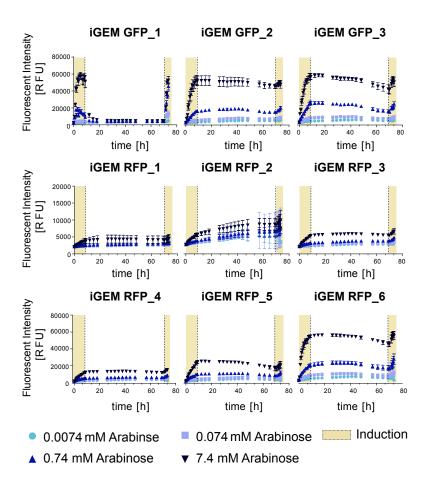
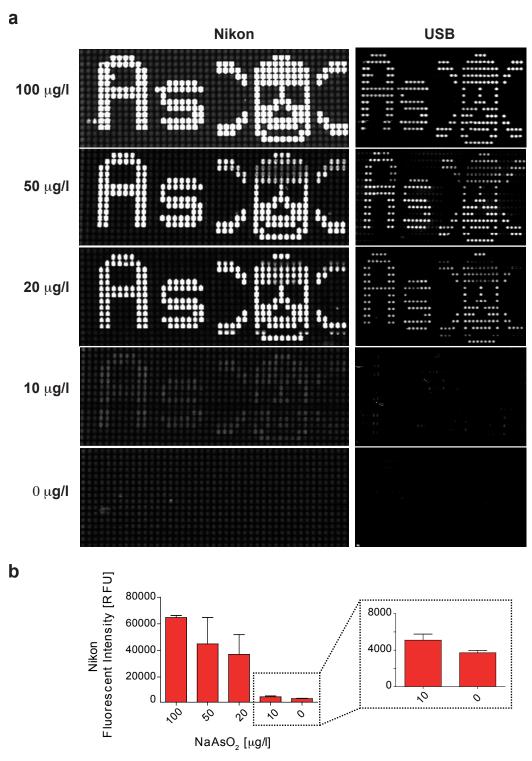
Supplementary Materials

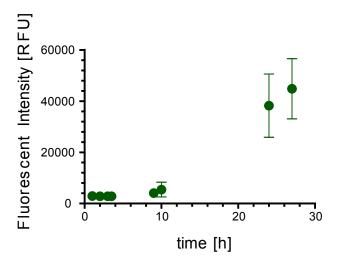

A microfluidic biodisplay

Francesca Volpetti¹, Ekaterina Petrova¹, & Sebastian J. Maerkl*

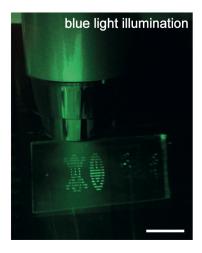

Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne

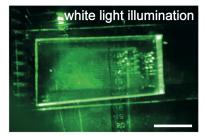
¹these authors contributed equally


^{*}Correspondence should be addressed to SJM (sebastian.maerkl@epfl.ch)


Supplementary Figure 1. Biodisplay for strain characterization at 37°C. Fluorescent intensity of GFP or RFP expression of nine different arabinose sensitive *E. coli* strains. The cells were induced twice with 4 different concentrations of arabinose (0.0074 mM, 0.074 mM, 0.74 mM and 7.4 mM). The yellow background indicates the induction intervals. The microfluidic chip was heated to 37°C during the experiment.

Supplementary Figure 2. Arsenic-responsive *E. coli*, EDI_as_4, was spotted on the chip and 4 different concentrations of sodium-arsenite in LB were sampled for 24 hours. GFP expression was monitored over time using a Nikon microscope.




Supplementary Figure 3. Arsenic biodisplay. (a) Fluorescent images taken using Nikon and USB microscope after 24 hours of induction with different concentrations of sodium-arsenite (100 μ g/l, 50 μ g/l, 20 μ g/l, 10 μ g/l and 0 μ g/l). Each concentration was sampled in different devices. (b) Quantitation of the fluorescent signal, after 24 hours of induction and measured with the Nikon microscope.

Supplementary Figure 4. Arsenic biodisplay. Arsenic-responsive *E. coli* was spotted in a "As" and a "skull and crossbones" pattern. 20 μ g/l of sodium-arsenite in tap water was sampled and GFP expression monitored over time using a Nikon microscope.

a b

Supplementary Figure 5. Cellphone image acquisition. (a) The microfluidic chip was illuminated using the LEDs of a USB microscope (excitation at 480 nm), a band-pass filter centered at 530nm with a 40 nm bandwidth was placed in front of the camera of the cellphone. (b) The same device was illuminated by white light and imaged using the cellphone and emission filter as in (a). Scale bar 1cm.

Identifier	Name	Resistance	Inducer	Reporter
BBa_I13517	iGEM RFP_1	Chloramphenicol	Arabinose	RFP
BBa_K1333301	iGEM RFP_2	Chloramphenicol	Arabinose	RFP
BBa_K1333300	iGEM RFP_3	Chloramphenicol	Arabinose	RFP
BBa_K577004	iGEM RFP_4	Chloramphenicol	Arabinose	RFP
BBa_K577882	iGEM RFP_5	Chloramphenicol	Arabinose	RFP
BBa_I13516	iGEM RFP_6	Chloramphenicol	Arabinose	RFP
BBa_K750000	iGEM GFP_1	Chloramphenicol	Arabinose	GFP
BBa_K584000	iGEM GFP_2	Chloramphenicol	Arabinose	GFP
BBa_K577881	iGEM GFP_3	Chloramphenicol	Arabinose	GFP
pBW101ParsR-gfp (78636)	EDI_as_1	Kanamycin	Arsenic	GFP
pBW102ParsR-Amp32C (78637)	EDI_as_2	Kanamycin	Arsenic	GFP
pBW103ParsR-Amp30C (78638)	EDI_as_3	Kanamycin	Arsenic	GFP
pBW300ParsR-Amp32T (78652)	EDI_as_4	Kanamycin	Arsenic	GFP
pIIUN gfp	UNIL_1	Kanamycin	Arsenic	GFP
pAAUN gfp	UNIL_2	Kanamycin	Arsenic	GFP
pVUN gfp	UNIL_3	Kanamycin	Arsenic	GFP
pLtet0UN gfp	UNIL_4	Kanamycin	Arsenic	GFP
pPR arsR abs gfp	UNIL_5	Kanamycin	Arsenic	GFP
BGSC 3A40	Bacillus subtilis subsp. Subtilis amyE::Physpank- mCherry		IPTG	mCherry
BGSC 3A39	Bacillus subtilis subsp. Subtilis amyE::Physpank- GFP		IPTG	GFP

Supplementary Table 1. List of plasmids and strains used in this work.