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1 Supplementary Results

The Euclidean nature of the d2 metric allows techniques such as principal components analysis
to be used to find low-dimensional representations of a set of trees. We have used discriminant
analysis of principal components (DAPC) [?] to determine which components (sub-tree shapes)
best distinguish the tropical vs USA influenza trees, and the simulated birth-death trees with
different birth-to-death ratios (R0). In both cases, a single axis separates the groups of trees
almost entirely; Figure S1 illustrates this, showing the value of the first component.
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Figure S1: DAPC: One principal component separates the groups of trees in both cases. Left:
tropical vs USA trees. Right: simulated birth-death trees.

Since there is only one principal component and it almost entirely separates the trees into
two groups (this is the case both for the tropical vs USA and for the birth-death trees), it is
straightforward to determine which sub-trees make up this principal component and therefore
best separate the groups. The loadings of the vector entries vi, corresponding to trees i (1 for a
tip, 2 for a cherry and so on), reflect the importance of the i′th tree in distinguishing the groups.
Figure S2 shows the sub-trees that are more frequently present in the two groups of birth-death
trees, in parallel with Figure 3 in the main text (for the tropical vs USA trees).

Imbalance, or asymmetry, is the most widely-discussed scalar measure of tree shape. Indeed,
for rooted full binary trees, in the absence of branch length considerations, the most natural
quantity to examine at each node is the difference between the numbers of descendants on the
two sides (the key quantity in the Colless imbalance), and/or the path lengths from the tips to
the root. Imbalance does a good job in separating the groups, but cannot in itself reveal which
imbalanced sub-trees are more highly represented in which groups.
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Figure S2: Multi-dimensional scaling plot comparing the trees from the simulated birth-death
process. Lower: tree shapes that distinguish the two groups as determined by discriminant
analysis of principal components. Colour represents groups in the lower panel, so the blue sub-
trees are more prevalent among the trees with R0 = 5 and the red more prevalent in R0 = 2. The
trees’ integer labels correspond to the labelling scheme. Depth of colour corresponds to Sackin
imbalance, with darker shading corresponding to higher imbalance.

We illustrate how the shape metric can be extended to include branch lengths and other fea-
tures of the trees, even if those themselves are not metrics and do not uniquely define a tree. Let
V be a new vector, whose first k components are various summary features or other properties.
Here, let V(1) be the ratio of the mean terminal branch length in a tree to the mean internal
branch length. This captures how “star-like” a tree is, where star-like trees have long terminal
branches and short internal ones. Let the remaining components of V be the counts of the labels,
as we have done throughout: number of 1s, 2s, 3s and so on. Then the metric d̂ is

d̂(T1, T2) = ||w ·Va − w ·Vb|| =

√√√√(w0Va
1 − w2Vb

1 )
2 +

L

∑
i=1

wi(va
i − vb

i )
2 (1)

where superscripts refer to which tree a, b the entry is from, and subscripts 1 and i refer to the
entry of the vector. d̂ is Euclidean because it is the standard Euclidean distance between two
vectors. The weights w should be chosen to reflect the desired weighting and the natural scaling
of different variables; the counts in v are integers and the natural unit is ’number of occurrences’;
to compare these to branch lengths in substitutions per site requires a scaling choice. In Figure S4
we use a weight of w0 = 1 and wi = 0.00067 for all i, to compensate for the fact that the mean
branch length is much less than 1. Figure S4 illustrates that metric d̂ retains the shape separation
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Figure S3: Two standard tree summary statistics, the Sackin imbalance and the number of cherry
configurations, in the tropical and USA flu trees, the simulated birth-death trees with different
values of the basic reproduction number R0 and in the trees from different random models.

and additionally identifies similarity between outliers in the length statistic.
Figure S5 illustrates tree shapes together with their labels under the map ψZ.
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Figure S4: Multi-dimensional scaling plot derived from distances d̂, containing a weighted com-
bination of the shape distance and a length-based comparison of the ratio between the mean
terminal branch length and the mean internal branch length in each tree.
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Figure S5: Some trees and their associated integers using the map ψZ of Example 1. The num-
bering goes from -5 to 5, with the exception of 0 which corresponds to the “empty tree”.
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2 Extension to multifurcations and sampled ancestors

A polytomy, or multifurcation, is an internal node with more than two children. In extending the
scheme to handle polytomies we also extend it to allow for internal nodes with only one child.

We first explicitly work out the case where the maximum-size multifurcation is 4. Let 0 be the
empty tree. Nodes may have 0, 1, 2, 3, or 4 children, and we write a general tree as (k, j, l, m),
where k, j, l and m are the labels of the four trees descending from the root. Some of these may be
empty (0) as not every node is a four-fold polytomy. As in the binary case, we use the convention
that k ≥ j ≥ l ≥ m, and sort the length-four strings lexicographically. Every possible tree T with
a maximum-size multifurcation of four has a unique label φ4(T) in this list. We seek to find an
explicit expression for the label φ4(T) – the order in the list – for the tree (k, j, l, m). We begin
by fixing k and finding how many such labels there are, going from (k, 0, 0, 0) up to (k, k, k, k).
Summing these over m < k will give the explicit expression for the label.

The number of possible labels in the scheme with four characters, starting with k and sorted
lexicographically, is (k+3

k ). To see this, note that each (k, j, l, m) with k ≥ j ≥ l ≥ m can be
thought of as a path on a lattice, starting on the left at height k and descending to height 0 after
three horizontal steps. The path has a total length of k + 3 steps, and of these, three must be
steps to the right and k must be downward. The number of such paths is the number of ways of
placing three rightwards steps amongst k + 3 steps, ie. (k+3

k ). Extending this, we obtain the label
φ4 of the tree (k + 1, 0, 0, 0), noting that φ4(k, k, k, k) is the sum of the numbers of labels beginning
with 1, 2, ... k. φ4(k + 1, 0, 0, 0) = 1 + φ4(k, k, k, k) (and we write 1 as (3

3)):

φ4(k + 1, 0, 0, 0) =
k

∑
x=0

(
x + 3

3

)
.

Rewriting the sum and making use of the identity ∑k+c
y=0 (

y
c) = (k+c+1

c+1 ) , we have

φ4(k + 1, 0, 0, 0) =
k

∑
x=0

(
x + 3

3

)
=

k+3

∑
y=3

(
y
3

)
=

k+3

∑
y=0

(
y
3

)
=

(
k + 4

4

)
.

To obtain φ4(k, j, l, m), we note that

φ4(k, j, l, m) = φ4(k, 0, 0, 0) + φ3(j, 0, 0) + φ2(l, m)

(where φ2 is not precisely the same form as in the main text because here we allow for nodes
with only one child). Following the same logic, this is

φ4(k, j, l, m) =

(
k + 3

4

)
+

(
j + 2

3

)
+

(
l + 1

2

)
+ m.

As in the binary case, the labels will grow unfeasibly large, but in principle this is a bijective map
between trees whose maximum-size polytomy is four and the non-negative integers.

Naturally, there is nothing special about size-four polytomies. If the maximum size is c, the
scheme is

φc(xc, xc−1, xc−2, .., .x1) =
c

∑
i=1

(
xi + i− 1

i

)
.
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