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1 Introduction

In the following, we repeat some of the text from the Methods section of the main manuscript.

We have chosen to provide those sections here in order to have a complete, uninterrupted de-

scription of the study design, bioinformatics pipeline, and statistical analyses in one file. All

analyses were done with a combination of custom python and R scripts, using appropriate bioin-

formatics packages as noted.

2 Calculating splicing rates

2.1 Estimating splicing using junction reads exclusively

As an alternative method for calculating Ψ values, we used only reads crossing exon-exon or

intron-exon junction regions for each intron. Each read was considered to be a junction read if

it had a 10 bp overlap on either side of the junction point. We then calculated Ψ values as:

Ψintron =
1
2
(a+ b)

1
2
(a+ b) + c

where: (1) a is the read density for the exon-intron boundary at the 5′ splice site, (2) b is the

read density for the exon-intron boundary at the 3′ splice site, and (3) c is the read density for

the exon-exon boundary. If there were a substantial proportion of reads deriving from spliced

intronic lariats in the libraries, we would expect an inflation of MISO-derived Ψ values (which

incorporate intronic read density) relative to Ψ values based on junction reads along. In fact, we

observed the opposite effect, where MISO-derived Ψ values were generally lower than junction

read derived Ψ values, suggesting minimal contribution from intron lariats, as expected given

that lariats are expected to decay in seconds after splicing.
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2.2 Simulations to assess our accuracy in estimating splicing half-lives

To investigate biases in our measurements of splicing half-lives, we simulated Ψ values from

a range of half-lives and assessed our ability to accurately estimate the simulated half-lives.

Specifically, we simulated Ψ values from 5, 10, and 20 minute timepoints, from 10,000 introns

with half-lives between 0.1-1,000 minutes and 10,000 introns with half-lives between 0.5-20

minutes. Our simulations closely matched the 4sU-seq dataset, with 3 replicates simulated per

time-point. For each time-point, we added jitter to the Ψ values across the three replicates to

match the mean variance across replicates in the true data. If the simulated Ψ value from any

time-point was below 0, the value was adjusted to 0; similarly, if the simulated Ψ value was

above 1, the value was adjusted to 1. The simulated Ψ values were used in the exponential

model described in the Methods to estimate half-lives and compare to the true half-lives from

which the simulated Ψ values were derived.

2.3 Correcting for intron length.

In order to estimate splicing half-lives that are corrected for intron lengths in Supplementary

Figure 8B, we estimated a length-specific median half-life in each of 50 bins across the distri-

bution of intron lengths. This length-specific median was then subtracted from the estimated

half-life to obtain a corrected splicing half-life. For visualization and comparisons purposes,

a constant representing the median non-corrected half-life was added to all corrected splicing

half-lives.
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3 Statistical models to account for variance in splicing rates

3.1 Estimating contribution of intron lengths to variance in splicing half-

time

To estimate the extent to which intron length accounted for variance in splicing rates, we fit a

linear model of the following form to all introns i:

yi = β0 + βixi1 + βixi2 + εi

where:

β0 = a constant for all introns

yi = intron half-life (log10), in minutes

xi1 = intron length (log10), in nt

xi2 = indicator variable (0 for intron length < 60 nt, 1 for intron length 60 nt)

εi = intron-specific error term

We included an indicator variable categorizing introns as either very short (< 60 nt) or longer

given the non-linear relationship that we observed between intron length and half-life, in which

there is a negative relationship between half-life and length for introns ¡ 60 nt, and a positive

relationship for introns 60.

3.2 Estimating contribution of other factors to variance in splicing rates

To estimate the extent to which factors other than intron length accounted for variance in splic-

ing rates, we fit a linear model of the following form to all non-first introns i between 60-70nt:

5



yi = β0 +βi1 +βi2 +βi3 +βi4 +βi5 +βi6 +βi7 +βi8 +βi9 +βi10 +βi11 +βi12 +βi13 +βi14 + εi

where:

yi are half-lives (log10) in min

xi1 = intron length (log10) in nt

xi2 = position of intron in transcript

xi3 = gene expression (log10(TPM))

xi4 = indicator of presence of enhancer in intron i (based on STARR-seq)

xi5 = 5′ splice site score

xi6 = 3′ splice site score

xi7 = length of first intron (log10) in nt

xi8 = half-life of first intron (log10) in min

xi9 = indicator of presence of enhancer in intron i (based on STARR-seq)

xi10 = length of upstream exon (log10) in nt

xi11 = length of downstream exon (log10) in nt

xi12 = % of A + U nt in intron (excluding splice site regions)

xi13 = % of A + U nt in 3′ region of intron (−40 : −21 from 3′ splice site)

xi14 = % of A + U nt in 5′ region of intron (+7 from 5′ splice site to −41 from 3′ splice site)

We used the values from this multiple linear regression model to estimate the relative im-

portance of each parameter contributing to variance in splicing rates. To do so, we used the

relaimpo package in the R environment [1], which arrives at a relative importance percentage

by averaging the sequential sum-of-squares obtained from all possible orderings of the predic-

tors in the model.
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4 Identifying sites of recursive splicing

4.1 Motif Scoring

We calculated position weight matrices (PWM) for the intronic portions of Drosophila 5′ and

3′ splice sites using all annotated splice sites. These weight matrices were then juxtaposed

with 3′ss PWM followed by 5′ss PWM to create a recursive splice site motif PWM. Individual

motif occurrences were scored using a normalized bit score [2]. The bit score for each motif

occurrence is defined as the sum across the log probabilities for each nt being drawn from the

motif. We calculated normalized scores by subtracting the minimum possible score and dividing

by the range of possible bit scores.

4.2 Using splice junction reads and junction spanning read pairs

4.2.1 Extracting recursive splice junction reads

Splice junction reads that span putative recursive junctions provide direct evidence for recursive

splicing (Supplementary Figure 3A, top panel). In order to identify such reads, we extracted

the coordinates of annotated introns and exon-exon junctions from FlyBase D. melanogaster

Release 5.57 [?]. We aligned the 4sU-RNA-seq reads to the corresponding genome release by

using hisat2 [3]. We then extracted reads with an upstream junction matching an annotated

5′ss and a downstream end mapping to an AGGT that is upstream of the downstream most

corresponding annotated 3′ss with the help of Pysam [4].
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4.2.2 Extracting recursive splice junction read pairs

In addition to splice junction reads, read pairs with one end on either side of a recursive splice

junction, which we will henceforth refer to as recursive junction spanning read pairs, identify

recursive sites. We defined putative recursive junction spanning read pairs as read pairs with a

first read aligning close upstream of an annotated 5′ss and a second read aligning to an intronic

region more than 1000 bp downstream of the first read. Additionally, we filtered out read

pairs that have an insert length of less than 1000 bp conditioned on completion of an annotated

splicing event (excluding cassette exons with an AGGT at their 5′ end).

Unlike splice junction reads, recursive junction spanning read pairs do not immediately im-

plicate a specific recursive site. Instead, a recursive site must be inferred based on the empirical

insert length distribution and genomic sequence information. To do this, we adapted the GEM

algorithm, which was originally used to infer protein binding sites from ChIP-seq data [5].

Our modifications to the algorithm and choices for parameters described in the GEM paper

are as follows:

1. The probability of a read, rn, given that there is a recursive site at position m, P (rn|m),

was defined as the probability of observing the implied insert length in the empirical insert

length distribution.

2. The prior probabilities of each position being a recursive site, Π1−N , were set such that

Πi ∝ max(0,M(i)− .8), where M(i) is the motif score for position i as described above.

This function was used to determine prior probabilities that reflect the preference for

strong motifs observed in the Duff et al. set [].

3. Recursive splice junction reads were counted within the number of effectively assigned

reads in the M-step. This served to impose that sites with support from recursive junction

reads are more likely to be recursive sites.
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4. The sparsity parameter, αs, was defined as the number of assigned reads divided by 40.

5. The algorithm converged when prior probability did not changes by more than 10−5 be-

tween iterations. Upon convergence, read pairs were assigned to a putative recursive site

using the MAP estimate.

The modified GEM algorithm was run with all read pairs and splice junction reads pooled

together.

4.3 Using sawtooth pattern in reads

Recursively spliced introns contain a distinct “sawtooth” pattern due to the co-transcriptional

nature of splicing [6]. The shape of this pattern and a graphical explanation for its origin is

shown below in Supplementary Figure S3, bottom panel. In the upper panel, the horizontal

lines represent elongating RNAs. Here, we assume that over a population of cells there will be

a uniform distribution of RNA extensions. The blacked out sections of these RNAs represent

segments that have already been spliced out of the growing RNA and degraded. Assuming

efficient, co-transcriptional splicing, the RNA will be spliced shortly after elongating past the

point of a 3′ss or recursive splice site. When RNA-seq is performed, reads are only observed

from section of RNA that have not previously been degraded. In the lower half of the same

panel, we diagram just these intact (orange) RNAs and see that their density exhibits a linear

decay across each recursive segment.

We developed an algorithm to predict recursive splice sites from the presence of a sawtooth

pattern in introns. Our algorithm can be broken into three distinct phases: pre-processing of

the RNA-seq data, Monte Carlo Markov Chain based inference of the presence of a sawtooth

pattern, and the prediction of recursive sites based on the output of our inference and sequence

information.
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4.3.1 RNA-seq data pre-processing

Figure 1: RNA-seq preprocessing converts reads into an array of read densities.

We searched for the presence of a sawtooth pattern in the read distributions of all introns over

8 kb that received at least one splice junction read in any sample. Empirical testing suggested

that in introns under 8 kb our method displayed a high rate of false positives, likely due to

regression over short segments being more sensitive to noise in read density. Regions annotated

as exons were removed using the bedtools subtract command. We summed the number of read

pairs aligning to each position to obtain per base coverage counts. When computing this sum,

read pairs straddling a given position were counted as aligning there.

In order to avoid erratic read coverage in repeat regions inhibiting our ability to perform

meaningful regressions in later steps of this analysis, we masked the read densities in repeat

regions. We replaced the read counts in RepeatMasker annotated repeat regions [7] and the

100 flanking nucleotides with the median read density in the 900 nt flanking on either side.

This length was chosen because it was short enough that read densities in this range should be

comparable to those in the masked region, but long enough to avoid unneeded sensitivity to

noise in read density.

In order to attain additional smoothing and reduce the time required to perform the regres-
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sions in the next step of our analysis, we separated introns into 100 nt bins and calculated the

average of each bin. Throughout the rest of our analysis, we represented the read density of

each intron using arrays of these average values.

4.3.2 Regression

We performed linear regression on all sub-regions of each intron. It was assumed that variance

in read density at each position is proportional to the coverage level there. This is justified by

the fact that RNA-seq data coverage is intrinsically the sum of Bernoulli random variables. We

developed a function to calculate these regressions that made use of the Scipy stats weighted

linear regression function [8] as a sub process, which we present in psuedocode.

Note that by |curW − nextW | ≤ 10−3 we mean to check whether all weights changed by

at most 10−3.

4.3.3 MCMC

We developed a Monte Carlo Markov Chain (MCMC) algorithm to detect the presence of a

sawtooth pattern in each intron. An MCMC algorithm was the ideal algorithm to efficiently

explore the complex sample space encountered when considering a non-fixed number of recur-

sive splice sites. By using this method, as opposed to deterministic methods, we were able to

efficiently consider all nucleotides as potential recursive splice sites, not just ones at the cen-

ter of strong motifs. This allowed us to independently use sequence information to assess the

false-positive rate of our method.

In this paragraph, we summarize the general flow of our algorithm, while leaving the details

of each step to the subsequent paragraphs. Our algorithm is round based. Entering each round,

we have an accepted state, consisting of a set of proposed recursive sites in the intron. In each
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Algorithm 1: Heteroscedastic Regression
Data: A← Array of RNA-seq density

Result: slope, yInt, and weights for regression

nextW ← [1..1];

curW ← [0..0];

while |curW − nextW | ≤ 10−3 do

curW ← nextW ;

slope, yInt← regression(curW,A);

for position ∈ intron do

nextW [position]← 1
yInt+position∗slope ;

end

end

return slope, yInt, nextW;

round, a new state is proposed by perturbing the current state. We use a scoring function and

transition rules we define below to decide if we wish to accept this proposed state or stick

with our current state. This procedure is iterated many times and every so often, we record a

sample of the current state. The number of samples recorded in each state is proportional to

the probability that the intron is best fit by the model corresponding to that state. Therefore, if

we normalize the number of samples recorded of each state by the total number of samples, we

attain probabilities that each state is the most accurate model.

There are three classes of perturbations used to propose new states. We describe them below

and for each refer you to a visual example in the MCMC figure.
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Figure 2: MCMC algorithm infers probability that each position in intron in a recursive splice

site.

1. A new recursive site was added with probability .4. Transitions A and B in figure.

2. A recursive site was removed with probability .4. Transition D in figure.

3. A recursive site was slightly perturbed with probability .2. Transition C in figure.

States are scored using a function taking into account how well the corresponding regression

fits the observed RNA-seq read density as well as the number of free parameters in the model.

At the heart of our scoring function is the Bayesian Information Criteria (BIC).

BIC(M) = L ∗RSS(M) + 2 ∗ (2N) ∗ log(L).

Where RSS(M) is the weighted sum of squared deviations for all recursive segments, L is

the intron length, and N is the number of recursive sites. Note that 2N is the number of free

parameters in the model, as each recursive segment is fit for its own slope and y-intercept.

The score is then given by:

Score(M) = exp(BIC(M)/T )
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Where T is a constant used to scale the magnitude of the scores. Large values of T result in the

algorithm T = 5 was used for all data presented.

In order to constrain our algorithm to fit sawtooth patterns and not more general patterns in

the read density, new states are only considered if, at each recursive site, the RNA-seq density

predicted by regressions increased by a factor of at least 1.5.

We used the standard transition rules for MCMC inference, which we outline here for con-

venience. If the score for the new state is lower than the score for the old state, the new state

is deterministically adopted. Otherwise the new state is adopted with probability Score(New) /

Score(Old). When the old state had zero recursive sites this probability was divided by two to

account for the imbalance in transition probabilities.

We chose parameters for burn-in-time, number of iterations and sampling frequency that

empirically resulted in consistent convergence across multiple runs of the algorithm. These

values were: a burn in of 105 iterations, sampling frequency of 50 iterations, and a total of 107

iterations.

After all samples were collected, we calculated the probability that each position in the is a

recursive site. For each position, we summed the occurrences of that position as a recursive site

across all samples. Probability scores were then calculated for each position by dividing this

sum by the total number of samples.

4.3.4 Peak Calling

We predicted recursive sites from the MCMC probability scores in a two step process. First,

regions with probability above a given threshold (0.08) were recorded. Any of these regions

within 500 nucleotides of each other were merged. For each of these regions, a position potential

function, P, was defined as 1 inside the peak and flanked by a logistically decaying curve on

either side. The logistic function is given by f(x) = 1/(1 + exp(−k(x−x0))). The parameters
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Figure 3: Sequence information is used in conjunction with MCMC-inferred probabilities to

predict recursive sites.

were set as x0 = 500 nucleotides from either end and k was set to be 6 / 500 for the left flank

and -6 / 500 for the right flank. The resulting distribution has value very close to zero 1000

BP away from peak and a value of 0.5 at a distance of 500 BP. This distribution was chosen

based on the empirical performance of the MCMC-based inference when compared to random

(SF5C?).

Each AGGT in the intron was then scored by

S(i) = P (i) ∗max(M(i)− .8, 0)

. The maximum scoring AGGT was then reported as a putative recursive site.

4.3.5 FDR Quantification

Shuffled peaks were produced to evaluate the false discovery rate of the sawtooth pattern iden-

tification pipeline. For each intron, the initially recorded regions of probability exceeding a set

threshold were redistributed with uniform probability across the intron. The length and number

of regions was maintained. The remainder of the peak calling procedure was then applied.

15



4.4 Determining a final set of recursive sites

Out of the final set of recursive sites that we identified, we filtered down to a set of sites based

on the following criteria:

1. Sites in genes with TPM ≥ 1 in the total RNA libraries.

2. Sites in introns with at least 3 reads spanning the 5’ to 3’ splice sites (using the largest

annotated intron)

This resulted in a total of 706 recursive sites identified by any method, and 243 high-

confidence sites.

When determining high-confidence sites, we followed the protocol used by Duff et al. We

wrote a script to iterate through introns and plot the read density and putative recursive sites.

We then manually filter each site based on the presence of a recognizable sawtooth pattern.

4.5 Estimating true number of recursive sites

In order to assess the sensitivity of our recursive site detection pipeline, we subsampled our

reads to various proportions of the total read coverage and re-assess the number of recursive

sites detected. To do so, we used the samtools view -s command to subsample each

fastq file from all samples to the following fractions: 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%, and 90%. For each of these subsampled read sets, we re-ran

the entire recursive site detection pipeline as described above to assess the number of recursive

sites detected.

To assess the impact of gene expression levels on our power to detect recursive sites, we

separated long introns into those from lowly expressed genes (TPM ≤ 20) and highly ex-

pressed genes (TPM > 20). Using the subset of reads mapping to these genes, we repeated
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the subsampling procedure and the entire recursive site detection pipeline described above to

characterize the percentage of lowly or highly expressed long introns that have recursive sites.

Finally, to understand whether the lower proportion of lowly expressed introns that have

recursive sites is due to technical or biological reasons, we subsampled reads from long intron

within highly expressed genes to match the read distribution of a comparable number of long

introns from lowly expressed genes. Specifically, we isolated all reads from long introns in

highly expressed genes and used a custom python script with the pysam package to randomly

subsample these reads to match the distribution of reads from lowly expressed introns. Us-

ing this full subset of reads from highly expressed genes, we again repeated the subsampling

procedure and the entire recursive site detection pipeline described above to characterize the

percentage of highly expressed introns that have recursive sites when reads from these introns

are subsampled to a lower read coverage.

4.6 Determining the order of recursive splicing

Previous studies have searched exclusively for recursive junction reads consistent with the 5’

to 3’ removal of recursive segments. In order to determine if recursive splicing does in fact

follow a 5’ to 3’ order, we implemented a computational search for junction reads consistent

with alternative orders of recursive splicing. These reads fall into two categories: junction reads

between two intronic AGGTs and junction reads from an intronic AGGT to an annotated 3’ss.

We constrained our search to combinations of recursive sites producing recursive segments

of at least 1 KB. Nearly all recursive segments detected in our study were greater than 1 KB in

length and adding this constraint filtered out spurious hits likely caused by alignment errors and

unannotated splicing events.

We considered all events with support from at least 3 uniquely aligning reads with recursive
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splice sites scoring above 0.85 based on the previously described scoring metric. Requiring

three uniquely aligning reads matches the cutoff used for our previous analysis. In our previous

analysis, we found that recursive splice sites generally have strong motifs that score greater than

0.85.

Our analysis produced thirteen candidate intronic AGGT to annotated 3’ss recursive sites

and zero candidate intronic AGGT to intronic AGGT recursive sites. These candidate recursive

splice sites were evaluated visually in a genome browser. Two of these sites corresponded to a

recursive splice site detected by both our study. One of these sites received 60 recursive junction

reads supporting that it is spliced 5’ to 3’, while only 5 supporting a 3’ to 5’ ordering. The other

829 and 13, respectively. All other candidate sites did not appear to be true recursive sites, due

to either a lack of a sawtooth pattern, low intron expression, or extensive repeats complicating

alignments. These data suggest that recursive splicing overwhelmingly, but perhaps not always

proceeds in a 5’ to 3’ order.

5 Splicing efficiency in recursively spliced introns

5.1 Estimating rate of splicing of recursive segments

We quantified splicing rates for each recursive segment independently by mapping the original

alignments onto new gene models with the upstream exon, recursive segment and downstream

segment contiguous and then running the pipeline described above on these transformed align-

ments. Specifically, the new gene models consist of a single intron with the same length as the

recursive segment flanked by exons with the same lengths as the original up and downstream

exons.

Reads were mapped onto these gene models such that whether any other recursive splicing
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Figure 4: Read from recursively splice

event has yet been completed was irrelevant. These reads were split into four classes, which are

numbered the same in the figure as they are below:

1. Reads entirely in the recursive segment or either exon.

Reads entirely inside any region were directly mapped onto their corresponding region in

the new gene model.

2. Reads overlapping the upstream end of the recursive segment.

Reads can overlap the upstream end of the recursive segment either by being a junction

read from the upstream exon to the beginning of the recursive segment or being an un-

spliced read overlapping the beginning of the recursive segment. In either case, a read

was placed at the upstream exon-intron boundary in the new gene model.

3. Reads overlapping the downstream end of the recursive segment.

Reads overlapping the downstream end of the recursive segment were placed on the

intron-downstream exon boundary in the new gene model.

4. Exon-exon junction reads.
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In order to be ambivalent to whether all other recursive splicing events have yet been

completed all junction reads spanning from the upstream exon to a recursive splice site

downstream of the recursive segment or the downstream exons were treated equivalently.

All were added as splice junction reads between the upstream and downstream exons in

the new gene model.

Any reads not fitting into one of these classes were not included in the new alignments.

Notably, this includes reads overlapping either exon-intron junction in the original alignments,

reads in recursive segments not being considered, and splice junction reads aligning with an

upstream end not at the upstream exon.

5.2 Estimating rate of splicing of full recursive intron

To estimate the mean lifetime of a recursively spliced intron, we estimated the waiting time for

all recursive segments to be spliced out by calculating the maximum of the set of individual

exponentials from each segment. For one exponential, the mean lifetime τ = 1
λ

where λ is

the coefficient from the exponential fit. There is an analytical solution for estimating the mean

lifetime in situations when there are only two exponentials (corresponding to two recursive

segments) to be combined. Thus, we conditioned our analyses on recursive introns with only

one recursive site, corresponding to the presence of two recursive segments. For these introns,

the mean lifetime τrecursive can be calculated by:

τrecursive =
1

λ1
+

1

λ2
+

1

λ1 + λ2

where λ1 is the exponential coefficient for the first segment and λ2 is the exponential coefficient

for the second segment. To conservatively compare our recursive intron τrecursive values with

the mean lifetimes of non-recursive introns, we added the time necessary for the first segment
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to be transcribed to our τrecursive, with the rationale that the first segment must be completely

transcribed before the second can begin to be spliced. Assuming a 1.5kb/min transcription rate,

txnseg1 = l1
1500

, where l1 is the length of the first segment.

5.3 Accuracy of splicing in recursive introns

We estimated the accuracy of splicing in Drosophila introns by identifying non-annotated junc-

tion reads with non-canonical splice site sequences within annotated introns. To do so, we

first re-mapped the raw 4sU-seq reads with STAR v2.5 mapper [9], with the mapping parame-

ter --outSAMattribute NH HI AS nM jM to mark the intron motif category for each

junction read in the final mapped file.

The jM attribute adds a jM:B:c SAM attribute to all reads arising from exon-exon junc-

tions. All junction reads were first isolated and separated based on the value assigned to the

jM:B:c tag. Junction reads with splice sites in the following categories were considered to

be annotated or canonical: (1) any annotated splice site based on FlyBase D. melanogaster Re-

lease 5.57 gene structures [jM:B:c,[20-26]], (2) intron terminal dinucleotides containing

”GT-AG” (or the reverse complement) [jM:B:c,1 or jM:B:c,2], (3) intron terminal dinu-

cleotides containing ”GC-AG” (or the reverse complement) [jM:B:c,3 or jM:B:c,4], and

(4) intron terminal dinucleotides containing ”AT-AC” (or the reverse complement) [jM:B:c,5

or jM:B:c,6]. Junction reads with jM:B:c,0 were considered to arise from non-canonical

non-annotated splice sites. We calculated the frequency of inaccurate splice junctions for each

intron as a ratio of the density of reads arising non-canonical non-annotated splice sites to the

density of all junction reads from the intron.
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6 Legends for Supplementary Figures

Supplementary Figure 1. Calculating rates of splicing in Drosophila. (A) Proportion of

intronic reads in a transcript (Ψ values, y-axis) for nascent RNA collected 5min, 10min, and

20min after 4sU labeling, with a time point labeled overnight representing steady-state or total

RNA levels. The overall decreases in Ψ values over time indicate increased completed splicing

over time. (B) The distribution of coefficients from an exponential fit to the Ψ values across

time. (C) The distribution of R2 values obtained from fitting an exponential model to values

across time, with Ψ values estimated using MISO (blue) or only junction reads (grey). The

preponderance of positive coefficients and high R2 values indicates that an exponential decay

model is appropriate. (D) Standard error estimates on half-life propagated from Ψ confidence

intervals (see Methods) across a range of splicing half-life times. (E) A high concordance

between the distribution of Ψ values calculated using only exon-exon and exon-intron spanning

junction reads (x-axis) vs. the Ψ values calculated using the MISO software, all at 5 minutes

after 4sU labeling. (F) Splicing half-lives estimated from simulated data (y-axis) relative to the

simulated half-life (x-axis), with splicing half-life range from 2 to 1000 minutes and 0.1 to 20

minutes (inset).

Supplementary Figure 2. Properties of splicing efficiency across varying intron lengths.

(A) Distribution of intron lengths in the Drosophila melanogaster genome. (B) Distribution of

splice site strengths (MaxEnt score, y-axis) across both 3′ splice sites (orange) and 5′ splice

sites (blue) for introns between 40-100 nt (x-axis). On average, 40-50 nt introns have have

weaker splice site scores. (C) The distribution of splicing efficiency (half-lives, y-axis) for very

short 40-50 nt introns (dark blue), relative to the distributions for 60-70 nt introns matching for

the distributions of 40-50 nt 3′ splice site strength (light blue, t-test P = 0.0001), 5′ splice site

strength (light blue, t-test P = 0.0033), and both 5′ and 3′ splice site strengths (light blue, t-test
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P = 0.0004). 40-50 nt introns are consistently spliced out slower than other introns, independent

of their weaker splice site strengths. (D) Distribution of splice site strengths (MaxEnt score, y-

axis) across both 3′ and 5′ splice sites for introns binned into quantiles of intron length (x-axis).

(E) The distribution of splicing half-lives (y-axis) for very long introns greater than 10 kb (dark

blue), relative to the distributions of 60-70 nt introns matching for the distributions of 10 kb+

3′ splice site strength (light blue, t-test P = 7.093 × 10−14), 5′ splice site strength (light blue,

P < 10−16), and both 5′ and 3′ splice site strengths (light blue, P < 10−16). Introns greater

than 10 kb in length are consistently spliced more slowly than other introns, independent of

their stronger splice site strength.

Supplementary Figure 3. Identifying sites of recursive splicing. (A) Schematic indicating

two computational approaches used to detect recursive sites: junction split and spanning reads

(top) and automatic detection of sawtooth patterns (bottom). (B) Number of recursive sites iden-

tified by one of multiple identification pipelines, with the majority of recursive sites identified

by both junction reads and sawtooth scores, as well as present in the Duff et al. dataset. (C)

The gene expression levels of genes with recursive introns (TPM, y-axis) relative to the junction

spanning read support for each recursive intron (read count, x-axis), showing the varying power

to identify recursive sites with the sawtooth recursive method (orange), junction-spanning reads

alone (blue), or both methods (black). (D) The probability derived from the sawtooth MCMC

model of a site being a recursive site for the final set of recursive sites (light orange), all sites

with minimal support from any method (dark orange), and random sites placed down in the

same introns (grey). (E) The sawtooth score (see Methods) for the final set of recursive sites

(light orange), all sites with minimal support from any method (dark orange), and random sites

place down in the same introns (grey). (F) The cumulative distribution of distances between

the recursive site identified with the sawtooth recursive method and the best matching recur-
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sive motif (orange) and random sites placed down in the same introns (grey) are significantly

different.

Supplementary Figure 4. Properties of recursively spliced introns. (A) Sequence logo

for all intronic AG—GT sites (top), medium-confidence recursive sites (middle) and high-

confidence recursive sites (bottom). (B) Conservation of sequences around all detected re-

cursive sites, with average phastCons scores for medium-confidence recursive sites (yellow),

high-confidence recursive sites (gold), and random AG—GT sites in introns increasingly larger

than 1kb (grey). (C) Full intron length distributions for introns (y-axis) with varying numbers

of recursive sites (x-axis).

Supplementary Figure 5. Rates of recursive splicing. (A) Splicing half-lives (y-axis) for

recursive segments with varying positions across the intron (x-axis), where on average, all seg-

ments in an intron tend to be spliced out at similar rates. (B) The number of splice junction

reads (y-axis) spanning a 5′ splice site and recursive site (blue), two recursive sites (gold),

and a recursive site and 3′ splice site (yellow) across the time-points (x-axis). (C) Distribution

of lengths of recursive segments (nucleotides, x-axis) for medium-confidence recursive seg-

ments (yellow) and high-confidence recursive segments (gold). (D) The distribution of splicing

half-lives (y-axis) for the longest recursive segments in introns (gold) relative to non-recursive

introns chosen to match the length of the recursive segments (grey). (E) The distribution of

mean life-times (y-axis) for recursively spliced introns (estimated by the maximum of exponen-

tials from constituent recursive segment splicing rates, gold) relative to non-reucursive introns

chosen to match the length of the recursive introns (grey).

Supplementary Figure 6. Variance in splicing half-lives across introns in a gene. (A) The

proportion of annotated introns detected for each gene (x-axis), with 76% of genes having suf-
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ficient coverage in 100% of annotated introns. (B) The cumulative distribution of variance in

splicing half-lives (coefficient of variation, x-axis) across introns within a gene (dark blue) and

introns randomly sampled to match the distribution of lengths of introns within actual genes

(dark grey). This trend is consistent when excluding the first intron of each gene (light blue)

and doing a similar sampling strategy excluding the length of the first introns (light grey). (C)

Splicing half-lives (y-axis) before (dark blue) and after (light blue) correcting for the non-linear

correlation between splicing half-lives and intron length. Length-correction was done by sub-

tracting a running median of local splicing half-lives, where medians were computed in 50

intron sliding bins. (D) The cumulative distribution of variance in length-corrected relative

splicing half-lives (coefficient of variation, x-axis), within categories of observed and sampled

introns as in (B).

Supplementary Figure 7. Correcting for the effects of intron length. (A) The distribution

of splicing efficiency (median half-lives, y-axis) vs. intron length (mean nucleotides, x-axis) for

introns in different positions across a gene. First introns are longer and more slowly spliced

than non-first introns. (B) Correcting for length does not account for the slower splicing of

first introns, where splicing half-lives (y-axis) for first introns are still slower than for non-first

introns in both the measured half-lives (dark blue) and the length-corrected relative half-lives

(light blue). (C) The percentage of enhancers within an intron (y-axis) for first introns (blue)

and non-first introns (grey) binned by quintiles of intron length (x-axis). (D) The distribution

of intron half-lives (y-axis) for introns containing an enhancer (blue) and without an enhancer

(grey) binned by quintiles of intron length (x-axis).

Supplementary Figure 8. First-intron length and splicing efficiency. Running median

(red) of local gene-specific median splicing half-lives across the distribution of first intron

lengths, for raw splicing half-lives (A) and splicing half-lives corrected for intron length (B).
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Running median is computed in sliding bins of 50 genes. (C) Selected genes with four or five

total introns, of which all of the non-first introns are 60-70 nt in length and have low variance

across their splicing half-lives. Varying first intron lengths across these genes (nucleotides, x-

axis) shows a correlation between first intron length and the median half-lives for these genes

(y-axis).

Supplementary Figure 9. Coefficients from a multiple linear-regression with several param-

eters (y-axis), where the coefficient represents the % change in half-life concordant with a 1%

change in each parameter. Bars indicate the standard error and the size of the mean dot indicates

the –log10 p-value for the significance of the individual parameter.

7 Legends for Supplementary Tables

Supplementary Table 1: Summary of introns analyzed . Summary statistics and informa-

tion for all introns that were analyzed in this study.

• Column 1: intron. Coordinates of intron, with chr:start:end:strand for the upstream

flanking exon and the chr:start:end:strand for the downstream flanking exon separated

with an ’@’.

• Column 2: gene. FlyBase gene symbol for parent gene.

• Column 3: TPM. Gene expression values calculated using kallisto.

• Column 4: intron position. Position of intron relative to other introns in the tran-

script.

• Column 5: intron len. Length of intron (nucleotides).
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• Column 6: intron type. Regulatory type of intron, where CI is constitutively spliced

intron, RI is an annotated retained intron, and SEflanking is an intron that flanks a retained

intron.

• Columns 7-17: psi [timepoint] [replicate]. MISO-derived Ψ values of in-

tron across timepoints and replicates.

• Columns 18-28: ci [timepoint] [replicate]. MISO-derived confidence inter-

vals around the Ψ values for each timepoint and replicate.

• Column 19: Tau. τ value which accounts for time to transcribe the region from the 3′

splice site of the intron to the polyA site of the transcript.

• Column 20: t inferred. Comma separated list of inferred average lifetimes of the

intron across experimental timepoints, given the τ value.

• Column 21: coefficient. Regression coefficient from fit of first-order exponential

model to log-transformed Ψ values (linear fit). In this form, the regression coefficient is

reciprocal of the decay coefficient λ.

• Column 22: r squared. R-squared value for goodness of fit from the first-order expo-

nential model.

• Column 23: half life. Half-life of intron computed from the decay coefficient.

• Column 24: halflife error. Error of around the half-life estimate.

• Column 25: ss5 maxEnt. maxEnt-derived splice-site score for the 5′ splice site of the

intron.
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• Column 26: ss3 maxEnt. maxEnt-derived splice-site score for the 3′ splice site of the

intron.

• Column 27: contains enhancer. Flag for whether the intron contains a transcrip-

tional enhancer as defined by STARR-Seq.

Supplementary Table 2: Recursive sites. Summary statistics and information for all recur-

sive sites that were analyzed in this study.

• Column 1: intron. Coordinates of intron containing recursive site, with chr:start-

end:strand.

• Column 2: gene. FlyBase gene symbol for parent gene.

• Column 3: TPM. Gene expression values calculated using kallisto.

• Column 4: completed splicing junction reads. Number of junction reads

supporting completed splicing across the entire intron.

• Column 5: recursive site. Coordinate for the recursive site.

• Column 6: method. Method used for identification of the recursive site, where ’junc-

tion’ indicates site identified by either ’RachetJunction’ or ’RachetPair’, ’sawtooth’ indi-

cates site identified by ’RachetScan’, and ’both’ indicates site identified by both methods.

• Column 7: in duff. Flag indicating the recursive site was identified in the Duff et al.

study.

• Column 8: high confidence. Flag indicating the recursive site was identified as a

high-confidence site (1) or a medium-confidence site (0).
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• Column 9: junction reads. Comma-separated list of number of junction reads sup-

porting the recursive site in each timepoint (combined across replicates) [5m, 10m, 20m,

total].

• Column 10: spanning read pairs. Comma-separated list of number of spanning

read-pairs supporting the recursive site in each timepoint (combined across replicates)

[5m, 10m, 20m, total].

• Column 11: sawtooth score. Sawtooth score for the recursive site, as defined in

the Supplementary Methods.

• Column 12: mcmc probability. Probability of this site being a recursive site, as

derived from the MCMC sampling procedure described in the Supplementary Methods.

• Column 13: recursive index. Recursive index for the recursive site, as defined in

the Supplementary methods.

• Column 14: motif. Sequence found around the recursive site.

• Column 15: motif score. Motif score for the recursive site.

• Column 16: downstream reads. Number of splice junction reads originating from

the downstream end of the exon.

• Column 17: intron body reads. Number of reads in the body of the intron.

Supplementary Table 3: Gene Ontology analyses for recursively spliced introns. Sum-

mary output from DAVID Gene Ontology Analyses for significantly enriched biological process

gene ontology categories.
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Supplementary Table 4: Gene Ontology analyses for genes with shorter median half-lives.

Summary output from DAVID Gene Ontology Analyses for significantly enriched biological

process gene ontology categories.

Supplementary Table 5: Gene Ontology analyses for genes with longer median half-lives.

Summary output from DAVID Gene Ontology Analyses for significantly enriched biological

process gene ontology categories.
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8 Supplementary Figures

Supplementary Figure 1. Calculating rates of splicing in Drosophila.
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Supplementary Figure 2. Properties of splicing efficiency across varying intron lengths.
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Supplementary Figure 3. Identifying sites of recursive splicing.
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Supplementary Figure 4. Properties of recursively spliced introns.
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Supplementary Figure 5. Rates of recursive splicing.
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Supplementary Figure 6. Variance in splicing half-lives across introns in a gene.
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Supplementary Figure 7. Correcting for the effects of intron length.

37



Supplementary Figure 8. First-intron length and splicing efficiency.
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