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File S1: Derivation of Equations 7 and 8

An inviable introgression from one lineage to another may be
caused by one or more DMIs. If we assume that all inviable
single introgressions are caused by simple DMIs, we can apply
the Orr model.

Without loss of generality, we assume that all substitutions
take place in one lineage and that introgressions are assayed
in either the derived → ancestral or the ancestral → derived
direction. Below, we take each case in turn.

Derived→ ancestral
Introgressions of derived alleles can be treated independently
after each substitution. The change in the number of derived
inviable single introgressions following substitution k + 1 is
given by

∆J = Jk+1 − Jk =

{
0 , if ∆I = 0
1 , if ∆I > 1

For simplicity we refer to J(1)k as Jk.
Following the k + 1 substitution, the Orr model assumes

that ∆I simple DMIs arise from k independent Bernoulli trials
with probability of success p. Therefore, ∆J = 0 is expected to
occur with probability (1− p)k, and ∆J = 1 with probability
1− (1− p)k.

Thus, the expected number of derived inviable introgressions
is given by

Jk+1 = Jk + 1− (1− p)k (S1)
Assuming J1 = 0, the solution to difference Equation S1 is

Jk = k− 1− (1− p)k

p
. (S2)

Equations S1 and S2 are Equations 7 and 8 in the main text,
respectively.

Ancestral→ derived
Calculating the number of inviable ancestral introgressions is
complicated by the fact that each ancestral allele can be “re-
cruited” into a DMI after each substitution occurring after its
corresponding derived allele has substituted.

After the k substitution, there are Jk ancestral inviable intro-
gressions, and k− Jk ancestral alleles that, when introgressed,
do not cause inviability. Thus, the expected number of ancestral
inviable introgressions is given by

Jk+1 = Jk + kp
(

1− Jk
k

)
= Jk(1− p) + kp (S3)

Assuming J1 = 0, the solution to difference Equation S3 is also
Equation S2.

Conclusion
Equations S1 and S2 describe the accumulation of all inviable
single introgressions in the Orr model, regardless of whether the
introgressed alleles are derived or ancestral.
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File S2: Detecting Simple DMIs

Here we use the general terms genotypes, loci and alleles, in-
stead of sequences, sites and nucleotides.

Two viable genotypes, 1 and 2, differ at k > 2 loci. Loci are
denoted by A, B, C, . . . The alleles of genotype 1 are indicated
by a subscript 1 (A1, B1, C1, . . .); the alleles of genotype 2 are
indicated by a subscript 2 (A2, B2, C2, . . .). Introgression of the
A1 and B1 alleles from genotype 1 to genotype 2 is denoted

1 A,B−−→ 2.
There is a simple DMI between the A1 and B2 alleles if all of

the following 6 conditions are met.

1. The single introgression 1 A−→ 2 results in an inviable geno-
type. On its own, this condition indicates that there is a
DMI between the A1 allele and one or more alleles from
genotype 2 at the remaining k− 1 loci (B2, C2, . . .).

2. The single introgression 2 B−→ 1 results in an inviable geno-
type. On its own, this condition indicates that there is a
DMI between the B2 allele and one or more alleles from
genotype 1 at the remaining k− 1 loci (A1, C1, . . .). Taken
together, conditions #1–2 are not sufficient to indicate that
the A1 and B2 alleles participate in the same DMI.

3. The double introgressions 1 A,B−−→ 2 and 2 A,B−−→ 1 both result
in viable genotypes. In other words, a second introgression
rescues viability. Taken together, conditions #1–3 indicate
that the A1 and B2 alleles participate in the same DMI; the
conditions do not, however, rule out the possibility that the
DMI involves additional alleles from either genotype at the
remaining k − 2 loci (C, D, . . .). In other words, the DMI
might be simple or complex.

4. A1 and B2 are not both ancestral. If conditions #1–3 are met
but condition #4 is violated, then the DMI must involve
a derived allele at an additional locus—i.e., the DMI is
complex—because A1 and B2 were not incompatible in the
ancestor.

5. If both A1 and B2 are derived alleles, this condition is ig-
nored. If A1 is an ancestral allele, then the B2 substitution
occurred after the A2 substitution; if B2 is an ancestral allele,
then the A1 substitution occurred after the B1 substitution.
If conditions #1–4 are met but condition #5 is violated then
the DMI is complex because A1 and B2 were not incompati-
ble in the background in which the derived allele arose.

6. If the latest substitution at either the A or the B locus was
the i-th substitution, and i < k, then conditions #1–3 are also
met in all genotypes present after the i-th substitution. If
conditions #1–5 are met but condition #6 is violated then the
DMI is complex because A1 and B2 were not incompatible
in some genetic backgrounds.

To count simple DMIs in our simulations, we introgress nu-
cleotides between the two sequences at each of the k divergent
sites, in both directions. Every time an introgression results in
an inviable genotype (condition #1), we look for another intro-
gression in the opposite direction that also results in an inviable
genotype (condition #2). We then test both double introgressions
involving these alleles to test for condition #3. If we find a pair
of alleles satisfying conditions #1–3, we test for conditions #4–6
directly.
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Figure S1 Allowing sites to undergo multiple substitutions does not affect the pattern of accumulation of inviable single, double,
and triple introgressions (Figure 2). Values are means of 103 simulations with α = 12. Shaded regions indicate 95% confidence
intervals, CIs.

Figure S2 The probability that a simple DMI appears is approximately constant in the RNA model. We measured p directly in each
simulation in the ancestor and in one lineage at k = 5, 10, 15, . . . , 40 (Equation 5). Values are means and 95% CIs of 103 simulations
with α = 12. The solid line is a linear regression fit on the mean values of p. The dashed line is the pattern of decline of p that would
be expected to generate a trend in the number of inviable single introgressions most similar to that in Figure 2 using Equation 7.
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Figure S3 The numbers of inviable single and double introgressions after k = 40 substitutions are negatively correlated with each
other in the RNA model (ρ = −0.469, P < 10−6). One- and two-dimensional kernel density estimates based on 103 simulations
with α = 12.

Figure S4 Holeyness decreases with the value of α (A) and increases with the number of base pairs, β, in the reference sequence (B).
(A) Values are means of 103 RNA folding simulations for each value of α. (B) The holeyness data from the 5× 103 simulations used
in (A) were grouped by individual values of β. We pooled estimates for β 6 20 and for β > 34. The resulting β groups have sample
sizes ranging from 125 to 552. Error bars are 95% CIs. The error bars in (A) are covered by the points.
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Figure S5 Effect of α on the accumulation of inviable single (A), double (B), and triple (C) introgressions in the RNA model. Values
are means of 103 simulations for each value of α. Shaded regions indicate 95% CIs.
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Figure S6 Evolution of the proportion of single inviable introgressions, P1, as populations diverge in the RNA model. Values are
means of 103 simulations with α = 12. Shaded region indicates 95% CIs.
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Table S1 Properties of the 103 ancestors used in the simulations with α = 12

Property Mean (Standard deviation)

Sequence

GC content 0.52 (0.05)

Hamming distance from reference sequence 55.94 (5.09)

Structure

Minimum free energy (kcal mol−1) –24.98 (6.01)

Number of base pairs 25.63 (3.99)

Holeyness 0.58 (0.12)

Base pair distance from the reference sequence 11.24 (1.09)

Ensemble

Base pair distance between pairs of sequences 50.93 (5.79)
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Table S2 Estimates of the parameters in Equation 6. The model was fitted by nonlinear least-squares regression to the average
numbers of inviable single, double, and triple introgressions shown in Figure S1.

Introgressed alleles, i DMI order, n ai (95% CI) bi (95% CI) R2

1 > 2 0.094 (0.003) 1.37 (0.0098) 0.999

2 > 3 0.024 (0.002) 1.80 (0.026) 0.999

3 > 4 0.0036 (0.0004) 2.42 (0.036) 0.998

Table S3 Estimates of the parameters in Equation 6. The model was fitted by nonlinear least-squares regression to the average
numbers of inviable single, double, and triple introgressions shown in Figure S5.

Introgressed alleles, i DMI order, n ai (95% CI) bi (95% CI) R2

α = 4

1 > 2 0.075 (0.002) 1.41 (0.010) 0.999

2 > 3 0.023 (0.001) 1.78 (0.016) 0.999

3 > 4 0.004 (0.0004) 2.35 (0.026) 0.999

α = 8

1 > 2 0.097 (0.003) 1.35 (0.008) 0.999

2 > 3 0.022 (0.001) 1.81 (0.017) 0.999

3 > 4 0.003 (0.0002) 2.49 (0.022) 0.999

α = 16

1 > 2 0.10 (0.003) 1.35 (0.009) 0.999

2 > 3 0.025 (0.002) 1.80 (0.019) 0.999

3 > 4 0.003 (0.0004) 2.45 (0.031) 0.999

α = 20

1 > 2 0.13 (0.004) 1.31 (0.009) 0.999

2 > 3 0.027 (0.001) 1.79 (0.015) 0.999

3 > 4 0.002 (0.0002) 2.61 (0.035) 0.999
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