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Supplementary Note 57 

Supplementary Note 1. Potential Sources of bias  58 

1). Motif-specific error rates 59 

It has been shown that certain sequence motifs may be more susceptible to sequencing error, which 60 

could lead to a non-random distribution of false positive singleton calls and subsequently bias our 61 

analyses1,2. Allhoff et al. (2013)2 reported context-specific errors for the Illumina HiSeq platform, noting 62 

that the most common of these are strand-specific T>X errors at 5’-GGGT-3’ motifs (i.e., there is no 63 

evidence of an excess of A>X errors at the reverse complement 5’-ACCC-3’ motifs). We reason that if 64 

the BRIDGES ERVs are enriched for such context-specific errors, we should see significantly more 65 

T>X ERVs at the 5’-GGGT-3’ motif than A>X ERVs at the 5’-ACCC-3’ and motif. Of the 115,531 ERVs 66 

that occur at this motif, 57,699 were 5’-[A>X]CCC-3’ variants, and 57,832 were 5’-GGG[T>X]-3’ 67 

variants; this difference was not significant, indicating there is no evidence for an enrichment of T>X 68 

ERVs at this error-prone motif (exact binomial test; P=0.70). Allhoff et al. (2013) remark that the 69 

variants called at error-prone positions tended to have low base quality scores as well as significant 70 

strand bias, both of which are detectable with standard filtering protocols2. We therefore assume that 71 

most motif-specific errors are efficiently filtered by the default strand-bias and quality filters used in our 72 

variant calling pipeline, and any undetected errors have a negligible impact on our calculation of relative 73 

mutation rates and downstream analyses. 74 

 75 

2). Mapping error 76 

We also considered the possibility that ERVs occurring on poorly mapped reads might bias our analysis 77 

of regional variation in mutation rates. We expect the majority of ERVs in our data are mapped with 78 

high confidence, as the pre-filtering steps in our variant calling pipeline remove sites with average 79 

phred-scaled mapping quality score (MQ) <20 and/or with more than 10% of reads that are 80 

ambiguously mapped (MQ0>10). This filtering strategy is similar to the filters employed by other large-81 

scale sequencing projects that have demonstrated well-controlled error rates among singleton calls3,4. 82 

While a more aggressive mapping quality filter would reduce concerns about region-specific error 83 



biases, doing so would primarily filter out ERVs occurring in repeat-rich pericentromeric regions5 thus 84 

precluding our ability to assess the mutation spectrum in these regions. Prior research has found that 85 

centromeric and pericentromeric regions evolve more rapidly than elsewhere in the genome5–7, which is 86 

an intriguing phenomenon that would be entirely undetectable if we omit these regions from our 87 

analyses.  88 

 89 

Supplementary Note 2. Comparison of 7-mer relative mutation rates with 90 

independent estimates  91 

Aggarwala & Voight (2016)8 estimated “substitution rates” using 7,051,667 intergenic variants observed 92 

in N=379 Europeans from the 1000 Genomes Phase I study. These substitution rates are analogous to 93 

the relative mutation rates used in our study, but are derived from variants across the entire frequency 94 

spectrum, encompassing both singletons and common variants. The exact site frequency spectrum for 95 

the European intergenic variants is not reported, but Aggarwala & Voight (2016)8 specify 26% of 96 

variants in the 1000G Phase I African sample are singletons or doubletons. Because the BRIDGES 97 

sample is ~10 times larger than the 1000G Phase I European sample, we expect many of the 1000G 98 

Phase I European singletons are present in the BRIDGES data in multiple individuals (i.e., non-99 

singletons), and hence ancestrally older. The rates estimated by Aggarwala & Voight (2016)8 are 100 

therefore expected to be more similar to the BRIDGES MAC10+-derived relative mutation rates than 101 

they are to the BRIDGES ERV-derived rates. As shown in Supplementary Fig. 3a, the BRIDGES 102 

MAC10+-derived rates are more strongly correlated with rates estimated by 1000 Genomes intergenic 103 

variants (r=0.995) than with BRIDGES ERVs (r=0.991). Type-specific correlations between MAC10+-104 

derived and 1000G-derived rates are also higher for all types except A>G and non-CpG C>T transitions 105 

(Supplementary Fig. 3b). Only 129 of the 24,576 7-mer subtypes (0.5%) have more than a 2-fold 106 

difference between MAC10+-derived and 1000G-derived rates (Supplementary Fig. 3c), compared to 107 

741 (3%) of 7-mer subtypes with >2-fold difference between MAC10+-derived and ERV-derived rates. 108 

The rates estimated by Aggarwala & Voight (2016)8 constitute a benchmark by which we compare our 109 

models’ ability to predict true de novo mutations; we show that our analogous model based on the 110 



BRIDGES MAC10+-derived rates performs similarly to these previously published rates, and the 111 

models based on BRIDGES ERV-derived rates consistently predict de novo mutations with greater 112 

accuracy (Supplementary Fig. 6). 113 

 114 

Supplementary Note 3. Tests for enrichment/depletion of de novo mutations in 115 

feature-associated subtypes.  116 

Our multivariate models identify specific 7-mer subtypes found to be enriched (or depleted) for ERVs 117 

when occurring in the presence of a genomic feature. While our model validation results demonstrate 118 

that accounting for these features in aggregate improves prediction of de novo mutations, it does not  119 

show that, for a given single feature, these subtype-specific effects could also be detected among 120 

actual de novo mutations. Because the available catalogs of de novo mutations are relatively sparse, 121 

validating each individual feature-associated 7-mer subtype is not feasible. Instead, we looked across 122 

all 7-mer subtypes associated with a given feature in the same direction, and tested if the de novo 123 

mutations of those subtypes were higher (or lower) than expected under the null assumption that a 124 

feature has no effect on those subtypes’ mutability.  125 

Hence, for each feature, we identified regions of the genome covered by that feature, and 126 

calculated the expected number of ERVs in those regions based on the 7-mer relative mutation rates 127 

(i.e., assuming the feature has no effect on mutability) of subtypes significantly associated in the same 128 

direction with the feature. Assuming no systematic bias, this number is proportional to the expected 129 

number of de novo mutations (e.g., if we expect 36,000 BRIDGES ERVs in those regions [0.1% of all 130 

ERVs], we would expect ~47 [0.1%] of the GoNL9/Inova10 de novo mutations occur in the same 131 

regions). We compared the expected number to the observed number of de novo mutations using one-132 

sided Pearson’s Chi-squared tests, each with 1 degree of freedom (prop.test() function in R). A 133 

significant result indicates that observed counts of de novo mutations in the feature vary as predicted 134 

(higher or lower) from the expected count. Ten of the 15 tests showed a significant enrichment or 135 



depletion of observed de novo mutations (Supplementary Table 6a). These results are not solely a 136 

result of feature-associated DNA methylation, as the associations remained significant when subtypes 137 

with CpG dinucleotides were excluded (Supplementary Table 6b). Note that four of the non-significant 138 

tests described in Supplementary Table 6a where we predicted an increase in de novo mutations had 139 

fewer observed de novo mutations than expected (CpG islands, GC content, H3K27me3, and lamin-140 

associated domains). This may indicate false positive sin our model, but is also consistent withThis may  141 

a limited ability to confidently call de novo mutations in the GoNL/Inova datasets due to low coverage in 142 

GC-rich regions9,10. We conclude that most of the mutagenic effects of genomic features inferred by our 143 

model are likely operative in the germline and play a role in shaping mutation rate heterogeneity across 144 

the genome.  145 

 146 

Supplementary Note 4. Potential mechanisms for TTAAAA hypermutability  147 

Our finding of a 3-fold depletion of TTAAAA AT>TA motifs in DNase hypersensitive sites provides an 148 

excellent example of how our results can be leveraged to better understand the origins of certain 149 

mutation patterns. We identify two possible mechanisms that might explain the context-dependent 150 

mutation probabilities of AT>TA mutations at TTAAAA hexamers. As described in the main text, L1 EN 151 

nicking activity has been shown to vary according to the nucleosomal context of its target motifs, 152 

usually occurring at a higher rate in nucleosome-free DNA, but in some cases actually decreasing in 153 

nucleosome-free DNA11. Therefore, under the L1 EN model, it is possible to see either a positive or 154 

negative association between TTAAAA mutability and DHS. 155 

Slipped-strand mispairing, also known as replication slippage, is another plausible hypothesis 156 

for the hypermutability of this motif8. Because the nucleosomal architecture is disrupted ahead of the 157 

replication fork12, and reassembled almost immediately thereafter13, nascent DNA containing 158 

unresolved lesions that is packaged in nucleosomes could be inaccessible to mismatch repair 159 

machinery, thus preserving any errors caused by slippage. In this case, it is also possible to see a 160 

negative association between TTAAAA mutability and DHS. 161 



This slippage mechanism, however, appears to be unlikely for the following reasons. First, 162 

replication slippage inherently results in short insertions or deletions rather than point mutations. 163 

Mapping error could potentially cause an insertion/deletion to be falsely identified as a single-nucleotide 164 

variant, but such errors would need to be extremely prevalent in our data (and also context-dependent) 165 

in order to observe a 3-fold depletion of these singletons in DHS. Given the quality metrics we report for 166 

the BRIDGES singletons, it seems unlikely that these results are purely a technical artifact. 167 

Furthermore, if slippage were the primary mechanism, we would expect other motifs ending in poly-A 4-168 

mers to also show an inverse association with DHS. Among the 13 NNNAAAA subtypes whose 169 

mutability is significantly associated with DHS, only five are inversely associated, three of which are 170 

NNTAAAA motifs (i.e., conforming closely to the canonical target for L1 EN nicking activity). The other 171 

eight subtypes all show higher mutation rates in DHS, which conflicts with the proposed 172 

slippage+chromatinization mechanism.  173 

 174 

  175 



Supplementary Note 5. Derivation of false discovery rate by Ts/Tv statistics 176 

(1) Let 𝑇𝑆𝑜 = 𝑇𝑆𝑡𝑝 + 𝑇𝑆𝑓𝑝 be the number of observed transitions, consisting of both true positives 177 

(𝑇𝑆𝑡𝑝), and false positives (𝑇𝑆𝑓𝑝)  178 

(2) Let 𝑇𝑉𝑜 = 𝑇𝑉𝑡𝑝 + 𝑇𝑉𝑓𝑝 be the number of observed transversions.  179 

(3) Based on findings from other large-scale sequencing studies, the true positive Ts/Tv ratio, 180 

𝑇𝑆𝑇𝑉𝑇 =
𝑇𝑆𝑡𝑝

𝑇𝑉𝑡𝑝
 is between 2.0 and 2.114. 181 

(4) Because there are 8 possible transversions and 4 possible transitions, if errors are occurring at 182 

random, the Ts/Tv ratio for random false positive errors (𝑇𝑆𝑇𝑉𝜖) should be 0.5, that is, 
𝑇𝑆𝑓𝑝

𝑇𝑉𝑓𝑝
=183 

0.5. 184 

Solving this system of four equations, it follows that 𝑇𝑉𝑓𝑝 =
𝑇𝑆𝑇𝑉𝑇×𝑇𝑉𝑜−𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇−0.5
 and 𝑇𝑆𝑓𝑝 = 0.5×𝑇𝑉𝑓𝑝, so the 185 

false discovery rate is estimated as: 186 

𝑇𝑆𝑓𝑝 + 𝑇𝑉𝑓𝑝

𝑇𝑆𝑜 + 𝑇𝑉𝑜
=
0.5 (

𝑇𝑆𝑇𝑉𝑇×𝑇𝑉𝑜 − 𝑇𝑆𝑜
𝑇𝑆𝑇𝑉𝑇 − 0.5

) +
𝑇𝑆𝑇𝑉𝑇×𝑇𝑉𝑜 − 𝑇𝑆𝑜

𝑇𝑆𝑇𝑉𝑇 − 0.5

𝑇𝑆𝑜 + 𝑇𝑉𝑜
 187 

Assuming a true 𝑇𝑆𝑇𝑉𝑇 between 2.0 and 2.1, we estimate a false discovery rate of 0.6-2.6% among the 188 

BRIDGES ERVs. 189 
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Supplementary Figures 252 

 253 

 254 

Supplementary Figure 1   255 

Densities of log10-scaled 7-mer relative mutation rates, estimated using the downsampled BRIDGES 256 

ERVs (red) and BRIDGES MAC10+ variants (blue). P-values from the Kolmogorov-Smirnov test for 257 

distributional equivalence are shown in the upper left corner of each panel. 258 

 259 

 260 



 261 

Supplementary Figure 2 Detailed comparison between ERV-derived and MAC10+-derived A>G 262 

transition rates. Points are colored by the ratio between the two rates for that subtype (orange: 263 
MAC10+:ERV>2; green: MAC10+:ERV<2). The shape of each point indicates the number of G or C 264 
bases in the +/-3 nucleotides flanking the variant site. Among the 103 7-mer motifs with a 265 
MAC10+:ERV ratio >2, 100 have 4 or more G/C bases in the flanking region. (inset) Sequence logo for 266 
these 103 7-mer subtypes with MAC10+:ERV ratio >2 shows flanking regions are enriched for G/C 267 
bases. 268 
 269 
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 304 

Supplementary Figure 3   305 

(a) Relationship between 7-mer relative mutation rates estimated using down-sampled BRIDGES ERVs 306 
(x-axis) and variants with a minor allele count >= 10 (MAC10+; y-axis), excluding subtypes with <50 307 
variants in either dataset. (b) Type-specific 2D-density plots, as situated in the scatterplot of a. The 308 
dashed line indicates an expected least-squares regression line if there is no bias present. (c) Heatmap 309 
shows ratio between relative mutation rates calculated on MAC10+ variants and ERVs for each 7-mer 310 
mutation subtype. Subtypes with higher MAC10+-derived rates relative to ERV-derived rates are 311 
shaded gold, and subtypes with lower MAC10+-derived rates relative to ERV-derived rates are shaded 312 
green. 313 



a.                                                                b. 314 
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 348 

Supplementary Figure 4   349 

(a) Relationship between 7-mer relative mutation rates estimated using BRIDGES variants with a minor 350 
allele count >= 10 (MAC10+; x-axis), and 7-mer rates calculated from intergenic variants in the 351 
European 1000G phase I sample (y-axis) (b) Type-specific 2D-density plots, as situated in the 352 
scatterplot of a. The dashed line indicates an expected least-squares regression line if there is no bias 353 
present. (c) Heatmap shows ratio between relative mutation rates calculated on MAC10+ variants and 354 
1000G variants for each 7-mer mutation subtype. Subtypes with higher 1000G-derived rates relative to 355 
MAC10+-derived rates are shaded gold, and subtypes with lower 1000G-derived rates relative to 356 
MAC10+-derived rates are shaded green. 1000G-derived rates shown here are scaled relative to the 357 
MAC10+-derived rates.  358 



 359 

 360 
Supplementary Figure 5  Distributions of effect sizes (including non-significant effects) on 361 

mutability for the 14 genomic features considered in the logistic regression model. For each feature, we 362 
plotted the empirical distributions of these subtype-specific odds ratios for each basic mutation type. 363 
*Replication timing is coded with negative values indicating later replicating regions, so an OR<1 364 
means mutation rate increases in late-replicating regions. Note that effects in CpG islands are shown 365 
on a wider scale than other features.  366 
  367 



a.      b. 368 

 369 

Supplementary Figure 6 Comparison of variance explained by all models for (a) all mutation types 370 

combined, and (b) stratified by mutation type. 371 
  372 



Supplementary Tables 373 

 374 

Supplementary Table 1 Quality comparison between filtered partitions  375 

of BRIDGES singletons  376 

Partition # Singletons Ts/Tv ratio %dbSNP (b142) % of Full 
Set 

Full Set 36,087,319 2.02 17.4 100 

Filter 1 (QUAL>=30)* 20,796,900 2.03 17.8 58 

Filter 2 (MQ>56) 33,550,098 2.01 17.3 93 

Filter 3 (passed 1000G strict mask) 28,958,837  1.94 17.5 80 

All Filters (MQ>56, QUAL>=30, 
1000G strict mask) 

16,535,856 2.00 17.6 46 

*Quality score cutoff uses raw base quality scores obtained prior to recalibration. 377 

 378 

Supplementary Tables 2a-2d Relative mutation rate estimates for 1-mers, 3-mers, 5-mers, 379 

and 7-mers 380 

[see separate spreadsheet, table_S2_K-mer_relative_rates.xlsx] 381 

Each table contains data used to calculate relative mutation rates for K-mers of a given length. Each 382 

row in the table contains the following columns: 1) basic mutation type; 2) K-mer motif corresponding to 383 

a reference base A or C at the central mutated position (the reverse complement of each motif, 384 

corresponding to reference base T or G is given in parentheses); 3) number of singletons observed in 385 

the BRIDGES data of the K-mer subtype defined by columns 1 and 2; 4) total number of times the motif 386 

in column 2 is observed in the reference genome; 5) relative mutation rate of singletons in that subtype 387 

(column 3 divided by column 4). For 7-mer subtypes (Supplementary Table 2d), we include four 388 

additional columns: 6) number of singletons in that subtype, after downsampling to 12M; 7) relative 389 

mutation rate of downsampled singletons in that subtype (column 6 divided by column 4); 8) number of 390 

MAC10+ variants observed in the BRIDGES data of that subtype; 9) relative mutation rate of 391 

polymorphisms of that subtype (column 8 divided by column 4). 392 

393 



Supplementary Table 3a Summary of overall model fit statistics for de novo testing data 394 

Model 
Nagelkerke's 

R2 
AIC 

P-value 
(likelihood 
ratio test) 

1-mers 0.082 (0.082) 326076 (326076) -- 

3-mers 0.136 (0.111) 309619 (317089) <2.2e-308 

5-mers 0.143 (0.117) 307405 (315331) <2.2e-308 

7-mers 0.145 (0.119) 306738 (314705) 1.56e-148 

7-mers+features 0.147 (0.119) 306146 (314943) 3.08e-147 

7-mers (downsampled 
BRIDGES ERVs) 

0.119 314723 
-- 

7-mers (BRIDGES MAC10+ 
variants) 

0.114 316400 
-- 

7-mers (intergenic 1000G 
polymorphisms)8 

0.110 317490 
-- 

Due to the nested structure of the first 5 models in this table (described in Materials and Methods), 395 
Nagelkerke's R2 is slightly biased upwards for models with more parameters. For a more direct 396 
comparison with the other 3 models, we repeated each these models with only 1 composite predictor 397 
(as was done for the downsampled ERV, MAC10+, and 1KG polymorphism models), and we include 398 
Nagelkerke's R2 and AIC values for these models in parentheses. Note that the relative differences in 399 
Nagelkerke's R2 between non-nested K-mer and (K+2)-mer models are nearly identical to what we 400 
observe in the nested modeling framework. Also, because all models are applied to the same testing 401 
data, AIC is a valid means of comparison between all models, regardless of number of predictors; the 402 
nested 7-mer+features model achieves the lowest AIC, indicating this model provides the best overall 403 
fit. The last column of P-values come from likelihood ratio test between each nested model and the 404 
corresponding model in the preceding row, where such nested models exist.  405 

 406 

  407 



Supplementary Table 3b Summary of type-specific model fit statistics for de novo testing 408 

data. Each type is shown in a sub-table, with the number of de novo mutations and non-mutated 409 
sites used in the partitioned testing data indicated in the subheading. 410 

 411 

A>C (2920 de novo mutations; 198481 non-mutated sites) 412 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.0023 30447 -- 

5-mers 0.0072 30309 4.20e-32 

7-mers 0.0094 30248 1.94e-15 

7-mers+features 0.0095 30249 0.385 

7-mers (downsampled BRIDGES ERVs) 0.0079 30288 -- 

7-mers (BRIDGES MAC10+ variants) 0.0035 30413 -- 

7-mers (intergenic 1000G polymorphisms)8 0.0043 30388 -- 

 413 

A>G (11400 de novo mutations; 198793 non-mutated sites) 414 

Model 
Nagelkerke's 

R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.037 85999 -- 

5-mers 0.063 84087 <2.2e-308 

7-mers 0.066 83829 2.22e-58 

7-mers+features 0.067 83792 3.68e-10 

7-mers (downsampled BRIDGES ERVs) 0.063 84065 -- 

7-mers (BRIDGES MAC10+ variants) 0.060 84244 -- 

7-mers (intergenic 1000G polymorphisms)8 0.060 84278 -- 

 415 

A>T (2455 de novo mutations; 198320 non-mutated sites) 416 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.015 26123 -- 

5-mers 0.016 26103 3.27e-06 

7-mers 0.017 26092 3.16e-04 

7-mers+features 0.017 26090 0.038 

7-mers (downsampled BRIDGES ERVs) 0.008 26307 -- 

7-mers (BRIDGES MAC10+ variants) 0.001 26466 -- 

7-mers (intergenic 1000G polymorphisms)8 0.002 26440 -- 

 417 

non-CpG C>A (3620 de novo mutations; 128765 non-mutated sites) 418 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.011 32901 -- 
5-mers 0.021 32606 9.73e-67 
7-mers 0.030 32340 3.75e-60 
7-mers+features 0.032 32290 4.60e-13 
7-mers (downsampled BRIDGES ERVs) 0.030 32351 -- 
7-mers (BRIDGES MAC10+ variants) 0.024 32523 -- 
7-mers (intergenic 1000G polymorphisms)8 0.026 32451 -- 



non-CpG C>G (3561 de novo mutations; 128746 non-mutated sites) 419 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.006 32603 -- 

5-mers 0.018 32271 1.25e-75 

7-mers 0.023 32102 4.79e-39 

7-mers+features 0.024 32093 1.10e-03 

7-mers (downsampled BRIDGES ERVs) 0.022 32127 -- 

7-mers (BRIDGES MAC10+ variants) 0.018 32251 -- 

7-mers (intergenic 1000G polymorphisms)8 0.018 32263 -- 

 420 

non-CpG C>T (10321 de novo mutations; 128774 non-mutated sites) 421 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.006 73240 -- 

5-mers 0.012 72902 5.40e-76 

7-mers 0.014 72771 9.49e-31 

7-mers+features 0.015 72728 1.92e-11 

7-mers (downsampled BRIDGES ERVs) 0.014 72779 -- 

7-mers (BRIDGES MAC10+ variants) 0.012 72905 -- 

7-mers (intergenic 1000G polymorphisms)8 0.013 72863 -- 

 422 
CpG>ApG (304 de novo mutations; 6108 non-mutated sites) 423 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.013 2424 -- 

5-mers 0.027 2397 5.82e-08 

7-mers 0.029 2394 3.43e-02 

7-mers+features 0.030 2395 0.18 

7-mers (downsampled BRIDGES ERVs) 0.027 2395 -- 

7-mers (BRIDGES MAC10+ variants) 0.020 2408 -- 

7-mers (intergenic 1000G polymorphisms)8 0.024 2400 -- 

 424 

CpG>GpG (270 de novo mutations; 6292 non-mutated sites) 425 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.010 2218 -- 

5-mers 0.013 2216 0.037 

7-mers 0.021 2203 9.90e-05 

7-mers+features 0.022 2202 0.083 

7-mers (downsampled BRIDGES ERVs) 0.015 2208 -- 

7-mers (BRIDGES MAC10+ variants) 0.015 2208 -- 

7-mers (intergenic 1000G polymorphisms)8 0.011 2217 -- 



 426 

CpG>TpG (6960 de novo mutations; 6289 non-mutated sites) 427 

Model Nagelkerke's R2 AIC 
P-value 

(likelihood 
ratio test) 

3-mers 0.010 18067 -- 

5-mers 0.017 18005 8.36e-16 

7-mers 0.027 17900 7.45e-25 

7-mers+features 0.075 17415 7.23e-108 

7-mers (downsampled BRIDGES ERVs) 0.026 17905 -- 

7-mers (BRIDGES MAC10+ variants) 0.024 17928 -- 

7-mers (intergenic 1000G polymorphisms)8 0.024 17935 -- 

  428 



Supplementary Table 4  t-tests for differences in mean MAC10+/ERV ratio of GC-poor vs. 429 

GC-rich 7-mer motifs 430 

For each mutation subtype, we calculated the ratio between MAC10+-derived and ERV-derived relative 431 

mutation rates. Then, for each of the 9 basic types, we grouped 7-mer subtypes into low C/G subtypes 432 

(≤3 C/G bases in the +/-3 flanking positions) and high C/G subtypes (≥4 C/G bases in the +/-3 flanking 433 

positions) and performed t-tests for differences in the mean MAC10+/ERV ratios of these two groups.  434 

Type 
Mean MAC10+/ERV 

ratio 
(≤3 C/G bases) 

Mean MAC10+/ERV 
ratio 

(≥4 C/G bases) 
P-value 

A>C 0.97 1.12 8.00e-30 

A>G 1.00 1.28 2.37e-161 

A>T 0.89 0.89 0.81 

C>A (non-CpG) 0.76 0.72 2.61e-09 

C>G (non-CpG) 0.89 0.93 2.98e-04 

C>T (non-CpG) 0.93 0.85 1.75e-39 

CpG>ApG 1.15 0.96 4.97e-22 

CpG>GpG 1.46 1.33 2.80e-04 

CpG>TpG 1.02 0.98 1.01e-09 



Supplementary Table 5  Genomic features used in mutation models 435 

A script to download the exact external data files used in this paper is available at 436 

https://github.com/carjed/smaug-genetics    437 

Feature Source Cell Type Resolution 

H3K4me1, H3K4me3, 
H3K9ac, H3K9me3, 
H3K27ac, H3K27me3, 
H3K36me3 

Roadmap Epigenomics 
Project15 

Peripheral Blood 
Mononuclear 
Primary Cells 

1bp (inside vs. outside 
of broad peak) 

Replication timing Koren et al., 201216 Lymphoblastoid 1kb window 

Recombination rate Kong et al., 201017 
(deCODE sex-averaged 
recombination rate map) 

-- 10kb window 

Lamin B1 domains Guelen et al., 200818 Tig3ET normal 
human 
embryonic lung 
fibroblasts 

1bp (inside vs. outside 
of LAD) 

DNase hypersensitivity 
sites 

ENCODE multiple 1bp (inside vs. outside 
of DHS region) 

Exonic site RefSeq gene database -- 1bp (inside vs. outside 
of exon) 

CpG island Wu et al., 201019 -- 1bp (inside vs. outside 
of CpG island) 

% GC content Calculated from 
reference genome 

-- 10kb 

https://github.com/carjed/smaug-genetics


Supplementary Table 6a  Univariate tests for enrichment or depletion of de novo mutations 438 

occurring in feature-associated subtypes identified by logistic regression models.  439 

Feature 

Expected 

direction of 

effect 

# mutations in  

feature-

associated 

subtypesa 

# mutations in feature 

p-value 
Consistent 

direction? 
expectedb observedc 

CpG Islands 
Increased 648 17 14 0.65 No 

Decreased 7072 331 84 𝟕. 𝟓×𝟏𝟎−𝟑𝟓 Yes 

GC content 
Increased 256 22 8 0.99 No 

Decreased 2350 56 23 𝟏. 𝟏×𝟏𝟎−𝟒 Yes 

H3K36me3 
Increased 3731 589 682 𝟐. 𝟒×𝟏𝟎−𝟑 Yes 

Decreased 898 162 98 𝟏. 𝟑×𝟏𝟎−𝟓 Yes 

H3K9me3 Increased 7361 1165 1905 𝟑. 𝟖×𝟏𝟎−𝟓𝟏 Yes 

H3K27me3 Increased 896 274 252 0.86 No 

H3K4me1 Decreased 2839 557 463 𝟏. 𝟐×𝟏𝟎−𝟑 Yes 

H3K4me3 Decreased 3406 566 487 𝟖. 𝟏×𝟏𝟎−𝟑 Yes 

DHS 
Increased 1091 177 184 0.38 Yes 

Decreased 2898 701 645 0.04 Yes 

Lamin-

associated 

domains 

Increased 485 187 171 0.85 No 

Recombination 

rate 
Increased 2190 306 377 𝟏. 𝟗×𝟏𝟎−𝟑 Yes 

Replication 

timing 
Increased 2359 278 321 0.03 Yes 

For each feature for a given effect direction, we included all 7-mer subtypes with significant association 440 
of the feature with relative mutation rate (Fig. 5). We counted: athe total number of de novo mutations 441 
of those subtypes, bthe number of these mutations expected to occur in the feature under the null 442 
expectation that the feature has no impact on mutability (i.e., assuming only an effect of sequence 443 
context), and cthe number of these mutations that were observed to occur in the feature. Significant 444 
associations are indicated by a one-sided p-value (observed numbers are consistent with model 445 
predictions) in bold.  446 



Supplementary Table 6b  Univariate tests for enrichment or depletion of de novo mutations 447 

occurring in feature-associated subtypes (excluding CpG subtypes) identified by logistic 448 
regression models. 449 

Feature 

Expected 

direction of 

effect 

# mutations in  

feature-

associated 

subtypesa 

# mutations in feature 

p-value 
Consistent 

direction? 
expectedb observedc 

H3K36me3 
Increased 2844 356 474 𝟏. 𝟏×𝟏𝟎−𝟓 Yes 

Decreased 887 160 96 𝟏. 𝟖×𝟏𝟎−𝟓 Yes 

H3K9me3 Increased 4050 728 1101 𝟒. 𝟗×𝟏𝟎−𝟐𝟑 Yes 

H3K27me3 Increased 238 72 60 0.25 No 

CpGI Increased 610 12 9 0.64 No 

DHS 
Increased 1061 167 173 0.78 Yes 

Decreased 378 101 56 𝟖. 𝟒×𝟏𝟎−𝟓 Yes 

For each feature, we identified all 7-mer subtypes where our model estimated a significant association 450 
(Fig. 3), separated into either an increased or decreased direction of effect, and counted: athe total 451 
number of non-CpG de novo mutations of those subtypes, bthe number of these mutations that would 452 
occur in regions of the genome where that feature was present, under the null expectation that the 453 
feature has no impact on mutability (i.e., assuming only an effect of sequence context), and cthe 454 
number of these mutations that were observed in the presence of that feature. Significant associations 455 
are indicated by a one-sided p-value in bold. Note that only 5 of the 15 groups described in 456 
Supplementary Table 6a contained sufficient numbers of non-CpG de novo mutations to perform 457 
these tests. 458 
  459 



Supplementary Table 7 Parameter estimates for genomic features model 460 

[see separate spreadsheet, table_S7_feature_parameter_estimates.xlsx] 461 

This table contains effect size estimates and standard errors of 16 parameters (14 features, plus 462 

intercept and read depth) for each of the 24,489 7-mer subtypes with at least 10 singletons in the 463 

BRIDGES data.  464 


