All supplementary plots and tables show results for the following 7 sets of parameter values:
A) $\mu=10^{-6}, \theta=0.01, \lambda=1 / 2$ and 2 dimensions. This is identical to the figures in the main text
B) $\mu=10^{-4}, \theta=1, \lambda=1 / 2$ and 2 dimensions
C) $\mu=10^{-6}, \theta=0.01, \lambda=2$ and 2 dimensions
D) $\mu=10^{-6}, \theta=0.01, \lambda=1 / 4$ and 2 dimensions
E) $\mu=10^{-6}, \theta=0.01, \lambda=1 / 2$ and 3 dimensions
F) $\mu=10^{-6}, \theta=0.01, \lambda=1 / 2$ and 4 dimensions
G) $\mu=10^{-6}, \theta=0.01, \lambda=1 / 2$ and 7 dimensions

Figure S1. Phenotypic distribution of homozygous alleles as in Figure 1 for all sets of parameter values. For simulations containing more than two dimensions (plots E-G), only the first two dimensions are shown.

Figure S2. Epistasis as a function of overdominance as in Figure 3 for all sets of parameter values.

Figure S3. Maximum pairwise distance statistic as in Figure 4 for all sets of parameter values.

Figure S4. Maximum distance from optimal trajectory statistic as in Figure 5 for all sets of parameter values.

Figure S5. Effective number of paths statistic as in Figure 6 for all sets of parameter values.

Figure S6. Mean path divergence statistic as in Lobkovsky et. al. (2011) for all sets of parameter values.

Table S1. Pairwise Epistasis ($\mathrm{n}=5,000$)

Table S2. Conditional Mutations

Table S3. Backwards Predictability P Values

Table S4. Epistasis and Predictability P values

Table S1

Parameter	X2 p-value	Ploidy	Sign	Reciprocal Sign		Ancestral Deleterious
		Haploid		52.30\%	31.00\%	16.00\%
A	8.8E-128	Diploid		53.00\%	21.40\%	2.80\%
		Haploid		74.70\%	68.80\%	47.20\%
B	5.8E-252	Diploid		76.40\%	65.10\%	6.20\%
		Haploid		12.60\%	3.50\%	0.80\%
C	1.3E-015	Diploid		12.00\%	1.30\%	0.00\%
		Haploid		61.40\%	51.00\%	38.00\%
D	2.8E-151	Diploid		65.80\%	49.40\%	17.20\%
E		Haploid		53.20\%	38.10\%	23.00\%
E	7.7E-125	Diploid		51.40\%	26.70\%	3.30\%
F	3.3E-139	Haploid		52.90\%	38.00\%	23.80\%
F	3.3E-139	Diploid		50.60\%	25.40\%	2.90\%
G	2.5E-145	Haploid		54.20\%	38.90\%	24.50\%
G	2.5E-145	Diploid		48.80\%	23.20\%	2.20\%

Page 1

Table S2

Parameter	X2 p-value	Ploidy Plaploid	All A
A	$1.50 \mathrm{E}-14$	Diploid Diplo	26.3%
B	$1.30 \mathrm{E}-79$	Haploid	48.1%
	Diploid	40.8%	
C	$4.50 \mathrm{E}-06$	Haploid	3.4%
	Diploid	4.6%	
D	$2.80 \mathrm{E}-34$	Haploid	27.4%
		Diploid	36.1%
E	$1.40 \mathrm{E}-07$	Haploid	18.3%
		Diploid	21.5%
F	$8.20 \mathrm{E}-05$	Haploid	17.4%
	Diploid	19.7%	
G	$9.46 \mathrm{E}-01$	Haploid	17.6%
		Diploid	17.5%

Initial Mutation Initial Mutation Not Overdominant Overdominant
NA NA
62.4
NA
18.2\%
82.9\%
.
NA
27.2\%

NA
65.5\%

NA
61.4\%

NA
61.9\%

NA
60.9\%
30.4\%

NA
3.7\%

NA
28.0\%

NA
14.0\%

NA
12.1\%

NA
10.3\%

Table S3

Page 3

Table S4
P values from chi-square contingency table tests

	Hap vs Dip across all 4 levels of Epistasis	Diploid Sign Epi. One overdom vs no overdom	Diploid recip sign epi one overdom vs no overdom	Diploid anc del epi one overdom vs no overdom	Diploid sign epi two overdom vs no overdom	diploid recip sign epi two overdom vs no overdom	Diploid anc del epi two overdom vs no overdom	conditional mutation haploid vs diploid	initial mutation vs diploid not overdom initial mutation
A	$8.84 \mathrm{E}-128$	$2.03 \mathrm{E}-103$	$6.20 \mathrm{E}-70$	$3.20 \mathrm{E}-01$	$2.37 \mathrm{E}-61$	2.02E-137	$4.75 \mathrm{E}-49$	$1.52 \mathrm{E}-14$	$2.09 \mathrm{E}-290$
B	$5.80 \mathrm{E}-252$	2.23E-71	1.50E-66	$2.36 \mathrm{E}-04$	$3.93 \mathrm{E}-28$	$2.55 \mathrm{E}-69$	5.87E-59	$1.28 \mathrm{E}-79$	$0.00 \mathrm{E}+00$
C	$1.34 \mathrm{E}-15$	5.72E-54	$6.21 \mathrm{E}-16$	$0.00 \mathrm{E}+00$	$1.31 \mathrm{E}-03$	7.47E-02	$0.00 \mathrm{E}+00$	$4.53 \mathrm{E}-06$	1.15E-100
D	$2.75 \mathrm{E}-151$	8.36E-85	$1.42 \mathrm{E}-80$	$4.95 \mathrm{E}-01$	$3.50 \mathrm{E}-77$	$6.26 \mathrm{E}-155$	$1.11 \mathrm{E}-76$	$2.80 \mathrm{E}-34$	1.90E-177
E	$7.71 \mathrm{E}-125$	3.76E-157	$1.70 \mathrm{E}-86$	5.70E-02	$1.29 \mathrm{E}-56$	$5.26 \mathrm{E}-101$	2.28E-46	$1.39 \mathrm{E}-07$	$0.00 \mathrm{E}+00$
F	3.27E-139	$6.21 \mathrm{E}-168$	1.17E-94	$2.66 \mathrm{E}-01$	$1.43 \mathrm{E}-62$	4.06E-127	$1.22 \mathrm{E}-44$	$8.25 \mathrm{E}-05$	$0.00 \mathrm{E}+00$
G	2.51E-145	$6.20 \mathrm{E}-171$	$2.71 \mathrm{E}-80$	$2.99 \mathrm{E}-01$	1.99E-61	5.47E-114	4.87E-24	$9.46 \mathrm{E}-01$	$0.00 \mathrm{E}+00$

p values from two-tailed t tests

	max pairwise dist p value	max dist from optimal p value	Dip vs Hap Effective num paths p valuje	cor dip effective num paths and num overdom	cor p value dip effective num paths and num overdom	mean path divergence p value
A	9.97E-22	$0.00 \mathrm{E}+00$	$4.06 \mathrm{E}-20$	-0.345	$1.40 \mathrm{E}-19$	$4.89 \mathrm{E}-10$
B	$1.36 \mathrm{E}-66$	7.66E-220	$1.38 \mathrm{E}-79$	-0.302	2.15E-44	$3.45 \mathrm{E}-40$
C	$4.98 \mathrm{E}-27$	$4.21 \mathrm{E}-91$	5.12E-31	-0.425	4.52E-101	$5.11 \mathrm{E}-12$
D	$6.42 \mathrm{E}-21$	$0.00 \mathrm{E}+00$	$3.31 \mathrm{E}-15$	-0.282	$1.86 \mathrm{E}-06$	$4.42 \mathrm{E}-06$
E	$4.42 \mathrm{E}-17$	$0.00 \mathrm{E}+00$	$2.15 \mathrm{E}-23$	-0.393	$6.80 \mathrm{E}-22$	$5.63 \mathrm{E}-09$
F	$9.75 \mathrm{E}-07$	$3.71 \mathrm{E}-196$	$6.41 \mathrm{E}-19$	-0.331	$2.68 \mathrm{E}-13$	$1.63 \mathrm{E}-07$
G	$3.94 \mathrm{E}-04$	7.81E-111	3.86E-09	-0.287	$4.68 \mathrm{E}-09$	$9.85 \mathrm{E}-04$

