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1 Mathematical analysis of the learning rules40

In the following, we derive the spacing of periodic firing patterns as a function of41

the simulation parameters for the linear track. To this end, we first show that42

homogeneous weights, chosen such that the output neuron fires at the target rate,43

are a fixed point for the time evolution of excitatory and inhibitory weights under44

the assumption of slow learning. We then perturb this fixed point and derive a two45

dimensional linear dynamical system for the Fourier modes of the excitatory and46

inhibitory weight perturbations. The translational invariance of the input overlap47

leads to decoupling of spatial frequencies in Fourier space. For smoother spatial48

tuning of inhibitory input than excitatory input, the eigenvalue spectrum of the49

dynamical system has a unique maximum, which indicates the most unstable spatial50

frequency. This frequency accurately predicts the grid spacing. We first consider51

place cell-like input (Gaussians) and then non-localized input (Gaussians convolved52

with white noise).53

See Section 4 for a glossary of the notation. Whenever we use P as a sub- or54

superscript instead of E or I, this implies that the equation holds for neurons of the55

excitatory and the inhibitory population, respectively.56

57

1.1 Assumption of slow learning58

The firing rate of the output neuron is the weighted sum of excitatory and inhibitory

input rates:

rout =
[
wErE −wIrI

]
+
. (1)
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where [. . .]+ indicates that negative firing rates are set to zero.

Written as a differential equation, the excitatory learning rule with quadratic multi-

plicative normalization is given by:

dwE

dt
= ηE

(
1− wEwET

‖wE‖2

)
rErout . (2)

The projection operator wEwET

‖wE‖2
ensures that the weights are constrained to remain

on the hypersphere whose radius is defined by the initial value of the sum over the

squares of all excitatory weights [1]. The inhibitory learning rule is given by:

dwI

dt
= ηIr

I
(
rout − ρ0

)
. (3)

We assume the rat to learn slowly, such that it forages through the environment

before significant learning (i.e., weight change) occurs. Therefore we can coarsen the

time scale and rewrite Eqs. (2) and (3) as

dwE

dt
= ηE

〈(
1− wEwET

‖wE‖2

)
rErout

〉
x

(4)

and

dwI

dt
= ηI

〈
rI
(
rout − ρ0

)〉
x

(5)

respectively, where the spatial average, 〈. . .〉x, is defined as

〈(. . . )〉x =
1

L

∫ +L/2

−L/2
(. . . ) dx (6)
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and L is the length of the linear track.59

1.2 High density assumption and continuum limit for place60

cell-like input61

We assume a high density of input neurons and formulate the system in continuous

variables. More precisely, we assume the distance between two neighboring firing

fields to be much smaller than the width of the firing fields, i.e., L/NP � σP.

Furthermore, we assume that the linear track is very long compared to the width of

the firing fields, i.e., σP � L.

We replace the neuron index with the continuous variable µ and denote the weight

wP
µ and the tuning function rP(µ, x) associated with a place field that is centered at

µ in the continuum limit as:

wP
i → wP(µ) and rPi (x)→ rP(µ, x) . (7)

The distance between two neighboring place fields is given by ∆µ = NP/L. For sums

over all neurons we thus get the following integral in the continuum limit:

NP∑
i=1

fi =
1

∆µ

NP∑
i=1

fi ∆µ→
NP

L

∫ +L/2

−L/2
f(µ) dµ . (8)

In the following we will switch between the discrete and the continuous formulation62

and use whatever is more convenient.63

For place cell-like input we take Gaussian tuning curves:

rPi (x) = αP exp

{
−(x− µi)2

2σ2
P

}
, (9)
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with height αP and standard deviation σP. In the continuum limit we thus get:

rPi (x)→ rP(µ, x) = rP(|x− µ|) = αP exp

{
−(x− µ)2

2σ2
P

}
. (10)

Because of the translational invariance of rP(µ, x), integration over space gives the

same result as integration over all center locations and the mean of all inputs is the

same:

〈
rPi (x)

〉
x

=
〈
rP(µ, x)

〉
x

(11)

=
1

L

∫ +L/2

−L/2
rP(µ, x) dx (12)

=
1

L

∫ +L/2

−L/2
rP(µ, x) dµ ≈ αP

L

√
2πσ2

P = MP/L (13)

where we introduced MP := αP

√
2πσ2

P for the area under the tuning curves. Ac-

cordingly, we get a summarized input activity that is independent of location:

NP∑
i=1

rPi (x) =
NP

L

∫ +L/2

−L/2
rP(µ, x) dµ ≈ NP

L
MP . (14)

1.3 Equal weights form a fixed point64

In the following, we will show that equal weights wE(µ) = wE
0 and wI(µ′) = wI

0, ∀µ, µ′

form a fixed point if wI
0 is chosen such that the output neuron fires at the target rate,

ρ0, throughout the arena.

With equal weights we get a constant firing rate rout0 ,

rout(x) = rout0 =

[
wE

0

∑
i

rEi (x)− wI
0

∑
i

rIi(x)

]
+

, (15)
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which according to Eq. (14) does not depend on x. Furthermore, according to

Eq. (11),
〈
rPi (x)

〉
x
does not depend on the neuron index i. Now the stationarity

of the excitatory weight evolution follows from Eq. (4):

dwE
i

dt
= ηE

〈
rout

∑
j

rEj

(
δij −

wE
i w

E
j∑

k w
E
k
2

)〉
x

(16)

= ηEr
out
0

∑
j

[〈
rEj
〉
x

(
δij −

wE
0
2

NEwE
0
2

)]
(17)

=
rout0 ηEME

L

NE∑
j=1

(
δij −

1

NE

)
= 0 , (18)

i.e., excitatory weights are stationary for all values of wE
0 and wI

0 (here δij denotes

the Kronecker delta which is 1 if i = j and 0 otherwise). This holds for all input

functions for which
〈
rEj (x)

〉
x
is independent of j. If rout = ρ0 it immediately follows

from Eq. (3) that dwI

dt
= 0, so the inhibitory weights are stationary if

ρ0 = wErE −wIrI = wE
0

∑
i

rEi − wI
0

∑
i

rIi , (19)

which is fulfilled if

wI
0 =

wE
0

∑
i r

E
i − ρ0∑
i r

I
i

=
wE

0NEME − ρ0
NIMI

. (20)

1.4 Linear stability analysis65

In the following, we will show that the fixed point of equal weights, the homogeneous66

steady state, is unstable, when the spatial tuning of inhibitory inputs is broader than67

that of the excitatory inputs. In this case, perturbations of the fixed point will grow68

and a particular spatial frequency will grow fastest. We will show that this spatial69

7



frequency predicts the spacing of the resulting periodic pattern (Fig. 1g).70

We disturb the fixed point

wE(µ) = wE
0 + δwE(µ), wI(µ) = wI

0 + δwI(µ) (21)

and look at the time evolution of the perturbations dδwE

dt
and dδwI

dt
of the excitatory71

and inhibitory weights around the fixed point.72

Close to the fixed point the output neuron fires around the target rate ρ0. We thus73

ignore the rectification in Eq. (1), i.e., rout = ρ0 + δrout, with δrout =
∑

k δw
E
k r

E
k −74 ∑

k′ δw
I
k′r

I
k′ .75

1.4.1 Time evolution of perturbations of the inhibitory weights76

We start with the time evolution of the inhibitory weight perturbations:

dδwI
i

dt
=

dwI
i

dt
= ηI

〈(
rout − ρ0

)
rIi
〉
x

(22)

= ηI
〈(
ρ0 + δrout − ρ0

)
rIi
〉
x

(23)

= ηI
〈
rIiδr

out
〉
x

(24)

= ηI

〈
rIi

(∑
k

δwE
k r

E
k −

∑
k′

δwI
k′r

I
k′

)〉
x

(25)

= ηI

(
NE∑
k=1

〈
rIir

E
k

〉
x
δwE

k −
NI∑
k′=1

〈
rIir

I
k′

〉
x
δwI

k′

)
, (26)

where we used that only the rates rP depend on x. Intuitively, the first term in

Eq. (26) means that the rate of change of the inhibitory weight perturbation of the

weight associated to one location depends on the excitatory perturbations of the

weights associated to every other location, weighted with the overlap of the two
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associated tuning functions (analogous for inhibitory weight perturbations). In the

continuum limit, the sums are:

ηP
NP′∑
k=1

〈
rPi r

P′

k

〉
x
δwP′

k → ηP
NP′

L

∫ +L/2

−L/2

〈
rP(µ)rP

′
(µ′)

〉
x
δwP′

(µ′) dµ′ (27)

=

∫ +L/2

−L/2
KPP′

(µ, µ′)δwP′
(µ′) dµ′ , (28)

where we introduced overlap kernels

KPP′
(µ, µ′) := ηP

NP′

L

〈
rP(µ)rP

′
(µ′)

〉
x

P,P′ ∈ {E, I} . (29)

The overlap
〈
rX(µ)rY(µ′)

〉
x
only depends on the distance of the Gaussian fields, i.e.,

KXY(µ, µ′) = KXY(µ− µ′) . (30)

Taking L → ∞, the time evolution of the perturbations of the inhibitory weights

can thus be written as convolutions:

dδwI(µ)

dt
= (KIE ∗ δwE)(µ)− (KII ∗ δwI)(µ) , (31)

where ∗ denotes a convolution.77

1.4.2 Time evolution of perturbations of the excitatory weights78

To derive the time evolution of the excitatory weights, we first show that the weight79

normalization term in Eq. (4), expressed through the projection operator Pij =
wiwj∑
k w

2
k
,80

leads to a term that balances homogeneous weight perturbations and a term that81

can be neglected in the continuum limit.82
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Let P be the projection operator responsible for the normalization of the exci-

tatory weights by projecting a weight update onto a vector that is orthogonal to

the hypersphere of constant
∑NE

i=1(w
E
i )2. We now determine the projection operator

around the fixed point (We drop the index ‘E’ in the following, to improve readabil-

ity):

Pij =
(w0 + δwi)(w0 + δwj)∑

k(w0 + δwk)2
≡ Pij(w + δw) . (32)

Using Taylor’s theorem

Pij(w + δw) = Pij(w) +
N∑
l=1

δwl
dPij(w)

dwl
+O(δw2) (33)

and wl = w0 ∀ l we get

Pij(w) =
wiwj∑
k w

2
k

= 1/N , (34)

dPij(w)

dwl
=

δilwj∑
k w

2
k

+
δjlwi∑
k w

2
k

− wiwj2wl
(
∑

k w
2
k)

2
=

δil
Nw0

+
δjl
Nw0

− 2

N2w0

. (35)

In summary this gives:

Pij =
1

NE︸︷︷︸
≡P0∝O(1)

+
1

NEwE
0

(
δwE

i + δwE
j −

2
∑NE

l=1 δw
E
l

NE

)
︸ ︷︷ ︸

≡δPij∝O(δw)

+O(δw2) . (36)

Using the perturbed projection operator Eq. (36) with Eq. (4) we obtain the time
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evolution of the excitatory weight perturbation to linear order:

dδwE
i

dt
=

dwE
i

dt
(37)

= ηE

〈
rout

∑
j

(δij − Pij)rEj

〉
x

(38)

= ηE

〈
(ρ0 + δrout)

∑
j

(δij − P0 − δPij)rEj

〉
x

(39)

= ηE

〈
ρ0
∑
j

(δij − P0)r
E
j

〉
x︸ ︷︷ ︸

=0,cf.Eq. (16)

+

〈
δrout

∑
j

(δij − P0)r
E
j

〉
x

−

〈
ρ0
∑
j

δPijr
E
j

〉
x

+O(δw2)

(40)

= ηE


〈
rEi δr

out
〉
x︸ ︷︷ ︸

(1)

−P0

〈
δrout

∑
j

rEj

〉
x︸ ︷︷ ︸

(2)

− ρ0

〈∑
j

δPijr
E
j

〉
x︸ ︷︷ ︸

(3)

+O(δw2)

(41)

Term (1) in Eq. (41) has a similar structure as in the inhibitory case (Eq. (24)) and

will lead to analogous convolutions. In the continuum limit the second term is given
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by

(2) =
1

NE

〈(∑
k

rEk δw
E
k −

∑
k′

rIk′δw
I
k′

)∑
j

rEj

〉
x

(42)

=
ME

L

〈∑
k

rEk δw
E
k −

∑
k′

rIk′δw
I
k′

〉
x

(43)

=
ME

L

(∑
k

〈
rEk
〉
x
δwE

k −
∑
k′

〈
rIk′
〉
x
δwI

k′

)
(44)

=
ME

L2

(
ME

∑
k

δwE
k −MI

∑
k′

δwI
k′

)
(45)

cont. limit→ ME

L3

(
NEME

∫ +L/2

−L/2
δwE(µ′) dµ′ −NIMI

∫ +L/2

−L/2
δwI(µ′′) dµ′′

)
(46)

and the third term by

(3) =
ρ0

NEwE
0

〈∑
j

rEj

(
δwE

i + δwE
j −

2

NE

∑
l

δwE
l

)〉
x

(47)

=
ρ0

NEwE
0

∑
j

〈
rEj
〉
x

(
δwE

i + δwE
j −

2

NE

∑
l

δwE
l

)
(48)

=
ρ0ME

NEwE
0L

∑
j

(
δwE

i + δwE
j −

2

NE

∑
l

δwE
l

)
(49)

=
ρ0ME

wE
0L

(
δwE

i +
1

NE

∑
j

δwE
j −

2

NE

∑
l

δwE
l

)
(50)

=
ρ0ME

wE
0L

(
δwE

i −
1

NE

∑
j

δwE
j

)
(51)

cont. limit→ ρ0ME

wE
0L

(
δwE(µ)− 1

L

∫ +L/2

−L/2
δwE(µ′) dµ′

)
(52)

=
ρ0ME

wE
0L

∫ +L/2

−L/2
dµ′δwE(µ′)

[
δ(µ− µ′)− 1

L

]
, (53)

where δ(µ − µ′) denotes the Dirac delta function. Together this leads to the time
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evolution of the excitatory weight perturbations:

dδwE(µ)

dt
=

∫ +L/2

−L/2
dµ′δwE(µ′)

[
KEE(µ− µ′)− ηEρ0ME

wE
0L

δ(µ− µ′) (54)

+
ηEME

L2

(
ρ0
wE

0

− NEME

L

)]
(55)

−
∫ +L/2

−L/2
dµ′′δwI(µ′′)

[
KEI(µ− µ′′)− ηENIMEMI

L3

]
. (56)

We now take L→∞ and write everything as convolutions, also trivial ones:

dδwE(µ)

dt
=

([
KEE − ηEρ0ME

wE
0L

δ +
ηEME

L2

(
ρ0
wE

0

− NEME

L

)]
∗ δwE

)
(µ)

−
([
KEI − ηENIMEMI

L3

]
∗ δwI

)
(µ) . (57)

1.4.3 Decoupling of spatial frequencies83

The convolutions in Eqs. (26) and (57) show how the excitatory and inhibitory weight

perturbations at one location influence the time evolution of weights at every other lo-

cation. Transforming the system to frequency space leads to a drastic simplification:

The time evolution of a perturbation of a particular spatial frequency only depends

on the excitatory and inhibitory perturbation of the same spatial frequency, i.e., the

Fourier components decouple. We define the Fourier transform f(k) ≡ F [f(µ)] with

wavevector k of a function f(µ) of locations µ as:

f(k) ≡
∫ +∞

−∞
f(µ)e−ikµ dµ (58)
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and note that

∫ +∞

−∞
e−ikµ dµ = 2πδ(k) . (59)

Using the Convolution theorem and the linearity of the Fourier transform we get

dδwE(k)

dt
=

[
ηEME

L2

(
ρ0
wE

0

− NEME

L

)
δwE(k) +

ηENIMEMI

L3
δwI(k)

]
2πδ(k)

− ηEρ0ME

wE
0L

δwE(k) +
[
KEE(k)δwE(k)−KEI(k)δwI(k)

]
(60)

and

dδwI(k)

dt
= KIE(k)δwE(k)−KII(k)δwI(k) . (61)

The δ(k) term in Eq. (60) balances homogeneous perturbations in such a way that

the output neuron would still fire at the target rate, if not for permutations at other

frequencies. In the following, we drop this term, because we are not interested in

spatially homogeneous perturbations. Moreover, the continuum limit is only valid

for high densities: NP/L→∞. We can thus drop terms of lower order than NX/L,

which eliminates the ηEρ0ME

wE
0 L

term. Writing the remaining terms of Eqs. (60) and (61)

as a matrix leads to: ˙δwE

˙δwI

 (k) =

KEE(k) −KEI(k)

KIE(k) −KII(k)


δwE

δwI

 (k) , (62)
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which contains no terms from the weight normalization anymore. The characteristic

polynomial of the above matrix is:

λ2 + λ
(
KII −KEE

)
+KEIKIE −KEEKII = 0 (63)

The difference, KEIKIE −KEEKII, vanishes for Gaussian input, because:

KXY(µ, µ′ = 0) =
ηXNY

L

〈
rX(µ)rY(0)

〉
x

(64)

=
αXαYη

XNY

L2

∫ +L/2

−L/2
dx exp

{
−(x− µ)2

2σ2
X

− x2

2σ2
Y

}
(65)

≈ αXαYη
XNY

L2

√
2π

1
σ2
X

+ 1
σ2
Y

exp

{
− µ2

2(σ2
X + σ2

Y)

}
, (66)

where we completed the square and used
∫ +∞
−∞ e−ax

2
=
√

π
a
. Taking the Fourier

transform and completing the square again gives

KXY(k) =
ηXNYMXMY

L2
exp

{
−k

2

2
(σ2

X + σ2
Y)

}
. (67)

and thus KEIKIE −KEEKII = 0.

For X = Y Eq. (67) simplifies to:

KXX(k) =
ηXNXM

2
X

L2
exp

{
−k2σ2

X

}
. (68)
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This leads to the eigenvalues:

λ0(k) = 0 (69)

λ1(k) = KEE(k)−KII(k) (70)

=
1

L2

(
ηEM

2
ENE exp

{
−k2σ2

E

}
− ηIM2

I NI exp
{
−k2σ2

I

})
, (71)

which are shown in Fig. S1. Perturbations with spatial frequencies for which λ1(k)

is positive will grow. Setting dλ1(k)
dk

= 0 gives the wavevector kmax of the Fourier

Figure S1: The eigenvalue spectrum for the eigenvalues of Eq. (69) for an excitatory
tuning of width σE = 0.03. The first eigenvalue λ0 is always 0. If the inhibitory tuning
is more narrow than the excitatory tuning, i.e., σI < σE, the second eigenvalue λ1 is
negative for every wavevector k. For σI > σE the eigenvalue spectrum has a unique
positive maximum kmax, i.e., the most unstable spatial frequency. The wavevector
kmax at which λ1 is maximal is obtained from Eq. (75) and marked with a dashed
line.
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component that grows fastest:

2

L2

(
ηIM

2
I NIσ

2
I kmax exp

{
−k2maxσ

2
I

}
− ηEM2

ENEσ
2
Ekmax exp

{
−k2maxσ

2
E

})
= 0 (72)

⇒ ln(ηIM
2
I NIσ

2
I )− k2maxσ

2
I = ln(ηEM

2
ENEσ

2
E)− k2maxσ

2
E (73)

⇒ kmax =

√√√√ ln(
ηIM

2
I NIσ

2
I

ηEM
2
ENEσ

2
E

)

σ2
I − σ2

E

. (74)

Assuming that the fastest-growing spatial frequency from the linearized system will

prevail, the final spacing of the periodic pattern, `, is determined by:

` = 2π/kmax = 2π

√√√√ σ2
I − σ2

E

ln
(

ηIσ
4
INIα

2
I

ηEσ
4
ENEα

2
E

) . (75)

Eq. (75) is in exact agreement with the grid spacing obtained in simulations84

(Fig. 1g). Moreover, it indicates the bifurcation point: When excitation is as smooth85

as inhibition (σE = σI), there is no unstable spatial frequency anymore and every86

perturbation gets balanced (Fig. 1g, compare Eq. (98)). The grid spacing also de-87

pends on the ratio of the inhibitory and excitatory parameters ηP, NP, αP (logarith-88

mic term in Eq. (75)). We confirmed this dependence with simulations on the linear89

track where we increased either ηI or NI or α2
I such that the product γ = ηINIα

2
I90

increases with respect to the initial product γ0. We find a good agreement with the91

theoretical prediction for all three variations (Fig. S2).92
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Figure S2: Dependence of grid spacing on learning rate ηI, number of input neurons
NI and input height αI is accurately predicted by the theory. The gray line shows
the grid spacing obtained from Eq. (75). We vary either the inhibitory learning rate,
ηI (circles), the number of inhibitory input neurons, NI (squares), or the square of
the height of the inhibitory input place fields, α2

I (diamonds). The horizontal axis
shows the ratio of the product ηINIα

2
I to the initial value of the product γ0. We keep

ηE = 3.3× 10−5, NE = 800 and αE = 1 in each simulation and the γ0 parameters
are: ηI = 3.3× 10−4, NI = 200, αI = 1.

1.5 Analysis for non-localized input (Gaussian random fields)93

Above, we derived the time evolution of perturbations of excitatory and inhibitory

weights for place field-like input, i.e., Gaussian tuning curves. In the following we

conduct a similar analysis, using non-localized input, i.e., random functions with a

given spatial autocorrelation length. We show that the grid spacing is predicted by

an equation that is equivalent to Eq. (75).

The non-localized input rPi for input neuron i of population P was obtained by

rescaling a Gaussian random field (GRF) gPi to mean 1/2 and minimum 0:

rPi (x) =
gPi (x)−minx g

P
i (x)

2 〈gPi (x)−minx gPi (x)〉x
, (76)
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where minx denotes the minimum over all locations and the GRF gPi is obtained by

convolving a Gaussian GP (x) = exp(−x2/2σ2
P) with white noise ξi from a uniform

distribution between −0.5 an 0.5:

gPi (x) =

∫
GP (x− x′) ξPi (x′) dx′ . (77)

Again we consider infinitely large systems L→∞ with infinite density NP/L→∞.94

The mean of the distribution of GRF minima of different input neurons scales

logarithmically with the number of samples [2]. Here the number of samples corre-

sponds to the number of minima in a GRF which scales inversely with the width of

the convolution kernel that was used to obtain the GRF:

Number of minima ∝ L/σP . (78)

In the continuum limit the variance of the minima distribution over cells decreases

and the relative difference between the mean minimum value of excitation and in-

hibition vanishes1 (Fig. S3). We thus take the minimum value as a constant m,

which does not depend on the population nor on the input neuron. This leads to the

simplified expression of the input tuning functions:

rPi =
1

2

(
1− gPi (x)

m

)
. (80)

1

log(L/σE)− log(L/σI)

log(L/σE)
=

log(σI/σE)

log(L/σE)
→ 0 . (79)

For the argument it doesn’t matter if it scales purely logarithmically or with logγ , where γ is any
exponent.
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Figure S3: Distribution of minimal values of GRF input. Histograms show the
distribution of the minimal values of 1000 input neurons for a small linear track,
L = 2, and a large linear track L = 1000. Red and blue colors correspond to
the tuning of excitatory and inhibitory input neurons, respectively. Each dotted
line indicates the mean of the histogram of the same color. For larger systems,
the distribution of the minimum values gets more narrow and the relative distance
between the minima of excitatory and inhibitory neurons decreases.

Since
〈
rPi
〉
x

= 0.5 is independent of i, equal excitatory weights are a fixed point

for the excitatory learning rule Eq. (4) as described in Eq. (16). Moreover, the sum

over all input neurons does not depend on the location:

NP∑
i=1

rPi (x) =
1

2

(
NP∑
i=1

1−
NP∑
i=1

gPi (x)

)
=
NP

2
− 1

2

∫
GP (x− x′)

NP∑
i=1

ξPi (x′)︸ ︷︷ ︸
=0 in cont. limit

dx′ =
NP

2
.

(81)

Therefore, given constant excitatory weights, all inhibitory weights can be set to

a value wI
0 such that the output neuron fires at the target rate, i.e., homogeneous

weights are a fixed point of the learning rules, as in the scenario with Gaussian input.

Moreover, Eq. (26) holds also for GRF input. The analysis of the projection operator

of the weight normalization lead to a term of homogeneous weight perturbations and

a term that could be neglected in the high density limit. We now omit these terms

a priori. The time evolution of excitatory and inhibitory weight perturbations can
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thus be summarized as (compare Eqs. (26) and (41)):

dδwP
i

dt
= ηP

(
NE∑
k=1

〈
rPi (x)rEk (x)

〉
x
δwE

k −
NI∑
k′=1

〈
rPi (x)rIk′(x)

〉
x
δwI

k′

)
. (82)

The above equation describes the time evolution of each synaptic weight. For the

Gaussian input of the earlier sections, each synaptic weight is associated with one

location. In the continuum limit we thus identified the synaptic weight associated to

location µ with wP(µ). An increase of wE(µ) corresponded to an increase in firing

at location µ (and the surrounding given by the Gaussian of the excitatory tuning).

Analogously, an increase of wI(µ) caused a decrease in firing at location µ (and the

surrounding given by the Gaussian of the inhibitory tuning). Because of the non-

localized tuning of GRF input, each synaptic weight has an influence on the firing

rate at many locations. The influence of neuron i of population P at location µ is

expressed by ξPi (µ). If one wanted to increase the firing rate at location µ one would

thus increase all excitatory weights that have a high ξPi (µ) and decrease all excitatory

weights that have a low ξPi (µ) (note that ξP can also be negative). The ‘weight’ that

corresponds to location µ is thus expressed as:

wP(µ) :=

NP∑
i

wP
i ξ

P
i (µ) , (83)

where we weighted each synaptic weight with the value of the corresponding white

noise at location µ. This corresponds to expressing the weights in a basis that is

associated with the location and not with the individual input neurons. Combining

Eq. (83) and Eq. (82) gives the time evolution of the weight perturbations associated
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with location µ:

dδwP(µ)

dt
=

NP∑
i

ξPi (µ)
dδwP

i

dt
(84)

= ηP
NP∑
i

ξPi (µ)

(
NE∑
k=1

〈
rPi (x)rEk (x)

〉
x
δwE

k −
NI∑
k′=1

〈
rPi (x)rIk′(x)

〉
x
δwI

k′

)
.

(85)

We now look at the first term of the above equation, the second term will be treated

analogously:

NP∑
i

ξPi (µ)

NE∑
k=1

〈
rPi (x)rEk (x)

〉
x
δwE

k =

〈(
NP∑
i

ξPi (µ)rPi (x)

)(
NE∑
k=1

δwE
k r

E
k (x)

)〉
x

. (86)

The sum containing the white noise can be simplified using the zero mean and the

expression for the variance of the uniform white noise:

NP∑
i

ξPi (µ)rPi (x) =
1

2


NP∑
i

ξPi (µ)︸ ︷︷ ︸
=0

− 1

m

NP∑
i

ξPi (µ)gPi (x)

 (87)

= − 1

2m

NP∑
i

∫
GP (x− x′)

NP∑
i

ξPi (µ)ξPi (x′)︸ ︷︷ ︸
=βNPδ(x′−µ) in cont. limit

dx′ (88)

= −βNP

2m
GP (x− µ) , (89)

where β is a proportionality constant that does not depend on the population type

P. The Dirac delta δ(x′− µ) occurs, because the white noise at different locations is

uncorrelated. The sum of the product of weight perturbations and input rates can
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be rewritten as:

NE∑
k=1

δwE
k r

E
k (x) =

1

2


NE∑
k=1

δwE
k︸ ︷︷ ︸

homog. pert.

− 1

m

∫
GE (x− µ′)

NE∑
k=1

δwE
k ξ

E
k (µ′)︸ ︷︷ ︸

=:δwE(µ′); Eq. (83)

dµ′

 . (90)

The first term is independent of location x and will thus only lead to spatially

homogeneous perturbations which we do not consider in the following. Inserting

Eqs. (89) and (90) and the analogous terms for inhibition in Eq. (86) leads to:

NP∑
i

ξPi (µ)

NE∑
k=1

〈
rPi (x)rEk (x)

〉
x
δwE

k =
βNP

4m2

∫ 〈
GP (x− µ)GE (x− µ′)

〉
x
δwE(µ′) dµ′

(91)

=
1

ηP

∫
K̂PE(µ− µ′)δwE(µ′) dµ′ (92)

=
1

ηP
(K̂PE ∗ δwE)(µ) , (93)

where we introduced kernels for the translation invariant overlap between two Gaus-

sians with different centers (similar to Eq. (29)):

K̂PP′
(µ− µ′) :=

βηPNP

4m2

〈
GP (µ)GP′

(µ′)
〉
x

=
βηPNP

4m2

〈
GP (0)GP′

(|µ− µ′|)
〉
x

(94)

Eq. (84) can thus be written as:

dδwP(µ)

dt
= (K̂PE ∗ δwE)(µ)− (K̂PI ∗ δwI)(µ) , (95)

which leads to a dynamical system for the Fourier components of the weight pertur-
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bations that is equivalent to Eq. (62) with eigenvalues:

λ0(k) = 0 (96)

λ1(k) = K̂EE(k)− K̂II(k) (97)

=
β

4m2

(
ηEM

2
ENE exp

{
−k2σ2

E

}
− ηIM2

I NI exp
{
−k2σ2

I

})
. (98)

We thus get the same expression for the grid spacing as in the scenario of Gaussian

input (with αE = αI = 1):

` =

√√√√ σ2
I − σ2

E

ln
(
ηIσ

4
INI

ηEσ
4
ENE

) . (99)

2 Additional methods95

2.1 Simulation parameters96
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[σE,x, σE,y, σE,z] NE ηE wE,init N f
E

Fig. 1b 0.05 2000 10−5 1 ∞
Fig. 1c 0.08 2000 10−5 1 ∞
Fig. 1d 0.06 2000 2× 10−6 1 ∞
Fig. 1f 0.04 160 1× 10−3 1 1
Fig. 1g 0.03 1600 3.6× 10−5 1 1
Fig. 1h 0.03 10000 3.5× 10−7 1 ∞
Fig. 2a [0.05, 0.05] 4900 6.7× 10−5 1 1
Fig. 2b [0.05, 0.05] 4900 2× 10−6 1 100
Fig. 2c [0.05, 0.05] 4900 6× 10−6 1 ∞
Fig. 3a-d [0.05, 0.05] 4900 2× 10−4 1 1
Fig. 4a [0.07, 0.07] 4900 6× 10−6 0.5 ∞
Fig. 4b [0.05, 0.05] 4900 1.1× 10−6 0.0455 ∞
Fig. 4c [0.08, 0.08] 4900 6× 10−6 0.5 ∞
Fig. 4d [0.05, 0.05] 4900 6.7× 10−5 1 1
Fig. 5a [0.07, 0.07, 0.2] 37500 1.5× 10−5 1 1
Fig. 5b [0.08, 0.08, 0.2] 50000 10−5 1 1
Fig. 5c [0.1, 0.1, 0.2] 50000 10−5 1 1
Fig. 6a [0.05, 0.05] 4900 6.7× 10−5 1 1
Fig. 6b 0.04 2000 5× 10−5 1 1

0.04 2000 5× 10−7 1.0 100
0.05 2000 5× 10−6 0.5 ∞

Fig. 6c [0.05, 0.05] 4900 2× 10−6 1 100

Table 1: Parameters for excitatory inputs for all figures in the manuscript. NE =∞
indicates that the excitatory input is a Gaussian random field.
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[σI,x, σI,y, σI,z] NI ηI wI,init N f
I

Fig. 1b 0.12 500 10−4 4.4 ∞
Fig. 1c 0.07 2000 1× 10−4 1.1 ∞
Fig. 1d ∞ 500 2× 10−5 4.39 ∞
Fig. 1f 0.13 40 1× 10−2 1.31 1
Fig. 1g From 0.08 to 0.3 in 0.02

steps
400 3.6× 10−4 Eq. (106) 1

Fig. 1h From 0.08 to 0.3 in 0.02
steps

2500 7× 10−6 4.03 ∞

Fig. 2a [0.1, 0.1] 1225 2.7× 10−4 1.5 1
Fig. 2b [0.1, 0.1] 1225 8× 10−6 1.52 100
Fig. 2c [0.1, 0.1] 1225 6× 10−5 4.0 ∞
Fig. 3a-d [0.1, 0.1] 1225 8× 10−4 1.5 1
Fig. 4a [∞, ∞] 1225 6× 10−5 2 ∞
Fig. 4b [0.049, 0.049] 1225 4.4× 10−5 0.175 ∞
Fig. 4c [0.3, 0.07] 1225 6× 10−5 2 ∞
Fig. 4d [0.049, 0.049] 4900 2.7× 10−4 1.02 1

[0.2, 0.1]; [0.1, 0.2] 1225 2.7× 10−4 1.04 1
[2, 0.1]; [0.1, 2] 1225 2.7× 10−4 2.74 1
[2, 0.2]; [0.2, 2] 1225 2.7× 10−4 1.38 1

[0.1, 0.1] 1225 2.7× 10−4 1.5 1
[0.2, 0.2] 1225 2.7× 10−4 0.709 1
[2, 2] 1225 2.7× 10−4 0.259 1

[0.1, 0.049]; [0.049, 0.1] 1225 2.7× 10−4 2.48 1
[0.2, 0.049]; [0.049, 0.2] 1225 2.7× 10−4 1.74 1
[2, 0.049]; [0.049, 2] 1225 2.7× 10−4 5.56 1

Fig. 5a [0.15, 0.15, 0.2] 9375 1.5× 10−4 1.55 1
Fig. 5b [0.12, 0.12, 1.5] 3125 1× 10−4 5.68 1
Fig. 5c [0.09, 0.09, 1.5] 12500 1× 10−4 2.71 1
Fig. 5d Same as Fig. 5a,b,c
Fig. 6a [0.1, 0.1] 1225 2.7× 10−4 1.5 1
Fig. 6b 0.12 500 5× 10−4 1.6 1

0.12 500 5× 10−6 1.62 100
0.12 500 5× 10−5 1.99 ∞

Fig. 6c [0.1, 0.1] 1225 8× 10−6 1.52 100

Table 2: Parameters for inhibitory inputs for all figures in the manuscript. NI =∞
indicates that the inhibitory input is a Gaussian random field. We denote spatially
untuned inhibition with: σI =∞.
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tsim L
Fig. 1b,c,d,f 4.0× 105 2
Fig. 1g 8.0× 107 14
Fig. 1h 4.0× 107 10
Fig. 2a,b,c 1.8× 106 1
Fig. 3a,b,c,d 5.4× 105 1
Fig. 4a,b,c,d 1.8× 106 1
Fig. 5a,b,c,d 1.8× 106 1
Fig. 6a,c 1.8× 106 1
Fig. 6b 4.0× 105 2

Table 3: Simulation time tsim and system size L for all figures in the manuscript.
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2.2 Rat trajectory97

In the linear track model (one dimension, Fig. 1) we create artificial trajectories x(t).98

The rat moves along a line of length L with constant velocity v = 1 cm per unit time99

step ∆t = 1. The rat always inverts its direction of motion when it hits either end100

of the enclosure at −L/2 or L/2. Additionally, in each unit time step it inverts its101

direction with a probability of 2v∆t/L, resulting in a typical persistence length of102

L/2. Assuming that the rat moves with 3.0× 101 cm/s, the 4× 105 time steps shown103

in Fig. 1b correspond to 3.6 hours.104

In the open arena model (two dimensions, Figs. 2 to 4), we take trajectories x(t)105

from behavioral data [3] of a rat that moved in a 1 m × 1 m quadratic enclosure.106

The data provides coherent trajectories in intervals of 10 minutes. To get a 10 hours107

trajectory we concatenate 60 individual trajectories. Different trajectories in our108

simulations correspond to different random orders of concatenation. A 10 minute109

trajectory contains 3.0× 104 locations. We update the location in every unit time110

step. A time step thus corresponds to 2.0× 101 ms.111

In the model for neurons with head direction tuning (three dimensions, Fig. 5)112

we use the same behavioral trajectories as in two dimensions. We model the head113

direction of the animal as the direction of motion plus a random angle that is drawn114

in each unit time step from a normal distribution with standard deviation π/6.115

In all dimensions, we find that the precise trajectory of the rat only has a small116

influence on the results for the learning rates under consideration (see also Fig. S9).117
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2.3 Spatially tuned inputs118

The firing rates of excitatory and inhibitory synaptic inputs rEi , rIj are tuned to the119

location x of the animal. In the following, we use x and y for the first and second120

spatial dimensions and z for the head direction. The value of x, y, z are in the range121

[−L/2, L/2].122

We analyzed three different kinds of input tuning functions. Place cells (single123

Gaussians), several place fields (sum of multiple Gaussians) and non-localized input124

(Gaussians convolved with white noise). We summarize the tuning functions of125

neurons from the excitatory and the inhibitory population by referring to them as126

population P where P ∈ {E, I}.127

For readability we define a Gaussian of height one with standard deviation σP:

GP (x) := exp

{
− x2

2σ2
P

}
(100)

The input function of the i-th neuron of population P with N f
P place fields per input

neuron in one dimension is then given by:

rPi (x) =

N f
P∑

β=1

GP
(
x− µP

i,β

)
, (101)

where µP
i,β denotes the center location of field number β of input neuron i of popu-128

lation P. The scenario of place cell-like inputs is obtained by setting N f
E = N f

I = 1.129

For higher dimensions we define the center components as µP
i,β = (µP

i,β,x, µ
P
i,β,y, µ

P
i,β,z).

In two dimensions, the tuning of the i-th neuron of population P with N f
P place fields
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per input neurons is thus given by:

rPi (x) =

N f
P∑

β=1

GP
(
x− µP

i,β,x

)
GP
(
y − µP

i,β,y

)
. (102)

In three dimensions we also consider bell-shaped tuning functions along the z-

direction. However, since the head direction component is periodic we take von Mises

functions that are periodic in the interval [−L/2, L/2]:

MP (x) := exp

{(
L

2πσP,z

)2 [
cos

(
2πz

L

)
− 1

]}
(103)

In three dimensions, the tuning of the i-th neuron of population P with N f
P place

fields per input neurons is thus given by:

rPi (x) =

N f
P∑

β=1

GP
(
x− µP

i,β,x

)
GP
(
y − µP

i,β,y

)
MP

(
z − µP

i,β,z

)
. (104)

The center locations µP for neurons of type P in an enclosure of side length130

L are drawn from a randomly distorted lattice (Fig. S4). First the total number131

of input neurons is factorized in its dimensional components NP = NP,xNP,yNP,z.132

Then, for example along the x dimension, center locations of neurons of population133

P are placed equidistantly in [−L
2
− 3σP,x,

L
2

+ 3σP,x]. Allowing the field centers to134

lie a multiple of their standard deviation outside the box reduces boundary effects.135

Each point on the equidistant lattice is subsequently distorted with noise drawn136

from a uniform distribution in [− L
2(NP,x−1)

, L
2(NP,x−1)

]; see Fig. S4. Other dimensions137

are treated analogously. This procedure ensures a random but still efficiently dense138

coverage of the arena with few place fields. A truly random distribution of centers139
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leads to similar results (not shown) but requires more input neurons in order to cover140

the arena densely. We create N f
P of such distorted lattices. To each input neuron141

we assign one center location from each of the N f
P lattices at random and without142

replacement. This guarantees that each input neuron has N f
P randomly located fields143

that together cover the arena densely.144

145

We obtain dense non-localized input by convolving Gaussians as in Eqs. (100)146

and (102) (with N f
P = 1) with uniform white noise between -0.5 and 0.5. For the147

discretization we choose σP/20 and centered the Gaussian convolution kernel on an148

array of 8 times its standard deviation. We convolve this array with a sufficiently149

large array of white noise such that we only keep the values where the array of the150

convolution kernel is inside the array of the white noise. This way we avoid boundary151

effects at the edges. From the resulting function we subtract its minimum and then152

divide by twice the mean of the difference between the function and its minimum.153

This increases the signal to noise ratio and ensures that all of the inputs have a mean154

value of 0.5 across the arena and a minimum at 0. For each input neuron we take155

a different realization of white noise. This results in arbitrary tuning functions of156

the same autocorrelation length as the Gaussian convolution kernel (we define the157

autocorrelation length as the distance at which the autocorrelation has decayed to158

1/e of its maximum, where e is Euler’s number). The above mentioned also holds159

for circular enclosures, only that we drop all field centers outside of a circle of radius160

L/2 + 3σP because they never get activated. This is not necessary but it reduces161

simulation time.162
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Figure S4: Distribution of input fields. Black square box: Arena in which the
simulated rat can move. Blue circles: Locations of input firing fields. To create
random place field locations that cover the space densely, we use locations from a
distorted lattice. To this end we first create a symmetric lattice with Nx locations
along the x-direction and Ny locations along the y-direction. These centers can
lie a certain distance outside the boundary, to reduce boundary effects. We then
add noise from a uniform distribution (blue square) to each location and obtain a
distorted lattice (right).

2.4 Distribution of the initial synaptic weights163

In order to start with reasonable firing rates, we take the initial weights close to the

values that would correspond to the fixed point weights for Gaussian inputs. More

precisely, initially all synaptic weights are chosen from a uniform distribution. For

the spreading of the distribution we take ±5% of the mean value. For the mean

value of the excitatory weights, wE
0 , we typically take wE

0 = 1. We then determine

the mean of the initial inhibitory weights, wI
0, such that the output neuron fires on

average around the target rate:

wErE −wIrI = wE
0

NE∑
i=1

rEi − wI
0

NI∑
j=1

rIj
!

= ρ0 , (105)
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so

wI
0 =

wE
0

∑NE

i=1 r
E
i − ρ0∑NI

j=1 r
I
j

. (106)

The sums are given by:

NP∑
i=1

rPi =
NP

AP

MP , (107)

where NP is the number of input neurons, MP is the area under a tuning function

and AP the area in which the centers of the input tuning function can lie. For the

fixed point weight relation Eq. (106) this leads to

wI
0 =

wE
0NEME/AE − ρ0

NIMI/AI

. (108)

The values for AP and MP depend on the dimensionality of the system.164

2.4.1 One Dimension165

For Gaussian input we have:

MP =
√

2πN f
PαPσP, AP = L+ 6σP . (109)

For Gaussian random field input we have:

MP =
AP

2
, AP = L . (110)
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2.4.2 Two Dimensions166

For Gaussian input we have:

MP =

∫ ∫
rP(µx, µy) dµx dµy = 2πN f

PσP,xσP,y, AP = (L+ 6σP,x)(L+ 6σP,y) .

(111)

For Gaussian random field input we have:

MP =
AP

2
, AP = L2 . (112)

2.4.3 Three dimensions167

In three dimensions we use a von Mises distribution along the third dimension to

account for the periodicity of the head direction angle. We thus get

MP =

∫ ∫ ∫
rP(µP , µy, µz) dµx dµy dµz (113)

= N f
P2πσP,xσP,yL

I0

[(
L

2πσP,z

)2]
exp

{
( L
2πσP,z

)2
} (114)

where I0 is the modified Bessel function. The area in which the function centers can

lie is given by:

AP = (L+ 6σP,x)(L+ 6σP,y)L . (115)
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2.5 Measure for grid spacing on the linear track168

We define the grid spacing of one dimensional grids as the location of the first non-169

centered peak in the autocorrelogram of the firing pattern (Fig. 1g). For place170

cell-like input we obtain the grid spacing of from a single simulation.171

For non-localized input the grids show defects, which results in misleading peaks172

in the correlogram. In this case, we used the first peak of the average of 50 correl-173

ograms to get the grid spacing (Fig. 1h). The 50 correlograms were obtained from174

50 realizations that differ only in the randomness of the input function. To avoid175

taking a fluctuation in the correlogram as the first peak – and thus get a mislead-176

ing grid spacing – we take the maximum between 3σE (to cut out the center of the177

correlogram) and 1 (a value larger than the largest grid spacing in Fig. 1h).178

For high values of the spatial smoothness of inhibition, σI, the simulation results179

deviate from the analytical solution. This is because for high σI but small σE the180

output neuron fires very sparsely, which impedes the learning. This can be readily181

overcome by increasing the tuning width, σE, of the excitatory input.182

2.6 Measure for grid score183

We use the grid score suggested in [3]. More precisely, we determine the grid score184

of a spatial autocorrelogram – the Pearson correlation coefficients for all spatial185

shifts of the firing rate maps against itself – in the following way: We crop a cen-186

tered donut shape from the correlogram. To get the inner and the outer radius of187

the donut we clip all values in the correlogram with values smaller than 0.1 to 0.188

We obtain the resulting clusters of correlations that are larger than 0.1 using the189

scipy.ndimage.measurements.label function from the SciPy package for Python190
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with a quadratic filter structure, ((1, 1, 1), (1, 1, 1), (1, 1, 1)), for a correlogram with191

51 × 51 pixels. From the resulting clusters, we identify those seven with the most192

central center of mass. We use the distance of the outermost pixel of the inner most193

cluster from the center as the inner radius of the donut and the distance of the out-194

ermost pixel of the outermost cluster (of the seven most central clusters) from the195

center as the outer radius. We then rotate this donut around the center and correlate196

it with the unrotated donut. We determine the correlation for 30, 60, 90, 120 and197

150 degrees. We define the grid score as the minimum of the correlation values at198

60 and 120 degrees minus the maximum of the correlation values at 30, 90 and 150199

degrees. A hexagonal symmetry thus leads to positive values whereas a quadratic200

symmetry leads to negative values.201

2.7 Measure for head direction tuning202

To quantify the head direction tuning of a cell we compare the head direction tuning203

to a uniform circular tuning, using Watson’s U2 measure. We adopted the code from204

[4]. We created 10, 000 samples, s_HD, from a probability distribution created from205

the head direction tuning array and 10, 000 samples, s_uniform, from a uniform206

distribution and use watson_u2(s_ uniform, s_HD) from [4] to quantify the degree207

of non-circularity. The sharper the head direction tuning, the higher the resulting208

values.209
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3 Further results210

3.1 Synaptic weight normalization does not influence the grids211

In all simulations in the main text we used quadratic multiplicative normalization for212

the excitatory synaptic weights – a conventional normalization scheme. This choice213

was not crucial for the emergence of patterns. We observe very similar firing pat-214

terns without normalization or with different normalization schemes, such as linear215

multiplicative and linear subtractive normalization (Fig. S5a,b). Linear multiplica-216

tive normalization keeps the sum of all weights constant by multiplying each weight217

with a factor in each time step. Linear subtractive normalization keeps the sum of218

all weights roughly constant by adding or subtracting a factor from all weights and219

ensuring that negative weights are set to zero. The temporal evolution of individual220

synaptic weights looks very similar for all normalization schemes (Fig. S5c).221
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Figure S5: Weight normalization is not crucial for the emergence of grid cells. a):
Firing rate map of a cell before it started exploring its surroundings. b): From left to
right: firing rate of the output cell after one hour of spatial exploration for inactive,
linear multiplicative, quadratic multiplicative and linear subtractive normalization.
c): Time evolution of excitatory and inhibitory weights for different normalization
schemes. Same simulations is in a,b. The colored lines show 200 individual weights.
The black line shows the mean over all synaptic weights. From left to right: Inactive,
linear multiplicative, quadratic multiplicative and linear subtractive normalization.
Weights grow stronger without normalization, as is apparent from the growing mean.
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3.2 Rapid emergence of grid cells with non-localized input222

Grid cells emerge within minutes in experiments and in our simulation. For non-223

localized input the emergence of the final grid pattern typically takes longer. How-224

ever, the grid fields that emerge early are still present in the final grid (Fig. S6), as225

has been observed in experiments [5].

Figure S6: Development of a grid pattern from initially random weights for two
different input scenarios. a) Sparse non-localized input (sum of 100 randomly located
place fields) as in Fig. 2b. b) Dense non-localized input (random function with fixed
spatial smoothness) as in Fig. 2c. While the emergence of the final patterns takes
roughly an hour – and thus longer than for place cell-like inputs (Fig. 3) – the early
firing fields are still present in the final grid.

226

3.3 Conjunctive grid and head direction cells from non-localized227

input228

Simulation results for combined spatial and head direction input that is non-localized229

and sparse is shown in Fig. S7 and can be compared to Fig. 5 in the main text.230
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Figure S7: Cells with combined spatial and head direction tuning with input tuning
that is given by the sum of 20 randomly placed Gaussian spheres; compare Fig. 5 in
the main text. a,b,c) Columns from left to right: Spatial tuning and head direction
tuning (polar plot) of excitatory and inhibitory input neurons (one example each);
spatial firing rate map of the output neuron before learning and after spatial explo-
ration of 10 hours with corresponding autocorrelogram; head direction tuning of the
output neuron after learning. The numbers in the polar plots indicate the peak fir-
ing rate at the preferred head direction after averaging over space. a) Wider spatial
tuning of inhibitory input neurons than of excitatory input neurons combined with
narrower head direction tuning of inhibitory input neurons leads to a grid cell-like
firing pattern in space with invariance to head direction, i.e. the output neuron fires
like a pure grid cell. b) The same spatial input characteristics as in a combined with
head direction-invariant inhibitory input neurons leads to grid cell-like activity in
space and a preferred head direction, i.e. the output neuron fires like a conjunctive
cell. c) If the spatial tuning of inhibitory input neurons is less smooth than that of
excitatory neurons and the concurrent head direction tuning is wider for inhibitory
than for excitatory neurons, the output neuron is not tuned to space but to a single
head direction, i.e. the output neuron fires like a pure head direction cell. d) Head
direction tuning and grid score of 10 simulations of the three cell types. Each symbol
represents one realization with random input tuning. The markers correspond to the
tuning properties of the input neurons as depicted in a, b, c: grid cell (triangles),
conjunctive cell (squares), head direction cell (circles). The values that correspond
to the output cells in a, b, c are shown as filled symbols. e) The head direction
tuning of individual grid fields is sharper than the overall head direction tuning of
the conjunctive cell. Depicted is a rate map of a conjunctive cell (left) and the cor-
responding head direction tuning (right, dashed). For three individual grid fields,
indicated with colored squares, the head direction tuning is shown in the same polar
plot. The overall tuning of the grid cell (dashed) is a superposition of the tuning of
all grid fields. Numbers indicate the peak firing rate (in Hz) averaged individually
within each of the four rectangles in the rate map.
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3.4 Too fast learning leads to unstable grid patterns231

We showed that stable grid patterns emerge within minutes of behavioral rat trajecto-232

ries (Fig. 3) for high learning rates. Our model requires thorough spatial exploration233

of the rat, before significant weight changes occur. Accordingly, no stable patterns234

should emerge, if the learning rate of the rat is too high. Indeed we observe flickering235

grids and a poorer development of hexagonal patterns if we double the learning rates236

compared to those in Fig. 3 (Fig. S8).237

Figure S8: Left column: Same data as shown in Fig. 3c with three different in-
dividual traces (top). Grid score histogram of 500 realizations before (light blue)
and after 10 hours of spatial exploration (dark blue). Right column: The same sim-
ulations as shown on the left, but with twice the learning rates for excitatory and
inhibitory synapses. The high learning rate leads to flickering unstable grids, which
is expressed in the large fluctuations in the grid score. The histogram after 10 hours
of spatial exploration shows that less cells develop a hexagonal pattern.
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3.5 Influence of random initialization on final grids238

Different random trials lead to different grid patterns. In the simulations in the239

manuscript, a different trial corresponds to different initial synaptic weights, different240

trajectories and different input functions (i.e., different center locations for sparse241

input and different sets of white noise for dense input). To test which of these random242

aspects has the largest influence on the final grid pattern, we ran simulations where243

we only varied either the initial synaptic weights, or the trajectories or the input244

functions. From the resulting final grid patterns (after simulating 10 hours of rat245

trajectory), we computed the cross correlation of all pairs of 500 grid cells within246

each set of simulations (Fig. S9). A high cross correlation between different trials247

indicates, that the influence of the varied parameter is small. We observed that the248

cross correlation is high, if only the initial weights are varied. It is lower if instead249

only the trajectories are varied and even lower if only the input functions are varied.250

As expected, the cross correlation between different trials is lowest, if initial synaptic251

weights as well as trajectories as well as input functions are varied together (Fig. S9,252

rightmost box).253
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Figure S9: The influence of random simulation parameters on the final grid pattern.
Box plot of the cross correlations of 500 simulations (i.e., (5002 − 500)/2 = 124750
cross correlations) where only the parameter that is indicated on the x−axis was
varied. A high cross correlation indicates that different simulations lead to similar
grids and thus points towards a low influence of the varied parameter on the final
grid pattern. We conclude that the influence on the final grid pattern in decreasing
order is given by the parameters: Initial synaptic weights, trajectory of the rat, input
tuning (i.e., locations of the randomly located input tuning curves). As expected,
the correlation is lowest, if all parameters are different in each simulation (rightmost
box). Each box extends from the first to the third quartile, with a dark blue line
at the median. The whiskers extend from the first and third quartile by 1.5 the
interquartile range. Dots show flier points.

3.6 Shape of stretched grids or band cells254

As shown in Fig. 4 in the main text, an asymmetric autocorrelation structure of255

inhibitory inputs can lead to different symmetries in the output neuron. The possible256

patterns are illustrated in Fig. S10.257
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Figure S10: a) For ellipsoidal spatial autocorrelation structures of inhibitory input
(blue line), we observed band cell-like firing patterns or stretched grids (Fig. 4d).
Interestingly, the resulting patterns alternate between two different symmetries. This
can be understood by two competing arrangements of ellipsoids. b) A dense packing
of ellipsoids maximizes the area with non-zero firing and is favored by the inhibitory
learning rule. This leads to stretched grids. c) Maximizing the overlap between
excitatory input fields is favored by the excitatory learning rule and leads to quadratic
grids with different periodicities along different directions. d) Some simulations show
a combination of both patterns. Compare Fig. 4d.
The observed alignment of excitatory firing fields in c is particularly favored, if
inhibition is very smooth along one direction. This could lead to the alignment of
the head direction of individual grid fields in the simulations shown in Fig. 5.

3.7 Boundary effects and stability of grids258

The motion of the rat is not periodic. We constrained it to either a square or a259

circular box. The input tuning is not periodic either. Consequently, input neurons260

with tuning fields that lie partially outside the boundary receive less activation. This261

leads to boundary effects, for the following reason: Excitatory weights associated262

to fields at the boundaries grow less, because the Hebbian learning scales with the263

presynaptic activation. This leads to a smaller firing rate at the boundary. According264

to the inhibitory learning rule, the inhibitory weights of neurons that are tuned to265

boundary locations then also grow less. At a distance given by the width of excitatory266
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firing fields, the excitatory weights equally fast as those that are far away from the267

boundary. If inhibition is more broadly tuned than excitation, it is still reduced at268

these locations, though. Firing fields are thus favored at a distance from the boundary269

that is determined by the width of the excitatory tuning, because at this location the270

excitation will exceed the inhibition. This preference of firing at a certain distance271

from the boundary competes with the preference for hexagonal firing that is induced272

by the interaction of excitatory and inhibitory plasticity. For place field-like input273

that is arranged on a symmetric lattice, the alignment to the boundary can be seen274

in the alignment of one grid axis to the boundary in a square box (Fig. S11a). This275

alignment is not an artifact of the symmetric distribution of input fields, because it276

is not present in a circular arena (Fig. S11b). The strong tendency to align with the277

boundary can be overcome by using a random distribution of input fields (Fig. S11c)278

and in particular by using input with more than one place field per neuron, i.e., non-279

localized input. Nonetheless, we observed boundary effects in all simulations when280

simulating for very long times.281
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Figure S11: Boundary effects in simulations with place field-like input. a) Sim-
ulations in a square box with input place fields that are arranged on a symmetric
grid. From top to bottom: Firing rate map and corresponding autocorrelogram for
an example grid cell; peak locations of 36 grid cells. The clusters at orientation of
0, 30, 60 and 90 degrees (red lines) indicate that the grids tend to be aligned to the
boundaries. b) Simulations in a circular box with input place fields that are arranged
on a symmetric grid. Arrangement as in a. The grids show no orientation preference,
indicating that the orientation preference in a is induced by the square shape of the
box. c) Simulations in a square box with input place fields that are arranged on a
distorted grid (see Fig. S4). Arrangement as in a. The grids show no orientation
preference, indicating that the influence of the boundary on the grid orientation is
small compared to the effect of randomness in the location of the input centers.
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3.8 Non-localized input leads to decreased variance in synap-282

tic weights283

In the main text we have shown that non-localized input often leads to distorted grid284

patterns. Fig. S12 shows that the coefficient of variation of synaptic weights is lower285

for non-localized than for localized input after a grid has formed. In other words, the286

structure of the grid is only weakly apparent in the structure of the weights. This287

renders the grid more susceptible to distortions.

Figure S12: The standard deviation (STD) and the coefficient of variation (CV)
of excitatory (left) and inhibitory (right) weights as a function of place fields per
input neuron. The values are computed after the output neuron has established
a stable grid pattern on a linear track. For excitatory weights, the CV decreases
significantly with non-localized input. This indicates that different firing patterns in
the output neuron are closer in weight space, the more non-localized the input is:
An explanation for the defects in grids with non-localized input.

288
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4 Glossary289

A summary of notation:

The rat’s position at time t : x(t)

Spatial dimensions x, y and head direction z : x = (x, y, z)

Population label; can be E (excitatory) or I (inhibitory) : P

Standard deviation of Gaussian tuning of popluation P : σP

Spatial autocorrelation length of input of population P : σP,corr

Number of input neurons of population P : NP

Number of place fields per input neuron of population P : N f
P

Firing rate of output neuron : rout(x)

Firing rate of input neuron i of population P : rPi (x)

Synaptic weight of input neuron i of population P to output neuron : wP
i (t)

Learning rates of excitation and inhibition : ηE, ηI

Target rate of the output neuron : ρ0

Length of linear track : L

Height of the Gaussian input fields : αE, αI

Value of Gaussian with standard deviation σP at location x : GP (x)

Von Mises distribution with width σP that is periodic in [−L/2, L/2] :MP (x)
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