               | $\hat{eta}_2$               | $\hat{eta}_1$   | $\hat{eta}_2$ | Correct | Set   | Correct FP     | Best FP         |  |
| -2    | -2    | 0.856 (3.756) [3.606]       | 2.178 (6.653) [6.502]       | 0.926           | 0.942         | 0.272   | 0.988 | 1.55 (1.08)    | 1.48 (1.02)     |  |
| -2    | -1    | 0.433 (5.995) [5.994]       | 2.281 (4.170) [4.160]       | 0.950           | 0.950         | 0.012   | 0.974 | 1.41(0.91)     | 1.43(0.89)      |  |
| -2    | -0.5  | 1.305 (4.041) [3.833]       | 1.784 (3.173) [3.070]       | 0.934           | 0.944         | 0.010   | 0.986 | 1.45(0.93)     | 1.44(0.94)      |  |
| -2    | 0     | $0.812 \ (2.786) \ [2.805]$ | $1.955 \ (0.624) \ [0.636]$ | 0.946           | 0.950         | 0.026   | 0.958 | 1.34(0.83)     | 1.48(0.91)      |  |
| -2    | 0.5   | 0.954 (2.142) [2.187]       | $1.999 \ (0.552) \ [0.552]$ | 0.958           | 0.954         | 0.036   | 0.964 | 1.28(0.79)     | 1.44(0.93)      |  |
| -2    | 1     | 1.102 (1.887) [1.974]       | 2.003 (0.135) [0.140]       | 0.948           | 0.948         | 0.072   | 0.964 | 1.40(0.88)     | 1.67(1.07)      |  |
| -2    | 2     | $0.310 \ (2.830) \ [2.514]$ | $2.025 \ (0.034) \ [0.030]$ | 0.908           | 0.828         | 0.314   | 0.964 | 3.91(1.73)     | 5.01(2.70)      |  |
| -2    | 3     | -6.114 (8.221) [6.580]      | $2.051 \ (0.023) \ [0.018]$ | 0.812           | 0.280         | 0.440   | 0.980 | 37.67(5.59)    | 34.6 (6.79)     |  |
| -1    | -1    | 1.004 (0.713) [0.718]       | 2.067 (3.855) [3.776]       | 0.946           | 0.946         | 0.008   | 0.980 | 1.31(0.87)     | 1.37(0.95)      |  |
| -1    | -0.5  | 0.525 (7.081) [7.247]       | 2.551 (8.175) [8.363]       | 0.952           | 0.948         | 0.002   | 0.962 | 1.31(0.87)     | 1.38(0.91)      |  |
| -1    | 0     | 1.399 (3.551) [3.505]       | 2.109 (1.184) [1.146]       | 0.944           | 0.938         | 0.006   | 0.968 | 1.30(0.78)     | 1.47(0.91)      |  |
| -1    | 0.5   | $0.815 \ (2.166) \ [2.265]$ | 1.929 (0.784) [0.824]       | 0.954           | 0.958         | 0.006   | 0.964 | 1.29(0.83)     | 1.49(0.99)      |  |
| -1    | 1     | 0.871 (1.915) [1.887]       | 1.985 (0.193) [0.192]       | 0.942           | 0.938         | 0.004   | 0.962 | 1.33(0.79)     | 1.70(1.05)      |  |
| -1    | 2     | 0.293 (2.488) [2.204]       | 2.020 (0.043) [0.037]       | 0.900           | 0.902         | 0.026   | 0.956 | 3.74(1.54)     | 4.73(2.61)      |  |
| -1    | 3     | -3.729 (6.988) [5.521]      | 2.051 (0.029) [0.022]       | 0.820           | 0.432         | 0.026   | 0.966 | 36.58 (5.29)   | 34.62 (6.74)    |  |
| -0.5  | -0.5  | 1.021 (3.551) [3.588]       | 1.959 (3.903) [3.974]       | 0.938           | 0.946         | 0.018   | 0.990 | 1.28(0.81)     | 1.37 (0.86)     |  |
| -0.5  | 0     | 1.113 (7.621) [7.615]       | 2.008 (2.159) [2.158]       | 0.956           | 0.952         | 0.002   | 0.982 | 1.25(0.84)     | 1.44(0.99)      |  |
| -0.5  | 0.5   | 1.296 (3.715) [3.688]       | 2.093 (1.162) [1.162]       | 0.944           | 0.946         | 0.002   | 0.968 | 1.20(0.79)     | 1.5(1.05)       |  |
| -0.5  | 1     | 0.752(2.843)[2.787]         | 1.979 (0.246) [0.246]       | 0.944           | 0.946         | 0.002   | 0.938 | $1.30\ (0.79)$ | 1.76(1.08)      |  |
| -0.5  | 2     | 0.314 (3.249) [3.012]       | 2.022 (0.049) [0.044]       | 0.922           | 0.896         | 0.012   | 0.974 | 3.66(1.52)     | 4.51(2.33)      |  |
| -0.5  | 3     | -5.579 (8.982) [7.322]      | 2.049 (0.031) [0.025]       | 0.836           | 0.500         | 0.022   | 0.954 | 36.60 (5.48)   | 35.21 (7.03)    |  |
| 0     | 0     | 0.891 (1.287) [1.336]       | 2.036 (0.553) [0.576]       | 0.952           | 0.956         | 0.008   | 0.966 | 1.23(0.78)     | 1.64(1.07)      |  |
| 0     | 0.5   | 0.996 (2.106) [2.033]       | 1.977 (2.346) [2.262]       | 0.938           | 0.934         | 0.004   | 0.964 | 1.21(0.72)     | 1.53(0.95)      |  |
| 0     | 1     | 1.004 (1.149) [1.172]       | 1.996 (0.353) [0.362]       | 0.940           | 0.940         | 0.012   | 0.948 | 1.22(0.77)     | 1.69(1.10)      |  |
| 0     | 2     | 1.303 (1.248) [1.087]       | 2.017 (0.064) [0.055]       | 0.898           | 0.902         | 0.026   | 0.954 | 3.72(1.46)     | 4.88(2.60)      |  |
| 0     | 3     | 3.223 (2.986) [2.469]       | 2.044 (0.036) [0.029]       | 0.840           | 0.610         | 0.026   | 0.968 | 35.52 (5.56)   | 34.02 (7.52)    |  |
| 0.5   | 0.5   | 1.031 (4.390) [3.986]       | 1.979 (1.377) [1.252]       | 0.912           | 0.918         | 0.006   | 0.952 | $1.3 \ (0.79)$ | 1.72(1.09)      |  |
| 0.5   | 1     | 1.025 (2.603) [2.557]       | 1.996 (0.716) [0.705]       | 0.938           | 0.940         | 0.010   | 0.954 | 1.27(0.74)     | 1.76(1.11)      |  |
| 0.5   | 2     | 1.477 (1.784) [1.633]       | 2.011 (0.079) [0.072]       | 0.936           | 0.934         | 0.024   | 0.970 | 3.64(1.53)     | 4.9(2.66)       |  |
| 0.5   | 3     | 3.956 (3.832) [3.399]       | 2.040 (0.039) [0.034]       | 0.864           |               | 0.016   | 0.964 | 34.85 (5.68)   | 34.91 (7.20)    |  |
| 1     | 1     | 1.071 (0.990) [0.959]       | 1.979 (0.452) [0.438]       | 0.942           | 0.936         | 0.086   | 0.966 | 1.47(0.83)     | 2.14(1.33)      |  |
| 1     | 2     | 1.231 (0.776) [0.703]       | 1.995 (0.121) [0.110]       | 0.912           |               | 0.030   | 0.960 | 3.64(1.42)     | 4.88(2.58)      |  |
| 1     | 3     | 2.180 (1.425) [1.224]       | 2.028 (0.051) [0.042]       | 0.826           |               | 0.038   | 0.968 | 34.2(5.94)     | 34.48 (7.81)    |  |
| 2     | 2     | 1.233 (0.362) [0.306]       | 1.920 (0.219) [0.184]       | 0.858           |               | 0.246   | 0.944 | 10.44(2.47)    | $12.35\ (6.31)$ |  |
| 2     | 3     | 1.389 (0.504) [0.419]       | 1.990 (0.108) [0.089]       | 0.846           |               | 0.136   | 0.948 | 34.82 (7.11)   | 39.65 (11.21)   |  |
| 3     | 3     | 1.377 (0.295) [0.233]       | 1.864 (0.202) [0.157]       | 0.660           |               | 0.704   |       | 84.13 (17.71)  | 74.39 (18.89)   |  |

 $\beta_1$  and  $\beta_2$  are the effect parameters, and  $p_1$  and  $p_2$  are the powers. Coverage refers to the number of replications where the true  $\beta$  was contained within the corresponding 95% confidence interval. The powers were correctly chosen (Correct) if the best-fitting fractional polynomial was also the correct fractional polynomial, whilst the correct model was within the set of powers that fit the data equally as well as the best-fitting fractional polynomial (Set) if the difference between twice the log-likelihood for the correct model and the best-fitting model was less than the 90th percentile of the relevant  $\chi^2$  distribution. The heuristic statistic (mean (SD) across simulations) is the sum of the absolute values of the predicted value of the outcome minus the correct value of the outcome at the mean value of the exposure in deciles of the IV-free distribution. The heuristic statistic is calculated both for the correct fractional polynomial (Correct FP), and for the best-fitted fractional polynomial (Best FP). SD, standard deviation; SE, standard error; FP, fractional polynomial.

Table S3: Additional simulations to assess impact of violations of assumptions for fractional polynomials.

|                     |             |     |                             |          | Power of test |       |       |
|---------------------|-------------|-----|-----------------------------|----------|---------------|-------|-------|
| Varying             | Model       | β   | Mean (SD) [Mean SE]         | Coverage | Quad          | Q     | FP    |
| IV-exposure         | Linear      | 0   | $0.003 \ (0.064) \ [0.064]$ | 0.940    | 0.048         | 0.078 | 0.020 |
|                     | Linear      | 1   | $1.001 \ (0.063) \ [0.065]$ | 0.952    | 0.036         | 0.046 | 0.022 |
|                     | Logarithm   | 2   | $1.967 \ (0.226) \ [0.211]$ | 0.926    | 0.550         | 0.274 | 0.582 |
|                     | Square root | 2   | $1.974 \ (0.242) \ [0.235]$ | 0.934    | 0.174         | 0.094 | 0.176 |
|                     | Quadratic   | 0.1 | $0.101 \ (0.009) \ [0.009]$ | 0.954    | 0.612         | 0.318 | 0.586 |
| Exposure-outcome    | Linear      | 0   | -0.001 (0.079) [0.078]      | 0.938    | 0.050         | 0.058 | 0.006 |
|                     | Linear      | 1   | $1.003 \ (0.080) \ [0.078]$ | 0.944    | 0.044         | 0.068 | 0.030 |
|                     | Logarithm   | 2   | $1.977 \ (0.220) \ [0.216]$ | 0.938    | 0.456         | 0.230 | 0.496 |
|                     | Square root | 2   | $1.980 \ (0.248) \ [0.250]$ | 0.946    | 0.144         | 0.080 | 0.140 |
|                     | Quadratic   | 0.1 | $0.101 \ (0.026) \ [0.024]$ | 0.940    | 0.114         | 0.098 | 0.092 |
| Both                | Linear      | 0   | $0.009 \ (0.081) \ [0.077]$ | 0.936    | 0.062         | 0.060 | 0.012 |
|                     | Linear      | 1   | $0.991 \ (0.080) \ [0.078]$ | 0.930    | 0.056         | 0.070 | 0.042 |
|                     | Logarithm   | 2   | $1.972 \ (0.218) \ [0.216]$ | 0.942    | 0.490         | 0.250 | 0.516 |
|                     | Square root | 2   | 2.005 (0.250) [0.250]       | 0.960    | 0.134         | 0.092 | 0.138 |
|                     | Quadratic   | 0.1 | $0.103 \ (0.024) \ [0.024]$ | 0.956    | 0.128         | 0.100 | 0.116 |
| Both $(\rho = 0.2)$ | Linear      | 0   | 0.015 (0.082) [0.077]       | 0.938    | 0.114         | 0.086 | 0.022 |
| ,                   | Linear      | 1   | $1.004 \ (0.076) \ [0.078]$ | 0.956    | 0.114         | 0.064 | 0.084 |
|                     | Logarithm   | 2   | 1.957 (0.208) [0.218]       | 0.950    | 0.352         | 0.162 | 0.382 |
|                     | Square root | 2   | $1.997\ (0.258)\ [0.248]$   | 0.938    | 0.078         | 0.064 | 0.088 |
|                     | Quadratic   | 0.1 | 0.100 (0.026) [0.024]       | 0.924    | 0.668         | 0.408 | 0.576 |

IV–exposure refers to the simulation setting where the IV–exposure association was allowed to vary across individuals. Exposure–outcome refers to the simulation setting where the exposure–outcome association was allowed to vary across individuals. Both refers to the simulation setting where both the IV–exposure and exposure–outcome associations were allowed to vary across individuals. Both ( $\rho$  = 0.2) refers to the simulation setting where both the IV–exposure and exposure–outcome associations were allowed to vary across individuals with correlation of 0.2.  $\beta$  is the effect parameter. Coverage refers to the number of replications where the true  $\beta$  was contained within the corresponding 95% confidence interval. SD, standard deviation; SE, standard error; Quad, quadratic test for assessing non-linearity; Q, Cochran-Q test; FP; fractional polynomial test.

Table S4: Additional simulations to assess impact of violations of assumptions for the piecewise linear model assuming a threshold effect with  $\beta = 0.5$ 

## (a) Overall results

|                                                       | Power of test    |                                  |                  |  |  |  |
|-------------------------------------------------------|------------------|----------------------------------|------------------|--|--|--|
| Varying                                               | Quad             | Q                                | FP               |  |  |  |
| IV-exposure Exposure-outcome Both Both $(\rho = 0.2)$ | $0.826 \\ 0.774$ | 0.706<br>0.638<br>0.644<br>0.712 | $0.716 \\ 0.708$ |  |  |  |

## (b) Quantile results

|                     | Decile of the IV-free exposure distribution |       |       |       |       |       |       |       |       |       |       |
|---------------------|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Varying             | Parameter                                   | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
| IV-exposure         | Correct                                     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.057 | 0.227 | 0.488 | 1.182 |
|                     | Mean                                        | 0.023 | 0.039 | 0.044 | 0.039 | 0.033 | 0.045 | 0.115 | 0.275 | 0.543 | 1.244 |
|                     | Coverage                                    | 0.934 | 0.928 | 0.934 | 0.938 | 0.934 | 0.918 | 0.908 | 0.932 | 0.934 | 0.926 |
| Exposure-outcome    | Correct                                     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.054 | 0.224 | 0.486 | 1.179 |
|                     | Mean                                        | 0.005 | 0.007 | 0.005 | 0.004 | 0.004 | 0.015 | 0.080 | 0.235 | 0.498 | 1.182 |
|                     | Coverage                                    | 0.936 | 0.924 | 0.924 | 0.932 | 0.930 | 0.926 | 0.932 | 0.948 | 0.952 | 0.950 |
| Both                | Correct                                     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.057 | 0.227 | 0.488 | 1.182 |
|                     | Mean                                        | 0.025 | 0.041 | 0.045 | 0.042 | 0.038 | 0.048 | 0.116 | 0.270 | 0.530 | 1.222 |
|                     | Coverage                                    | 0.936 | 0.926 | 0.938 | 0.936 | 0.928 | 0.932 | 0.922 | 0.924 | 0.924 | 0.942 |
| Both $(\rho = 0.2)$ | Correct                                     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.057 | 0.227 | 0.488 | 1.182 |
| ,                   | Mean                                        | 0.028 | 0.045 | 0.049 | 0.043 | 0.036 | 0.046 | 0.115 | 0.275 | 0.542 | 1.286 |
|                     | Coverage                                    | 0.934 | 0.936 | 0.926 | 0.932 | 0.950 | 0.942 | 0.940 | 0.940 | 0.942 | 0.936 |

IV–exposure refers to the simulation setting where the IV–exposure association was allowed to vary across individuals. Exposure–outcome refers to the simulation setting where the exposure–outcome association was allowed to vary across individuals. Both refers to the simulation setting where both the IV–exposure and exposure–outcome associations were allowed to vary across individuals. Both ( $\rho=0.2$ ) refers to the simulation setting where both the IV–exposure and exposure–outcome associations were allowed to vary across individuals with correlation of 0.2. Coverage refers to the number of replications where the true mean value of the outcome for that decile was contained within the corresponding 95% confidence interval. Quad, quadratic test for assessing non-linearity; Q, Cochran-Q test; FP; fractional polynomial test.